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Outline

e Flat clustering
Mixture of Gaussians
K-means

e Hierarchical clustering
bottom-up

e Spectral based clustering
e Applications




Clustering

e Glven set of data points, group them
o learning

e Learn the similarity. Which patient are similar?
(or customers, faces, earthquakes, ...)
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Clustering vs. Classification

e Clustering
o Instance: {x},
e Learn: <x;,t >and/or mapping from x to t(x)

e Classification/Regression
e Instance: <x;,t, >
e Learn: mapping from x to t(x)



Clustering:
Image segmentation

Mean-shift segmentation



Mixtures of Gaussians

e Mixture distribution:
Assume P(x) is a mixture of K different Gaussians
Assume each data point, X is generated by 2-step process

Choose one of the K Gaussians as label z
Generate x according to the Gaussian N(g,,X))

F’(X)=ZP(Z = 2| Z)N(X]| 1, Z,)

e What object function shall we optimize?
Maximize data likelihood
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Mixtures of Gaussians (cont.) |:
e Multivariate Gaussian model
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Multi-variate density estimation

e A mixture of Gaussians model

p(x]0) Z p; p(x|pj, T

where 6 = {p1,..., Pk, {1y« ks 21, ..., 2+ contains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixtures of Gaussians:
Wishart distribution

o A mixture of Gaussian Model:

High dimensional
p(x|0) = Z P; P(X|pj, 2 parameters

e Wishart prior

1 n'
Qo [ —1 g
P(X|5,n") x PIRLE exp ( 2Trace(Z 5))

S = "prior” covariance matrix

n' = equivalent sample size




Mixture density

e Data generation process:
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p(x|0) = Z P(y =7) p(x|ly=7) (generic mixture)

=12
= Z pi-p(x|p;,X;)  (mixture of Gaussians)
j=1,2

e Any data point x could have been generated in two ways



Mixture density

e [f we are given just x we don't know which mixture
component this example came from

p(x6) = Y pip(x|u;. ;)
j=1.2

e We can evaluate the posterior probability that an observed
x was generated from the first mixture component

Ply=1) pxly=1)
Zj:LQ Py =7) -p(X|y =7)
p1p(x|p1, Xy)
> i=1.2Pi p(X|pj, j)

Py =1|x.,0)

e [his solves a credit assignment problem



Mixture density:
posterior sampling

e Consider sampling x from the mixture density, then v from
the posterior over the components given x, and finally x’
from the component density indicated by :

x ~ p(x|6)
y ~ P(y]x.0)
x' ~ p(x'|y,0)

Is v a fair sample from the prior distribution P(y)?

Is x" a fair sample from the mixture density p(x’|6)?




Mixture density estimation

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x10) = p1p(x|p1, X1) + p2p(x|p2. X2)

e |f each example x; in the training set were labeled y; =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.

e Labeled examples = no credit assignment problem



Mixture density estimation

When examples are already 2, 38
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e If n; is the number of examples labeled j, then for each
7 = 1.2 we set

P — —

J n

) 1

My — - E X
n; . .
Loiy=g

1 ) L
Y (ki — ) — )"
T dyi=j

7>



Mixture density estimation:
credit assignment

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior
probabilities of which Gaussian .|
generated which example:

p(ili) — Ply; = jlxi, 0)

e When the Gaussians are almost identical (as in the figure),
p(1]i) ~ p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The Expectation-Maximization
algorithm

E-step: softly assign examples to mixture components

p(jli) — P(y; = j|x;,6)., forall j=1,2andi=1,....n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

n; <« Zﬁ(j\i) = Soft # of examples labeled j

i=1
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The EM-algorithm

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x1, ..., X,

n p(x;]6)
log p(data |#) = Z log (EJl p(Xi| 1, 21) + pa p(xi| o, Egj)
i=1

where 8 = {py, po, j11, 12, 21, 2o} contains all the parameters
of the mixture model.
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The EM algorithm

e The EM-algorithm finds a local maximum of [(6: D)

E-step: evaluate the expected complete log-likelihood

J(6; 60 = Z Ejmp(_ﬂxf_,@{t)] log (pjp(xf,uj. E?))

i=1
= Z Z P(j|x;,0") log (p?p Xilpts u?))
=1 7=1,2

M-step: find the new parameters by maximizing the
expected complete log-likelhood

plt+1) ATgmax J(6:;61)



Regularized EM algorithm

e To maximize a penalized (regularized) log-likelihood

I'(6;D) = Z log p(x:|0) + log p(@)
i=1

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find # that maximize a
penalized expected complete log-likelihood:

J6:69) = > E;_p(ix.00) o8 (P;fP(XfHJ-Ej))
=1

+ log p(p1.p2) + log p(X1) + log p(¥1)

where, for example, p(p1, p2) could be a Dirichlet and each
p(2;) a Wishart prior.



