Hidden Markov Models

Zhang Hongxin zhx@cad.zju.edu.cn

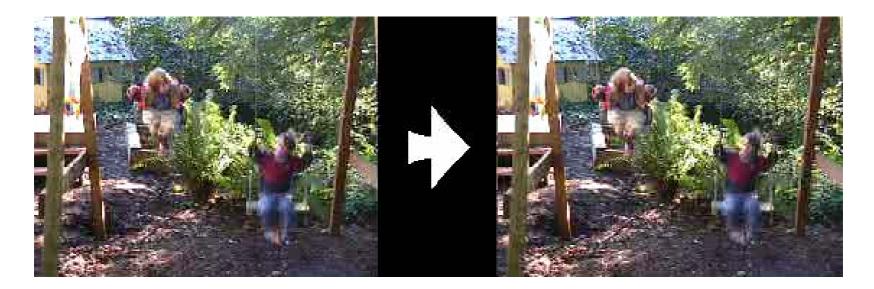
State Key Lab of CAD&CG, ZJU 2008-03-13

Outline

- Background
- Markov Chains
- Hidden Markov Models

Example: Video Textures

Problem statement



video clip

video texture

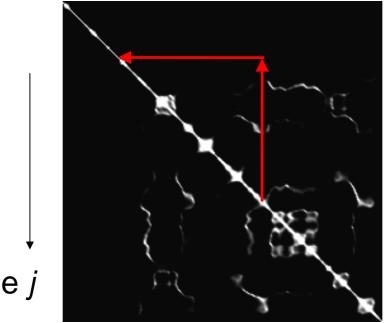
SIGGRAPH 2000. Schoedl et. al.

The approach

How do we find good transitions?

Finding good transitions

Compute L₂ distance $D_{i, j}$ between all frames frame *i*

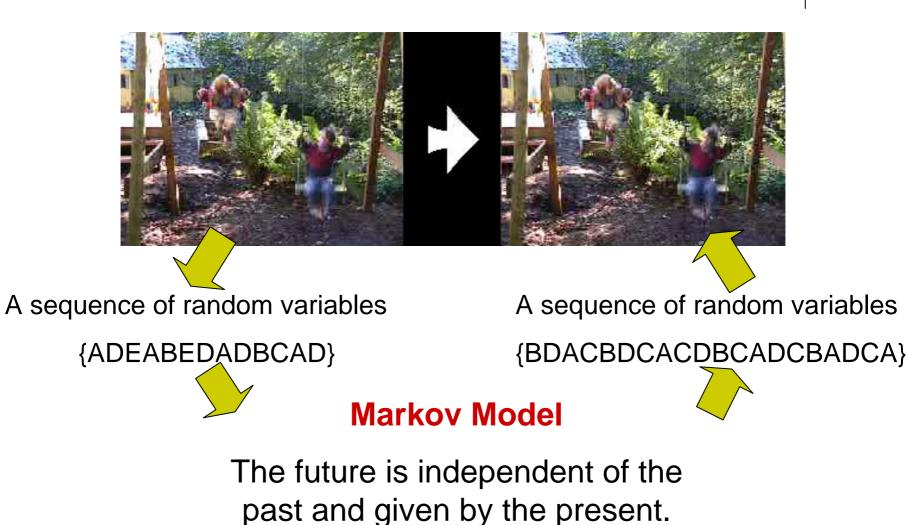


frame j

Similar frames make good transitions

Demo: Fish Tank

Mathematic model of Video Texture



Markov Property

• Formal definition

• Let $X = \{X_n\}_{n=0...N}$ be a sequence of random variables taking values $s_k \in N$ if and only if $P(X_m = s_m / X_0 = s_0, ..., X_{m-1} = s_{m-1}) = P(X_m = s_m / X_{m-1} = s_{m-1})$

then the X fulfills Markov property

Informal definition

• The future is independent of the past given the present.

History of MC

- Markov chain theory developed around 1900.
- Hidden Markov Models developed in late 1960's.
- Used extensively in speech recognition in 1960-70.
- Introduced to computer science in 1989.

Andrei Andreyevich Markov

Applications

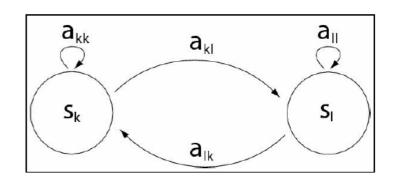
- Bioinformatics.
- Signal Processing
- Data analysis and Pattern recognition

Markov Chain

- A Markov chain is specified by
 - A state space $S = \{ s_1, s_2, ..., s_n \}$
 - An initial distribution a_0
 - A transition matrix A

Where $A(n)_{ij} = a_{ij} = P(q_t = s_j / q_{t-1} = s_i)$

- Graphical Representation as a directed graph where
 - Vertices represent states
 - Edges represent transitions with positive probability



