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Rudolf Emil Kalman

Born 1930 in Hungary
BS and MS from MIT
PhD 1957 from Columbia 
Filter developed in 1960-61 
Now retired



What is a Kalman Filter?

Just some applied math. 
A linear system: f(a+b) = f(a) + f(b). 
Noisy data in :: hopefully less noisy out. 
But delay is the price for filtering... 
Pure KF does not even adapt to the data.

An “optimal recursive data processing 
algorithm”



What is it used for?

Tracking missiles
Tracking heads/hands/drumsticks
Extracting lip motion from video
Fitting Bezier patches to point data
Economics
Navigation



A really simple example



The Process to be Estimated

Discrete-time controlled process
State estimation:

Measurement:

Process noise covariance: Q

Measurement noise covariance: R
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The computational Origins of 
the Filters

Priori state estimation error at step k

Posteriori estimation error

Posteriori as a linear combination of a Priori
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The computational Origins of 
the Filters

The gain or blending factor that minimizes the 
a posteriori error covariance ][ T
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The Probabilistic Origins of 
the Filter

The a posteriori state estimate                                         
reflects the mean of the state distribution
The a posteriori state estimate error covariance               
reflects the variance of the state distribution
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The Discrete Kalman Filter 
Algorithm

Time update equations

Measurement update equations
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Filter Parameters and Tuning
The measurement noise covariance R is usually measured prior 
to operation of the filter.

Q and R are generally constants during filtering. Superior filter 
performance can be obtained by tuning them, referred to as 
system identification.



Example: 2D Position-Only

Apparatus: 2D Tablet



Process Model
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Measurement Model
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Preparation

State Transition
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Initialization
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Predict
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Correct
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Results: XY Track



Y Track: Moving then Still



Motion-Dependent Performance



The Extended Kalman Filter

Nonlinear Process (Model)
Process dynamics: A becomes a(x)
Measurement: H becomes h(x)

Filter Reformulation
Use functions instead of matrices
Use Jacobians to project forward, and to relate 
measurement to state
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Jacobian?
Partial derivative of measurement with respect to 
state

If measurement is a vector of length M and state has 
length N

Jacobian of measurement function will be MxN matrix of 
numbers (not equations)

Evaluating h(x) and Jacobian(h(x)) at the same time 
mostly only cost a little additional computing time. 



New Approaches

Several extensions are available that work 
better than the EKF in some circumstances



Summary
A set of mathematical equations that provides an 
efficient computational (recursive) means to 
estimate the state of a process.

Minimizes the mean of the squared error

Powerful:
supports estimations of past, present, and even future 
states,
can do so even when the precise nature of the modeled 
system is unknown



The End of 
Kalman Filter



Before the end of this course

Many techniques I cannot mention yet:
Neural network
Graphical model
Genetic methods
…

It is just a beginning …
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