Selecting the number of
components

e As a simple strategy for selecting the appropriate number
of mixture components, we can find & that minimize the
following asymptotic approximation to the description length:

B 1
DL ~ — log p(data|f;) + %log(n)

where n is the number of training points, Oy is the maximum
likelihood parameter estimate for the k-component mixture,
and dj, is the (effective) number of parameters in the k-
mixture.




Mixture density estimation:
example




K-means clustering

Given data <x, ... x>, and K, assign each x; to one of K clusters,

C,...Ck,mnNIMIiziINg 7 — N N (1. — 1,012
= L PR R Ml
J=1xz;€C;

Where 45 is mean over all points in cluster C,

K-Means Algorithm:

Initialize i1 - - - LK randomly
Repeat until convergence:
1. Assign each point x; to the cluster with the closest mean

2. Calculate the new mean for each cluster




K-Means vs.
Mixture of Gaussians

e Both are iterative algorithms to assign points
to clusters

e Objective function :
K Means: minimize =X 2 el
MoG: maximize likelihood Pxe)

e MoG the more general formulation
Equivalent to K Means when z,--1, and ¢ —0



Hierarchical (bottom-up)
clustering

e Hierarchical agglomerative clustering: we sequentially merge
the pair of “closest” points/clusters

e The procedure
Find two closest points (clusters) and merge them
Proceed until we have a single cluster (all the points)

e Two prerequisites:
distance measure d(xi, Xj) between two points
distance measure between clusters (cluster linkage)



Hierarchical (bottom-up)
clustering

e A linkage method: we have to be able to measure distances

between clusters of examples '}, and (}
a) Single linkage:

diy = min  d(x; X;)
ieCy,,jEC] :

b) Average linkage:

1
dpi = ——— d(x;, X
"= e, 2 k)

liec,,je0

c) Centroid linkage:

1
dr = d(Xk, X1), X = C Z X




Hierarchical (bottom-up)
clustering

e A dendrogram representation of hierarchical clustering
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The height of each pair represents the distance between
the merged clusters; the specific linear ordering of points is
chosen for clarity



Spectral clustering

e [he spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps
1. a nearest neighbor graph

2. similarity weights on the edges:

Wi; = exp{—llx; — x;1|}

where W;; = 1 and the weight is
zero for non-edges.

3. transition probability matrix o}

Py = Wi;/ > Wi 2
j!'
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Properties of the random walk |:
e If we start from 7y, the distribution of points 7; that we end
up in after ¢ steps is given by
W,
i1 ~ Py, Py = TF where Wy, = > Wy,
2NZP i 2122 Pz}z()zo !
33”223()”31:33”3— {PB]Z'-U?'-:}? %57 A?‘
71 19 °

by ~ [PT} 0 it w

where P* = PP ... P (t matrix products) and [-];; denotes
the 7,7 component of the matrix.




Random walk and clustering

e [hedistributions of points we end up in after ¢ steps converge
as t increases. |If the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities [P’];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues /vectors
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Eigenvalues/vectors and
spectral clustering

e Let W be the matrix with components W;; and D a diagonal
matrix such that D;; = Zj W;;. Then

P=D"'W

e To find out how P?* behaves for large ¢ it is useful to examine
the eigen-decomposition of the following symmetric matrix

T

'

1l 1
D IWD™2 = \z12! + Nozozl + ...+ N\ 2,2

where the ordering is such that |[A{| > [Xo| > ... > |A,].



Eigenvalues/vectors cont’d

e The symmetric matrix is related to P! since
(D2WD"2)...(D"*WD %)= Dz(P---P)D2

This allows us to write the ¢ step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

P! = D3 (D%WD%> D

= D~ ()\lezl + Azozl 4+ ...+ )\;znzz) D3

where Ay = 1 and



Eigenvalues/vectors and
spectral clustering

e We are interested in the largest correction to the asymptotic
limit

1| =

P!~ P>® 4+ D2 (/\zz322> D

Note: [ZQZg]ij = 29,72, and thus the largest correction term
increases the probability of transitions between points that
share the same sign of 25, and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z-

297 > 0 = cluster 1, otherwise cluster 0



Spectral clustering: example
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Components of the eigenvector corresponding to the second
largest eigenvalue



Reference papers of SC

e A.Y.Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:
Analysis and an algorithm, NIPS, (2001)

e Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV,
(1999)

e J. Shiand J. Malik, Normalized cuts and image segmentation, IEEE
TPAMI, 22 (2000)

e And more about image segmentations ...
e Graph cut
e Mean-shift




An example: ISO/BLE-charts

e |ISO-Charts:

e ISOMAP + Spectral Clustering + Stretch Minimization

e BLE-Charts:

e Statistical Embedding + Spectral Clustering + Stretch Minimization
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