Probability Axioms

 Marginal Probability – sum the joint probability

$$P(x = a_i) \equiv \sum_{y \in A_Y} P(x = a_i, y)$$

Conditional Probability

$$P(x = a_i | y = b_j) \equiv \frac{P(x = a_i, y = b_j)}{P(y = b_j)} \text{ if } P(y = b_j) \neq 0.$$

Calculating with Markov chains

- Probability of an observation sequence:
 - Let $X = \{x_t\}_{t=0}^{L}$ be an observation sequence from the Markov chain $\{S, a_0, A\}$

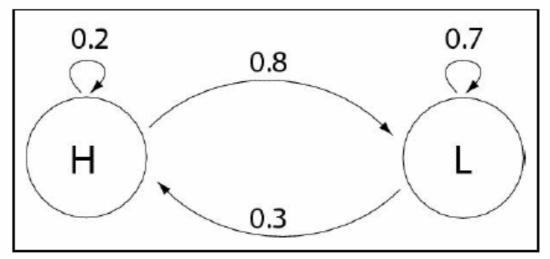
$$P(x) = P(x_{L}, ..., x_{1}, x_{0})$$

= $P(x_{L} | x_{L-1}, ..., x_{0})P(x_{L-1} | x_{L-2}, ..., x_{0}) \cdots P(x_{0})$
= $P(x_{L} | x_{L-1})P(x_{L-1} | x_{L-2}) \cdots P(x_{0})$
= $\mathbf{b}_{x_{0}} \prod_{i=1}^{L} a_{x_{i-1}x_{i}}$

Assume we are modeling a time series of high and low pressures during the Danish autumn.

Let
$$S = \{H, L\}, \mathbf{b} = \pi = \begin{bmatrix} \frac{3}{11}, \frac{8}{11} \end{bmatrix}$$
, and $A = \begin{bmatrix} 0.2 & 0.8 \\ 0.3 & 0.7 \end{bmatrix}$.

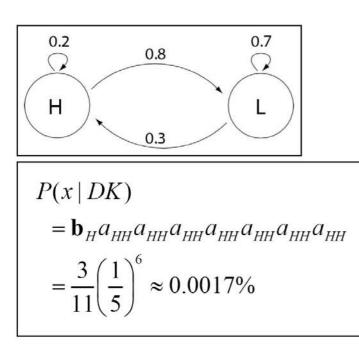
Graphical representation of A

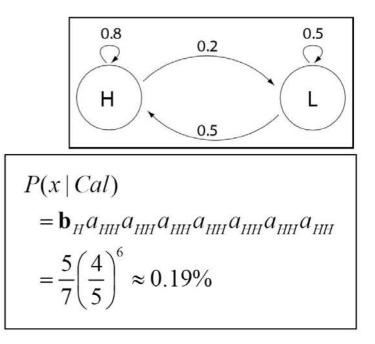


Comparing likelihoods

We want to know the likelihood of one week of high pressure in Denmark (DK) versus California (Cal).

х=ННННННН





Motivation of Hidden Markov Models

Hidden states

- The state of the entity we want to model is often not observable:
 - The state is then said to be hidden.

Observables

• Sometimes we can instead observe the state of entities influenced by the hidden state.

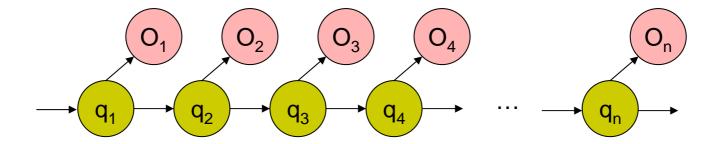
• A system can be modeled by an HMM if:

- The sequence of hidden states is Markov
- The sequence of observations are independent (or Markov) given the hidden

Hidden Markov Model

- Definition $M = \{S, V, A, B, \pi\}$
 - **Set of states** $S = \{ s_1, s_2, ..., s_N \}$
 - **Observation symbols** $V = \{ v_1, v_2, ..., v_M \}$
 - Transition probabilities
 - A between any two states $a_{ij} = P(q_t = s_j | q_{t-1} = s_j)$
 - Emission probabilities
 - *B* within each state $b_j(O_t) = P(O_t = v_j | q_t = s_j)$
 - Start probabilities $\pi = \{a_0\}$

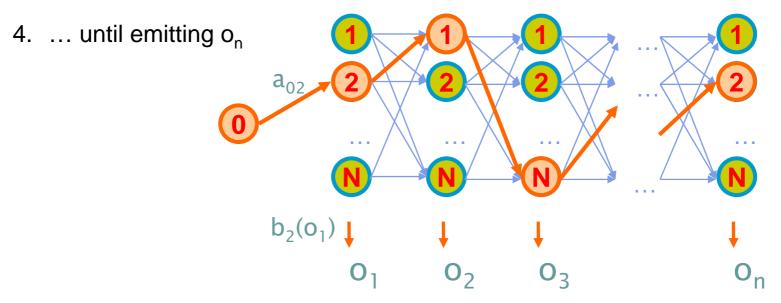
Use $\lambda = (A, B, \pi)$ to indicate the parameter set of the model.



Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state q_1 according to prob a_{0t1}
- 2. Emit letter o_1 according to prob $e_{t1}(o_1)$
- 3. Go to state q_2 according to prob a_{t1t2}



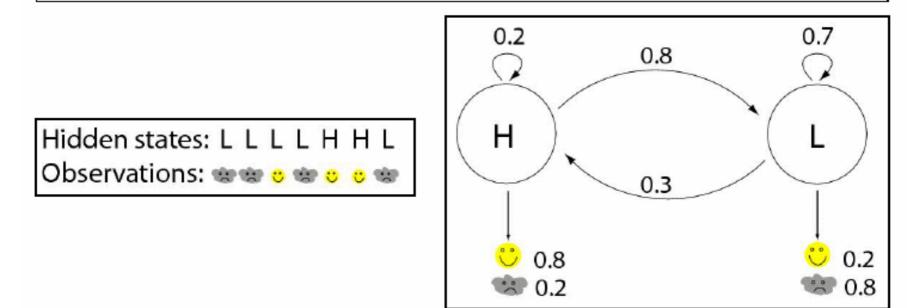
Example

Model of high and low pressures

Assume we can not measure high and low pressures.

The state of the weather is influenced by the air pressure.

We make an HMM with hidden states representing high and low pressure and observations representing the weather:



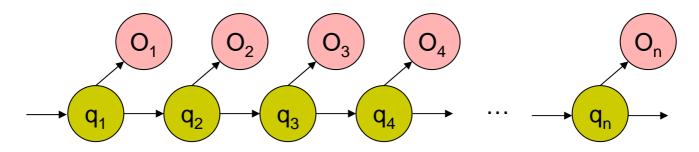
Calculating with Hidden Markov Model

Consider one such fixed state sequence

$$Q = q_1 q_2 \cdots q_T$$

The observation sequence O for the Q is

$$P(O \mid Q, \lambda) = \prod_{t=1}^{T} P(O_t \mid q_t, \lambda)$$
$$= b_{q_1}(O_1) \cdot b_{q_2}(O_2) \cdots b_{q_T}(O_T)$$



Calculating with Hidden Markov Model (cont.)

The probability of such a state sequence Q

$$P(Q \mid \lambda) = a_{0q_1} a_{q_1q_2} \cdot a_{q_2q_3} \cdots a_{q_{T-1}q_T}$$

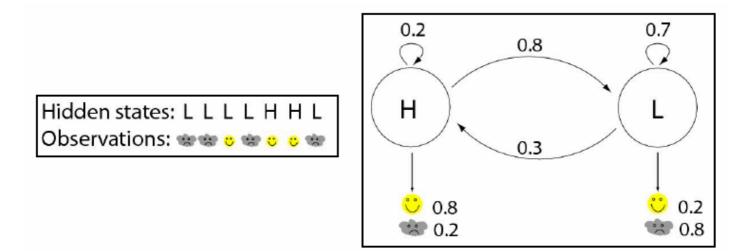
The probability that O and Q occur simultaneously, is simply the product of the above two terms, i.e.,

 $P(O, Q \mid \lambda) = P(O \mid Q, \lambda)P(Q \mid \lambda)$

$$P(O, Q \mid \lambda) = a_{0q_1} b_{q_1}(O_1) a_{q_1q_2} b_{q_2}(O_2) a_{q_2q_3} \cdots a_{q_{T-1}q_T} b_{q_T}(O_T)$$

Example

$$\begin{split} P(x,\pi) &= \left(a_{0L}e_{L}(R)\right)\left(a_{LL}e_{L}(R)\right)\left(a_{LL}e_{L}(S)\right)\left(a_{LL}e_{L}(R)\right)\left(a_{LH}e_{H}(S)\right)\left(a_{HH}e_{H}(S)\right)\left(a_{HL}e_{L}(R)\right) \\ &= \left(\frac{8}{11}\frac{8}{10}\right)\left(\frac{7}{10}\frac{8}{10}\right)\left(\frac{7}{10}\frac{2}{10}\right)\left(\frac{7}{10}\frac{8}{10}\right)\left(\frac{3}{10}\frac{8}{10}\right)\left(\frac{2}{10}\frac{8}{10}\right)\left(\frac{8}{10}\frac{8}{10}\right) \\ &= 0.0006278 \end{split}$$



The three main questions on HMMs

1. **Evaluation**

GIVEN a HMM $M=(S, V, A, B, \pi)$, and a sequence O, **FIND** P[O|M]

2. Decoding

GIVEN a HMM $M=(S, V, A, B, \pi)$, and a sequence O, **FIND** the sequence Q of states that maximizes $P(O, Q | \lambda)$

3. Learning

GIVENa HMM $M=(S, V, A, B, \pi)$, with unspecified
transition/emission probabilities and a sequence Q,FINDparameters $\theta = (e_i(.), a_{ij})$ that maximize $P[x|\theta]$

