
What is machine learning?

Zhang Hongxin zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU 2008-02-21

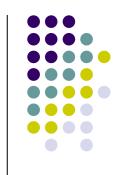
Outline

- Background
- What is Machine Learning?
- Is it really useful for computer science and technology?

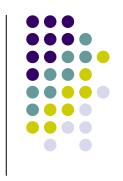
The largest challenge of Today's CS

- Data, Data, Data...
 - The tedious effort required to create digital worlds and digital life.
 - Finding new ways to communicate and new kinds of media to create.
 - Experts are expensive: scientists, engineers, filmmakers, graphic designers, fine artists, and game designers.
- Process existing data and then create new ones from them.

Computers are really fast


If you can create it, you can render it

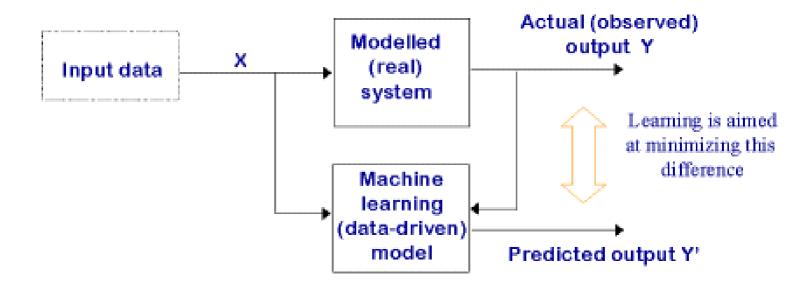
How do you create it?



Pure procedural synthesis vs. Pure data

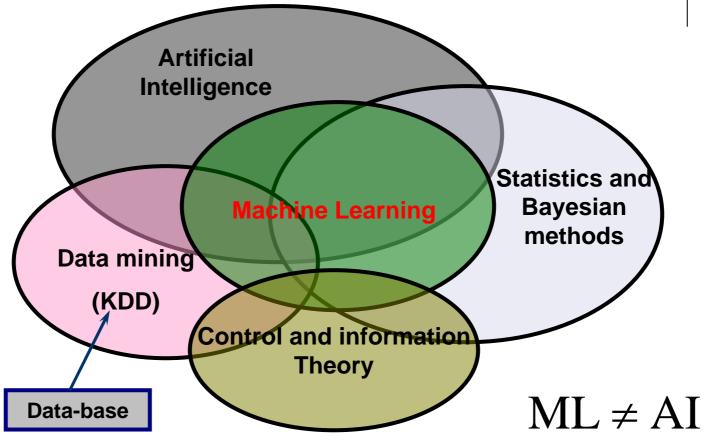
- Creating motions for a character in a movie
 - Pure procedural synthesis.
 - compact, but very artificial, rarely used in practice.
 - "By hand" or "pure data".
 - higher quality but lower flexibility.
 - the best of both worlds: hybrid methods?!?

Bayesian Reasoning


- Principle modeling of uncertainty.
- General purpose models for unstructured data.
- Effective algorithm for data fitting and analysis under uncertainty.

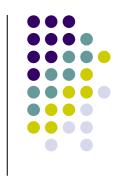
But currently it is always used as a black box.

Belief v.s. Probability


Data driven modeling

What is machine learning?

Computer Vision


Multi-media

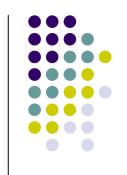
Bio-informatics

Computer Graphics


Information retrieval

What is machine learning? (Cont.)

- Definition by Mitchell, 1997
 - A program learns from experience E with respect to some class of tasks T and performance measure P, if its performance at task T, as measured by P, improves with experience E.
 - 机器学习乃于某类任务兼性能度量的经验中学习之程序;若其作用于任务,可由度量知其于已知经验中获益。
- Comments from Hertzmann, 2003
 - For the purposes of computer graphics, machine learning should really be viewed as a set of techniques for leveraging data. Given some data, we can model the process that generated the data.


What is machine learning? (Cont.)

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - examples of how they should behave
 - from trial-and-error experience trying to solve the problem

Different from standard CS: want to implement unknown function, only have access to sample input-output pairs (training examples)


Main categories of learning problems

Learning scenarios differ according to the available information in training examples

- Supervised: correct output available
 - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - Regression: real-valued output (predicting market prices, temperature)
- Unsupervised: no feedback, need to construct measure of good output
 - Clustering: Clustering refers to techniques to segmenting data into coherent "clusters."
 - Novelty-detection: detecting new data points that deviate from the normal.
- Reinforcement: scalar feedback, possibly temporally delayed

Learning scenarios differ according to the available information in training examples

- Supervised: correct output available
 - ...
- Semi-Supervised: only a part of output available
 - Ranking:
- Unsupervised: no feedback, need to construct measure of good output
 - ...
- Reinforcement: scalar feedback, possibly temporally delayed

And more ...

