Point Estimation

Zhang Hongxin zhx@cad.zju.edu.cn

State Key Lab of CAD\&CG, ZJU 2007-03-01

What you need to know

- Point estimation:
- Maximal Likelihood Estimation (MLE)
- Bayesian learning
- Maximize A Posterior (MAP)
- Gaussian estimation
- Regression
- Basis function = features
- Optimizing sum squared error
- Relationship between regression and Gaussians
- Bias-Variance trade-off

Your first consulting job

- A billionaire from Beijing asks you a question:
- B: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
- Y: Please flip it a few times ...

- Y: The probability is $3 / 5$
- B: Why???
- Y: Because...

Binomial Distribution

- $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

$$
P(D \mid \theta)=(1-\theta) \theta \theta(1-\theta)(1-\theta)
$$

- Flips are i.i.d.
- Independent events
- Identically distributed according to Binomial distribution
- Sequence D of a_{H} Heads and a_{T} Tails

$$
P(D \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood

Estimation

- Data: Observed set D of α_{H} Heads and a_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
- What's the objective function?

$$
D=\{T, H, H, T, T\}
$$

- MLE: Choose θ that maximizes the probability of observed data:

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \max } P(D \mid \theta) \\
& =\underset{\theta}{\arg \max } \ln P(D \mid \theta)=\ldots
\end{aligned}
$$

Maximum Likelihood Estimation (cont.)

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \max } P(D \mid \theta) \\
& =\underset{\theta}{\arg \max } \ln \left(\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right) \\
& =\underset{\theta}{\arg \max }\left(\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right)
\end{aligned}
$$

- Set derivative to zero:

$$
\frac{d}{d \theta} \ln P(D \mid \theta)=0 \quad \hat{\theta}=\frac{\alpha_{T}}{\alpha_{H}+\alpha_{T}}=\frac{3}{2+3}
$$

How many flips do I need?

$$
\hat{\theta}=\frac{\alpha_{T}}{\alpha_{H}+\alpha_{T}}
$$

- B: I flipped 2 heads and 3 tails.
- $\mathrm{Y}: \theta=3 / 5$, I can prove it!
- B: What if I flipped 20 heads and 30 tails?
- Y: Same answer, I can prove it!
- B: What's better?
- Y: Humm... The more the merrier???
- B: Is this why I am paying you the big bucks???

Simple bound (based on Höffding's inequality)

- For $N=\alpha_{H}+\alpha_{T}$ and $\hat{\theta}=\frac{\alpha_{T}}{\alpha_{H}+\alpha_{T}}$

$$
\alpha_{H}+\alpha_{T}
$$

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vc1/vc--.html

- Let θ * be the true parameter, for any $\varepsilon>0$:

$$
\begin{aligned}
& P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \varepsilon\right) \leq 2 e^{-2 N \varepsilon^{2}} \leq \\
& N \geq \frac{1}{2 \varepsilon^{2}}[\ln 2-\ln \delta] \\
& N \geq 270 ;(\varepsilon=0.1, \delta=0.01)
\end{aligned}
$$

PAC Learning

- PAC: Probably Approximate Correct
- B: I want to know the thumbtack parameter θ, within $\varepsilon=0.1$, with probability at least 1$\delta=0.99$. How many flips?
- Y: 270, ©

Prior:

knowledge before experiments

- B: Wait, I know that the thumbtack is "close" to 50-50. What can you ...?
- Y: I can learn it the Bayesian way...
- Rather than estimating a single θ, we obtain a distribution over possible values of θ

Bayesian Learning

- Bayes rule:

$$
\begin{array}{ll}
\text { Bayes rule: } & \begin{array}{c}
\text { Prior } \\
\text { Posterior } \rightarrow
\end{array} P(\theta \mid D)=\frac{P(\theta) P(D \mid \theta)}{P(D) \sqsubset \text { Data distribution }}
\end{array}
$$

- Or equivalently:
(Normalization constant)

$$
P(\theta \mid D) \propto P(\theta) P(D \mid \theta)
$$

Bayesian Learning in our case

- Likelihood function is simply Binomial:

$$
P(D \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- What about prior?
- Represent expert knowledge
- Simple posterior form
- Conjugate priors:
- Closed-form representation of posterior
- For Binomial, conjugate prior is Beta distribution

Beta prior distribution - $\left.\mathbf{P (}{ }^{\theta}\right)$

- Prior: Beta distribution

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

- Likelihood: Binomial distribution

$$
P(D \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- Posterior:

$$
\begin{aligned}
P(\theta \mid D) & \propto P(\theta) P(D \mid \theta) \\
& \propto \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}} \theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1} \\
& \sim \operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
\end{aligned}
$$

