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What you need to know

e Point estimation: (14 11)
Maximal Likelihood Estimation (MLE)
Bayesian learning
Maximize A Posterior (MAP)

e Gaussian estimation
e Regression ([5]H)
Basis function = features

Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off




Your first consulting job

e An IT billionaire from Beijing asks you a
guestion:

o B: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

o Y: Please flip it a few times ...

e Y: The probability is 3/5
e B: Why???
e Y: Because...



Binomial Distribution

e P(Heads) = 0, P(Tails) = 1- ¢

P(D|60) = (1-6)00(L— 6)(1- )
e Flips are I.i.d.

Independent events

|dentically distributed according to Binomial
distribution

e Sequence D of a |, Heads and a ; Talils
P(D|8)=6"" (1-6)"



Maximum Likelithood Estimation

e Data: Observed set D of a , Heads and a ; Tails
e Hypothesis: Binomial distribution

e Learning 9 iIs an optimization problem
What's the objective function?
D={T,H,H,T,T}
e MLE: Choose 6 that maximizes the probability of
observed data:

N\

¢ = argmaxP(D]|&)
0
argmaxInP(D|0) =...
0



Maximum Likelihood
Estimation (cont.)

H = argmax P(D | 9)
0

= argmaxIn(@“" (1-6)"")
0

= argmax(a, In0+ a; In(1-6))

6
e Set derivative to zero:

iInP(D\H):O 0 =
do




How many flips do | need?
j=—

e B: | flipped 2 heads and 3 talls.

e Y: 6 =3/5, | can prove it!

e B: What if | flipped 20 heads and 30 tails?

e Y: Same answer, | can prove It!

e B: What's better?

e Y: Humm... The more the merrier???

e B: Is this why | am paying you the big bucks???



Simple bound
(based on Hoffding's inequality)

~ 04
e For N=o,+a; and 6= T

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vcl/vc-l.html

e Let 6 * be the true parameter, for any ¢ >O0:
P(6-0"|>¢g) <22V | <6
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N > 270; (¢ =0.1,6 = 0.01)




PAC Learning

e PAC: Probably Approximate Correct

e B: | want to know the thumbtack parameter
0, within ¢ = 0.1, with probabillity at least 1-
6 =0.99. How many flips?

o Y: 270, ©



Prior:
knowledge before experiments

e B: Wait, | know that the thumbtack is “close” to 50-50. What can
you ...?

e Y: I can learn it the Bayesian way...

e Rather than estimating a single 9 , we obtain a distribution over
possible values of ¢
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Bayesian Learning

Prior Likelihood

| |
P(O)P(D|6)
P ( D) «— Data distribution

(Normalization constant)

e Bayes rule:

Posterior — P(@‘ D) —

e Or equivalently:

P(@|D)x P(@)P(D|86)



Bayesian Learning in our case

e Likelihood function is simply Binomial:
P(D|8)=60""(1-6)"

e \What about prior?
Represent expert knowledge
Simple posterior form
e Conjugate priors: (ILHE4EL)
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution




Beta prior distribution — P(9)

e Prior: Beta distribution
p(6) — 0P (1-0)/
B(Sy. fr)
e Likelihood: Binomial distribution
P(D|6) =0 (1-0)™
e Posterior:

~ Beta(B,,, 5;)

P(@|D) « P(O)P(D|6)
o« G (L-0)" oM (1-0)"
~ Beta(ay + f4,0; + ;)



Using Bayesian posterior

e Posterior distribution:
P(@| D) ~ Beta(ay, + S, ,2; + ;)

e Bayesian inference:
No longer single parameter:

E[f ()] ~ jol f(0)P(0|D)do

Integral, ®




MAP:
Maximum a posteriori approximation

P(6|D) ~ Beta(ay, + By, o + 1)

approximation

E[f(0)] = f(6)P(9]D)do-

e MAP: use most likely parameter

0 =argmaxP(0|D) E[f(0)]~ f(0)—



MARP for Beta distribution

P(6|D) ~ Beta(ay, + By, o + 1)

e MAP: use most likely parameter

0 =argmax P(6| D) = o+ fr —1
0 o, + P, +o + B -2

e Beta prior equivalent to extra thumbtack flips
e AS N=¢; +a, - o, prior is “forgotten”
e But, for small sample size, prior is important!



Gaussian distribution

Continuous variable:

R

ONZ2TT

variance Normalize item

JiZ=

P(X|u,06)~

Consider the difference between continuous and discrete variables?



MLE for Gaussian

e Prob. of I.I.d. samples D={x,x,,...,x,}

N N —(-p)?
j He 20°
e The magic of log (to log-likelihood)

NN —(Xi—u)°
INP(D|u,o0) = In( 1 j He 20°

27 i=1

= —Nln(c+27)- Z(X ~4)°

likelihood P(D|u,o)= (




MLE for mean of a Gaussian

N N —(i—w)?
ﬂlnP(DLu,G) = ﬁln( 1 jHe 20°
ou ou \o~N2r ) a4
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MLE for variance of a Gaussian

a a N —(x ,U)
—InP(D]| 4, = —In e 2°
p (D|u,0) p ( «/7] H

O

|l
|
|
_I_
M-
7
>
]
N’
|
o




Gaussian parameters learning

e MLE .
ﬁzﬁzxi

6 = 20—

e Bayesian learning: prior?

e Conjugate priors:
Mean: Gaussian priors
Variance: Wishart Distribution




Prediction of continuous
variable

e B: Walt, that’'s not what | meant!
e Y: Chill out, dude.

e B: | want to predict a continuous variable for
continuous inputs: | want to predict salaries from
GPA.

e Y: | canregress that...

Salary

GPA




The regression problem

e Instances: <Xt >
e Learn: mapping from x to t(x).

Given, basis functions H ={h
Find coefficients w={w,,...,w,}

e Problem formulation: k
w” =argmin > [t(x;)— > wh (X)]°
w j i=1

e Hypothesis space: t(x)zf(x):iwihi



But, why sum squared error?

e Model:
[t=> " wih; ()T’

P(t|X,w,o) = e 20"
(t] ) oo

e Learn w using MLE




Maximizing log-likelthood

InP(D\w,a)zlnH(G\/lZe
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Bias-Variance Tradeoff

e Choice of hypothesis basis introduce learning
bias:
More complex basis:

Less bias
More variance (over-fitting)
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What you need to know

e Point estimation:
Maximal Likelihood Estimation
Bayesian learning
Maximal a Posterior

e Gaussian estimation

e Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off



Homework

e Finish the “Gaussian parameters learning”
Please use google, M *
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