Evaluation

- Find the likelihood a sequence is generated by the model
- ▶ A straightforward way (穷举法)
 - The probability of O is obtained by summing all possible state sequences q giving

$$P(O \mid \lambda) = \sum_{all \ Q} P(O \mid Q, \lambda) P(Q \mid \lambda)$$

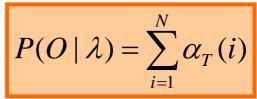
= $\sum_{q_1, q_2, \dots, q_T} \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) a_{q_2 q_3} \cdots a_{q_{T-1} q_T} b_{q_T}(O_T)$

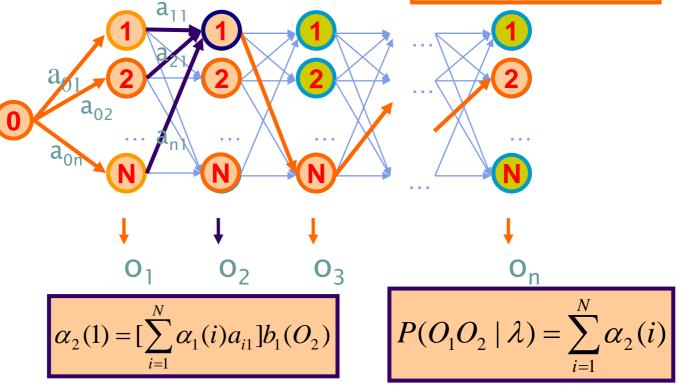
 $b_{2}(\mathbf{0}_{1})$

Complexity is $O(N^{T})$ Calculations is unfeasible

The Forward Algorithm

- A more elaborate algorithm
 - The Forward Algorithm





The Forward Algorithm

The Forward variable

$$\alpha_t(i) = P(O_1 O_2 \cdots O_t, q_t = S_i \mid \lambda)$$

We can compute $\alpha(i)$ for all *N*, *i*,

Initialization:

 $\alpha_{I}(i) = a_{0i}b_{0i}(O_{I})$ i = 1...N<u>Iteration:</u>

$$\alpha_{t+1}(i) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(O_{t+1})$$

Termination:

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

 $t = 1 \dots T - 1$ $1 = 1 \dots T - 1$ $2^{N} = 2 \dots 2^{N} = 2^{N} =$

The Backward Algorithm

The backward variable

$$\beta_t(i) = P(O_{t+1}O_{t+2}\cdots O_T \mid q_t = S_i, \lambda)$$

Similar, we can compute backward variable for all *N*, *i*,

Initialization:

$$\beta_T(i) = 1, i = 1, ..., N$$

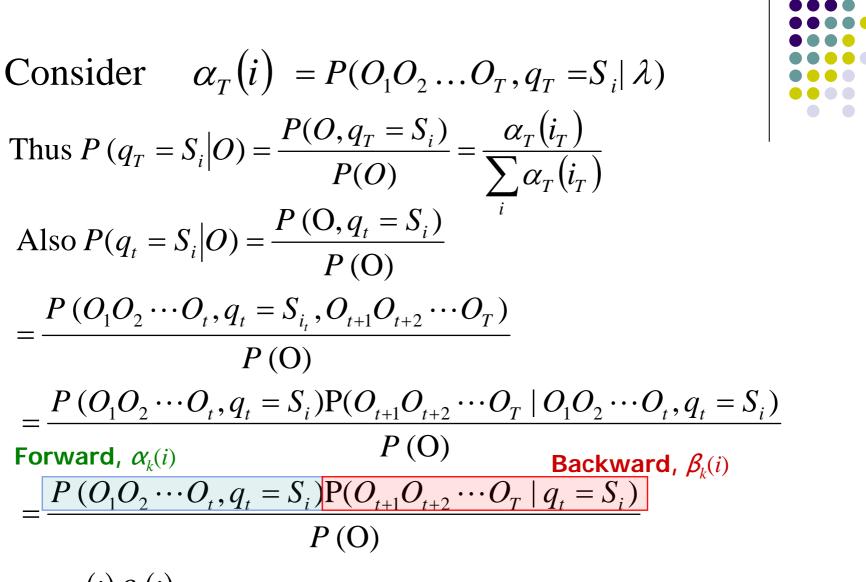
Iteration:

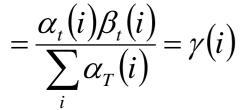
$$\frac{\text{tion:}}{\beta_t(i)} = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) \qquad t = T - 1, T - 2, \dots, 1, 1 \le i \le N$$

a₀₂

Termination:

$$P(O \mid \lambda) = \sum_{j=1}^{N} a_{0j} b_1(O_1) \beta_1(j)$$





Decoding

GIVEN a HMM, and a sequence *O*.

Suppose that we know the parameters of the Hidden Markov Model and the observed sequence of observations O_1, O_2, \dots, O_T .