- Time series analysis.
- Dimension reduction.
- Model selection.
- Generic methods.
- Graphical models.

Why Study Machine Learning?

- Develop enhanced computer systems
 - automatically adapt to user, customize
 - often difficult to acquire necessary knowledge
 - discover patterns offline in large databases (data mining)
- Improve understanding of human, biological learning
 - computational analysis provides concrete theory, predictions
 - explosion of methods to analyze brain activity during learning

Timing is good

- growing amounts of data available
- cheap and powerful computers
- suite of algorithms, theory already developed

Growth of Machine Learning

- Machine learning is preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - ...

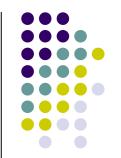
This trend is accelerating

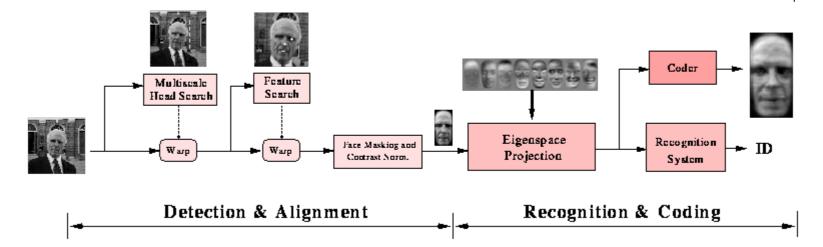
- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Software too complex to write by hand
- New sensors I / O devices
- Demand for self-customization to user, environment

Is it really useful for computer science and technology?

- Con: Everything is machine learning or everything is human tuning?
 - Sometimes, this may be true.
- Pro: more understanding of learning, but yields much more powerful and effective algorithms.
 - Problem taxonomy.
 - General-purpose models.
 - Reasoning with probabilities.
- I believe the mathematic magic.

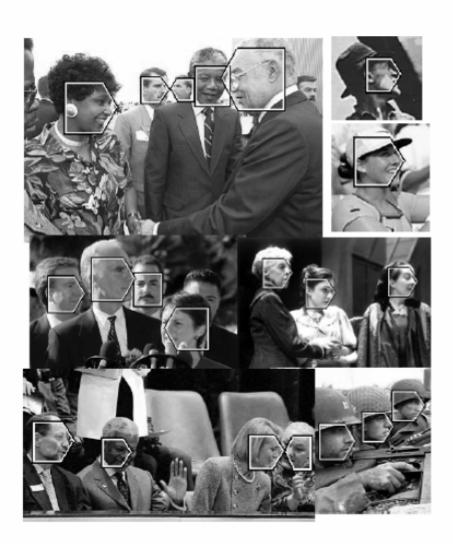
What will be a successful ML algorithm?


- Computational efficiency
- Robustness
- Statistical stability


The First Example: Google!

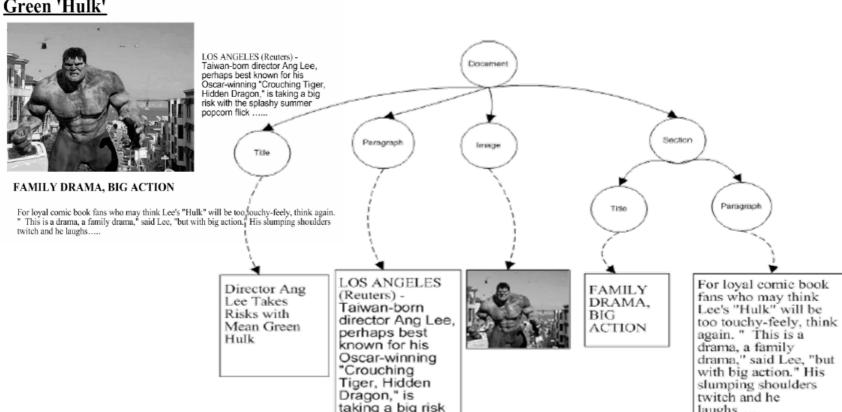
Object detection and recognition - the power of learning

The image is copied from http://vismod.media.mit.edu/vismod/demos/facerec/


Object Detection

(Prof. H. Schneiderman)

Example training images for each orientation



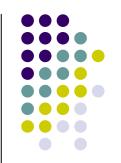
Document processing Bayesian classification

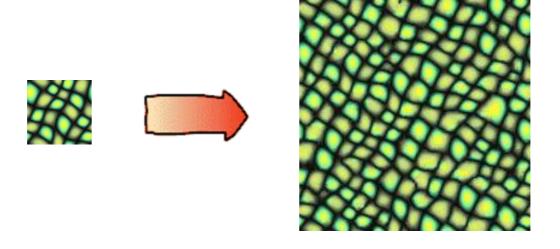
laughs.....