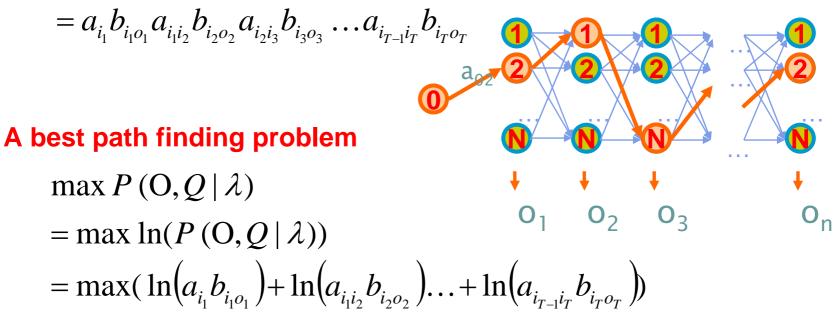
FIND the sequence Q of states that maximizes $P(Q|O,\lambda)$

Determining the sequence of States q_1, q_2, \dots, q_T , which is optimal in some meaningful sense. (i.e. best "explain" the observations)

Decoding

Consider $P(Q|O, \lambda) = \frac{P(O, Q|\lambda)}{P(O|\lambda)}$

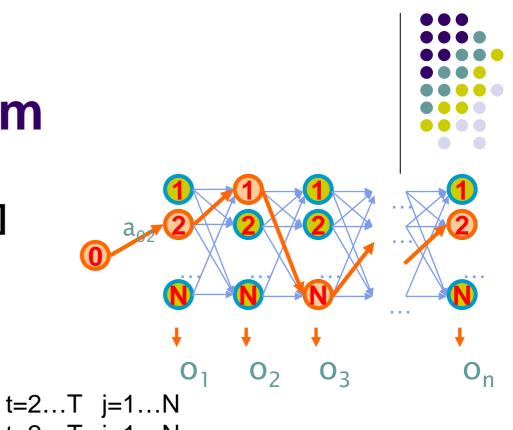
To maximize the above probability is equivalent to maximizing $P(\mathbf{O}, Q \mid \lambda)$



Viterbi Algorithm

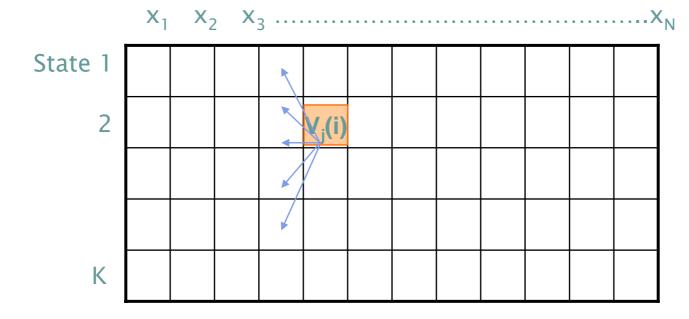
[Dynamic programming]

Initialization: $\delta_1(i) = a_{0i}b_i(O_1)$, i = 1...N $\Psi_1(i) = 0.$ **Recursion:** $\delta_t(j) = \max_i [\delta_{t-1}(i) a_{ij}]b_i(O_t)$ $\Psi_1(j) = \operatorname{argmax}_i [\delta_{t-1}(i) a_{ii}]$ t=2...T j=1...N **Termination:** $P^* = \max_i \delta_T(i)$ $q_{T}^{*} = \operatorname{argmax}_{i} [\delta_{T}(i)]$ **Traceback:** $q_{t}^{*} = \psi_{1}(q_{t+1}^{*})$



t=T-1.T-2....1.

The Viterbi Algorithm



Similar to "aligning" a set of states to a sequence

 Time:
 O(K²N)

 Space:
 O(KN)

Learning

- Estimation of Parameters of a Hidden Markov Model
 - 1. Both the sequence of observations O and the sequence of states Q is observed

learning $\lambda = (A, B, \pi)$

2. Only the sequence of observations O are observed

learning Q and $\lambda = (A, B, \pi)$

• Given O and Q, the Likelihood is given by:

$$L(A, B, \pi) = a_{i_1} b_{i_1 o_1} a_{i_1 i_2} b_{i_2 o_2} a_{i_2 i_3} b_{i_3 o_3} \dots a_{i_{T-1} i_T} b_{i_T o_T}$$

• the log-Likelihood is:

$$l(A, B, \pi) = \ln L(A, B, \pi) = \ln(a_{i_1}) + \ln(b_{i_1o_1}) + \ln(a_{i_1i_2}) + \ln(a_{i_2i_3}) + \ln(b_{i_3o_3}) \dots + \ln(a_{i_{T-1}i_T}) + \ln(b_{i_To_T}) = \sum_{i=1}^{M} f_{i0} \ln(a_i) + \sum_{i=1}^{M} \sum_{j=1}^{M} f_{ij} \ln(a_{ij}) + \sum_{i=1}^{M} \sum_{o(i)} \ln(b_{io})$$

where f_{i0} = the number of times state *i* occurs in the first state f_{ij} = the number of times state *i* changes to state *j*. $\beta_{iy} = f(y|\theta_i) \text{ (or } p(y|\theta_i) \text{ in the discrete case})$ $\sum_{o(i)} \bullet$ = the sum of all observations o_t where $q_t = S_i$

In such case these parameters computed by *Maximum Likelihood Estimation* are:

$$\hat{a}_{i} = \frac{f_{i0}}{1}$$
 $\hat{a}_{ij} = \frac{f_{ij}}{\sum_{j=1}^{M} f_{ij}}$, and

 \hat{b}_i = the MLE of b_i computed from the observations o_t where $q_t = S_i$.

Only the sequence of observations O are observed

$$L(A, B, \pi) = \sum_{i_1, i_2 \dots i_T} a_{i_1} b_{i_1 o_1} a_{i_1 i_2} b_{i_2 o_2} a_{i_2 i_3} b_{i_3 o_3} \dots a_{i_{T-1} i_T} b_{i_T o_T}$$

- It is difficult to find the Maximum Likelihood Estimates directly from the Likelihood function.
- The Techniques that are used are
 - 1. The Segmental K-means Algorith
 - 2. The Baum-Welch (E-M) Algorithm

- The E-M algorithm was designed originally to handle "Missing observations".
- In this case the missing observations are the states $\{q_1, q_2, \dots, q_T\}$.
- Assuming a model, the states are estimated by finding their expected values under this model. (The E part of the E-M algorithm).

- With these values the model is estimated by Maximum Likelihood Estimation (The M part of the E-M algorithm).
- The process is repeated until the estimated model converges.

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

Forward Backward Calculate A_{kl} , $E_k(b)$ Calculate new model parameters a_{kl} , $e_k(b)$ Calculate new log-likelihood $P(x | \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

Let $f(O,Q|\lambda) = L(O,Q,\lambda)$ denote the joint distribution of Q,O. Consider the function:

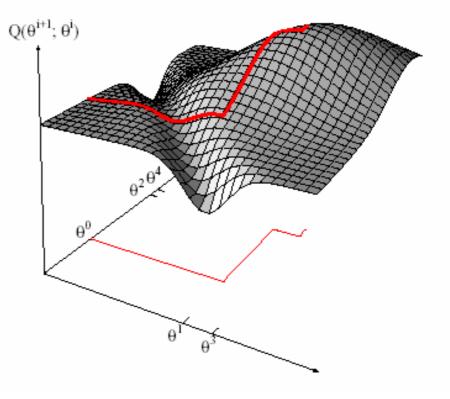
$$Q(\lambda, \lambda') = E_{\mathbf{X}}(\ln L(O, Q, \lambda) | Q, \lambda')$$

Starting with an initial estimate of λ ($\lambda^{(1)}$).

A sequence of estimates $\{\lambda^{(m)}\}\$ are formed by finding $\lambda = \lambda^{(m+1)}$ to maximize $Q(\lambda, \lambda^{(m)})$ with respect to λ .

The sequence of estimates $\{\lambda^{(m)}\}\$ converge to a local maximum of the likelihood

 $L(Q,\lambda) = f(Q|\lambda)$



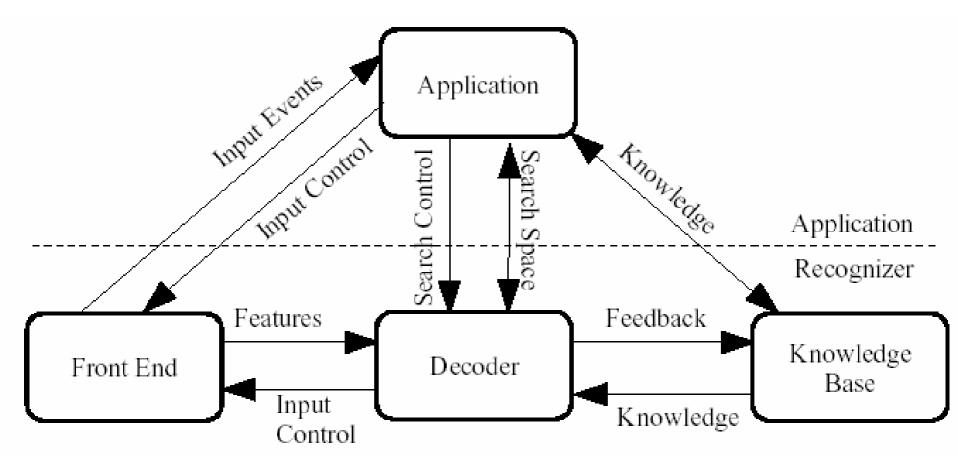
Speech Recognition

- On-line documents of Java[™] Speech API
 - http://java.sun.com/products/java-media/speech/
- On-line documents of Free TTS
 - http://freetts.sourceforge.net/docs/
- On-line documents of Sphinx-II
 - http://www.speech.cs.cmu.edu/sphinx/