Director Ang Lee Takes Risks with Mean Green 'Hulk'

with the splashy summer popcorn

flick


Mesh Processing – Data clustering/segmentation

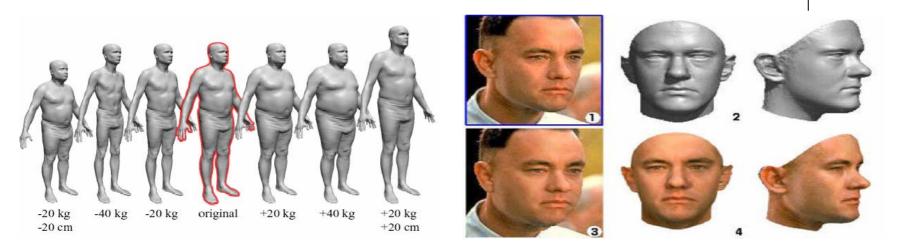


Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts.
 By Sagi Katz and Ayellet Tal, SIGGRAPH 2003

Texture synthesis and analysis – Hidden Markov Model

- Texture Synthesis over Arbitrary Manifold Surfaces. Li-Yi Wei and Marc Levoy. SIGGRAPH 2001.
- Fast Texture Synthesis using Tree-structured Vector Quantization.
 Li-Yi Wei and Marc Levoy. SIGGRAPH 2000.

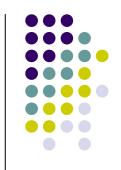
Reflectance texture synthesis – Dimension reduction

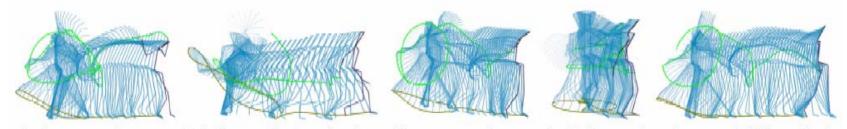


- Synthesizing Bidirectional Texture Functions for Real-World Surfaces. Xinguo Liu, Yizhou Yu and Heung-Yeung Shum. SIGGRAPH 2001.
- More recent papers...

Human shapes - Dimension reduction

- The Space of Human Body Shapes: Reconstruction and Parameterization From Range Scans. Brett Allen, Brian Curless, Zoran Popovic. SIGGRAPH 2003.
- A Morphable Model for the Synthesis of 3D Faces. Volker Blanz and Thomas Vetter. SIGGRAPH 1999.


Image processing and synthesis - Graphical model



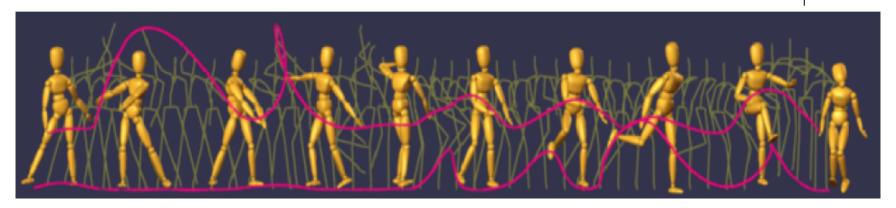
- Image Quilting for Texture Synthesis and Transfer. Alexei A. Efros and William T. Freeman. SIGGRAPH 2001.
- Graphcut Textures: Image and Video Synthesis Using Graph Cuts.
 V Kwatra, I. Essa, A. Schödl, G. Turk, and A. Bobick. SIGGRAPH 2003.

Human Motion - Time series analysis

A pirouette and promenade in five synthetic styles drawn from a space that contains ballet, modern dance, and different body types. The choreography is also synthetic. Streamers show the trajectory of the left hand and foot.

- Style Machines. M. Brand and A. Hertzmann. SIGGRAPH 2000.
- A Data-Driven Approach to Quantifying Natural Human Motion. L. Ren, A. Patrick, A. Efros, J. Hodgins, J. Rehg. SIGGRAPH 2005

Video Textures - Reinforcement Learning



 <u>Video textures</u>. Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. SIGGRAPH 2000.

Motion texture - Linear dynamic system

 Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis. Yan Li, Tianshu Wang, and Heung-Yeung Shum. SIGGRAPH 2002.

Summary

- Machine learning is a nut-shell, :-D
 - Keywords
 - Noun: data, models, patterns, features;
 - Adj.: probabilistic, statistical;
 - Verb: fitting, reasoning, mining.

Homework

 Try to find potential learning based applications in your research directions

Reference

Reinforcement learning: A survey.