Brief History of CMU Sphinx

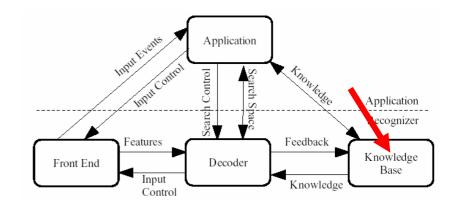
- Sphinx-I (1987)
 - The first user independent, high performance ASR of the world.
 - Written in C by Kai-Fu Lee (李開復博士,現任Microsoft 副總裁).
- Sphinx-II (1992)
 - Written by Xuedong Huang in C. (黃學東博士,現為Microsoft Speech.NET團 隊領導人)
 - 5-state HMM / N-gram LM.
- Sphinx-III (1996)
 - Built by Eric Thayer and Mosur Ravishankar.
 - Slower than Sphinx-II but the design is more flexible.
- Sphinx-4 (Originally Sphinx 3j)
 - Refactored from Sphinx 3.
 - Fully implemented in Java. (Not finished yet ...)

Components of CMU Sphinx



Knowledge Base

- The data that drives the decoder.
- Three sets of data
 - Acoustic Model.
 - Language Model.
 - Lexicon (Dictionary).



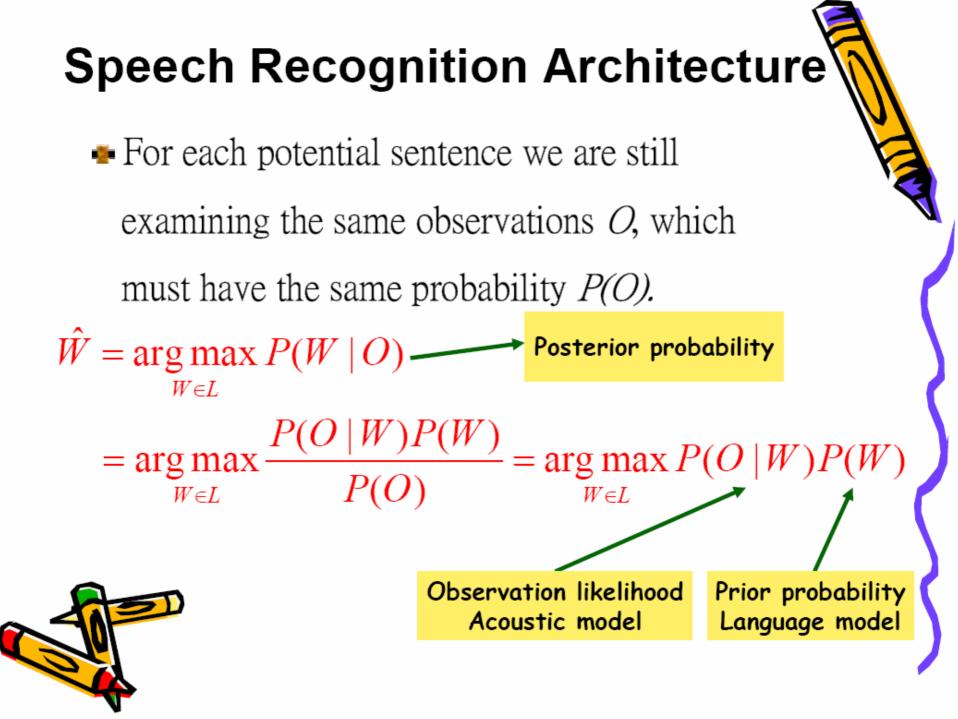
Speech Recognition Architecture

- Observations : $O = o_1, o_2, o_3, \dots, o_t$
- Word Sequences : $W = w_1, w_2, w_3, \dots, w_n$

• Probabilistic implementation can be expressed : $\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(W \mid O)$

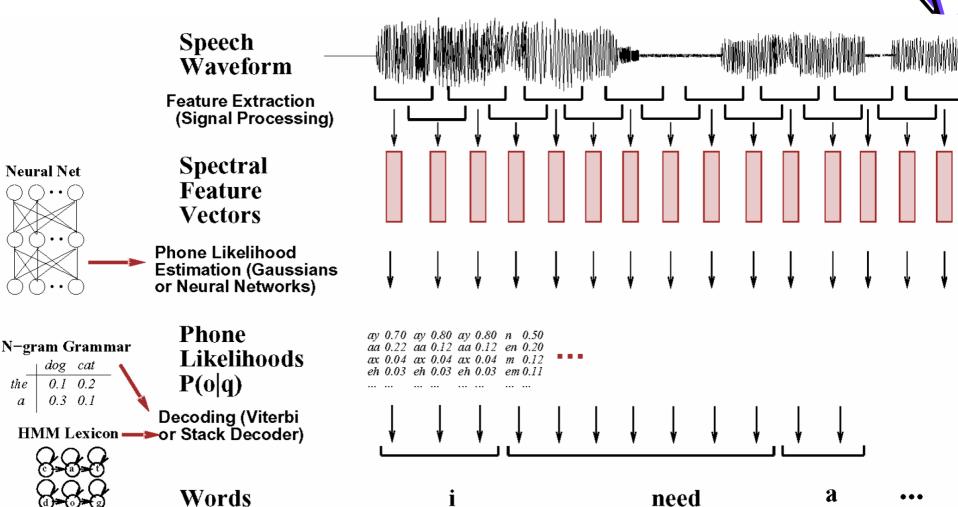
Then we can use Bayes' rule to break it down :

 $\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(W \mid O) = \underset{W \in L}{\operatorname{arg\,max}} \frac{P(O \mid W)P(W)}{P(O)}$ $(: P(W \mid O) = \frac{P(WO)}{P(O)} \text{ and } P(O \mid W) = \frac{P(WO)}{P(W)}$ $: P(W \mid O) \cdot P(O) = P(WO) = P(O \mid W) \cdot P(W)$



Speech Recognition Architecture

Figure 7.2 Schematic architecture for a speech recognition



Acoustic Model

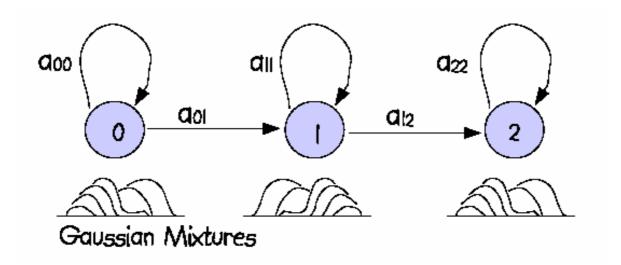
- /model/hmm/6k
- Database of statistical model.
- Each statistical model represents a phoneme.
- Acoustic Models are trained by analyzing large amount of speech data.

HMM in Acoustic Model

- HMM represent each unit of speech in the Acoustic Model.
- Typical HMM use 3-5 states to model a phoneme.
- Each state of HMM is represented by a set of *Gaussian mixture density functions*.
- Sphinx2 default phone set.

Mixture of Gaussians

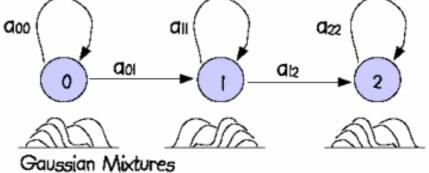
- Represent each state in HMM.
- Each set of Gaussian Mixtures are called "senones".
- HMM can share "senones".



Mixture of Gaussians

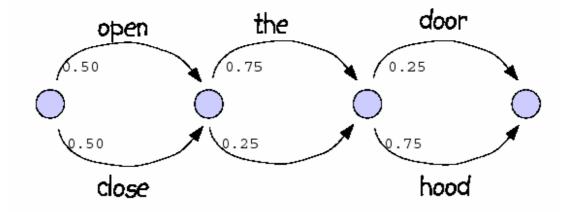
$$N(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}} \exp\left[-\frac{1}{2}(x-\mu)^{t}\Sigma^{-1}(x-\mu)\right]$$

Gaussian mixtures with enough mixture components can approximate any distribution.



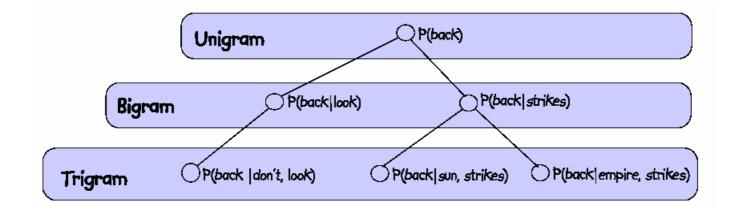
Language Model

- Describes what is likely to be spoken in a particular context
- Word transitions are defined in terms of transition probabilities
- Helps to constrain the search space



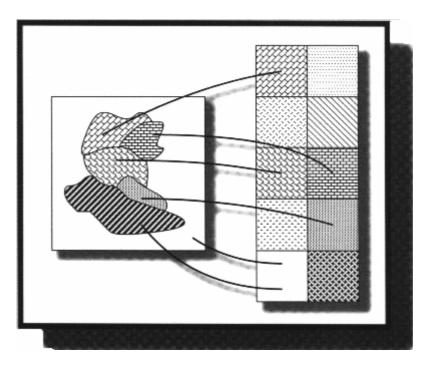
N-gram Language Model

- Probability of word N dependent on word N-1, N-2, ...
- Bigrams and trigrams most commonly used
- Used for large vocabulary applications such as dictation
- Typically trained by very large (millions of words) corpus



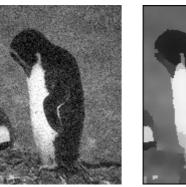
Markov Random field

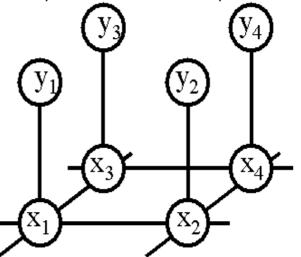
- See webpage
- http://www.nlpr.ia.ac.cn/users/szli/MRF_Book /MRF_Book.html



Belief Network (Propagation)

Y. Weiss and W. T. Freeman Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology. in: Advances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000. MERL-TR99-38.





Homework

• Read the motion texture siggraph paper.