Using Bayesian posterior

- Posterior distribution:

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
$$

- Bayesian inference:
- No longer single parameter:

$$
E[f(\theta)] \sim \int_{0}^{1} f(\theta) P(\theta \mid D) d \theta
$$

- Integral, : ${ }^{\circ}$

MAP:

Maximum a posteriori approximation

$$
\begin{aligned}
& P(\theta \mid D) \sim \operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right) \\
& E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid D) d \theta \longleftarrow \quad \text { approximation }
\end{aligned}
$$

- MAP: use most likely parameter

$$
\widehat{\theta}=\underset{\theta}{\arg \max } P(\theta \mid D) \quad E[f(\theta)] \approx f(\hat{\theta})-
$$

MAP for Beta distribution

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
$$

- MAP: use most likely parameter

$$
\hat{\theta}=\underset{\theta}{\arg \max } P(\theta \mid D)=\frac{\alpha_{T}+\beta_{T}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2}
$$

- Beta prior equivalent to extra thumbtack flips
- As $N=\alpha_{T}+\alpha_{H} \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

Gaussian distribution

Continuous variable:
mean

$$
P(x \mid \mu, \delta) \sim \frac{1}{\delta \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \delta^{2}}}
$$

Consider the difference between continuous and discrete variables?

MLE for Gaussian

- Prob. of i.i.d. samples $D=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
likelihood

$$
P(D \mid \mu, \sigma)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

- The magic of log (to likelihood)

$$
\begin{aligned}
\ln P(D \mid \mu, \sigma) & =\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& =-N \ln (\sigma \sqrt{2 \pi})-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

MLE for mean of a Gaussian

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \ln P(D \mid \mu, \sigma) & =\frac{\partial}{\partial \mu} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& =\frac{\partial}{\partial \mu}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} \\
& =\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)}{\sigma^{2}}=0 \\
\mu & =\frac{1}{N} \sum_{i} x_{i}
\end{aligned}
$$

MLE for variance of a Gaussian

$$
\begin{aligned}
\frac{\partial}{\partial \sigma} \ln P(D \mid \mu, \sigma) & =\frac{\partial}{\partial \sigma} \ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
& =\frac{\partial}{\partial \sigma}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{\partial}{\partial \sigma}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =-\frac{N}{\sigma}+\sum_{i=1}^{N} \frac{(x-\mu)^{2}}{\sigma^{3}}=0 \\
\sigma^{2} & =\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

Gaussian parameters learning

- MLE

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{i} x_{i} \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{i}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

- Bayesian learning: prior?
- Conjugate priors:
- Mean: Gaussian priors
- Variance: Wishart Distribution

Prediction of continuous variable

- B: Wait, that's not what I meant!
- Y: Chill out, dude.
- B: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- Y: I can regress that...

The regression problem

- Instances: < $x_{i}, t_{i}>$
- Learn: mapping from \mathbf{x} to $t(x)$.
- Hypothesis space: $t(\mathbf{x}) \approx \hat{f}(x)=\sum_{i=1}^{k} w_{i} h_{i}$
- Given, basis functions $H=\left\{h_{1}, \ldots, h_{k}\right\}$
- Find coefficients $\mathbf{w}=\left\{w_{1}, \ldots, w_{k}\right\}$
- Problem formulation:

$$
\mathbf{w}^{*}=\underset{\mathbf{w}}{\arg \min } \sum_{j}\left[t\left(\mathbf{x}_{j}\right)-\sum_{i=1}^{k} w_{i} h_{i}(x)\right]^{2}
$$

But, why sum squared error?

- Model:

$$
P(t \mid \mathbf{x}, \mathbf{w}, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-\left[t-\sum_{i} w_{i} h_{i}(x)\right]^{2}}{2 \sigma^{2}}}
$$

- Learn w using MLE

Maximizing log-likelihood

$$
\begin{aligned}
\ln P(D \mid \mathbf{w}, \sigma) & =\ln \prod_{j}\left(\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-\left[t_{j}-\sum_{i} w_{i} h_{i}\left(x_{j}\right)\right]^{2}}{2 \sigma^{2}}}\right) \\
& \Rightarrow \min \sum_{j} \frac{-\left[t_{j}-\sum_{i} w_{i} h_{i}\left(x_{j}\right)\right]^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Bias-Variance Tradeoff

- Choice of hypothesis basis introduce learning bias:
- More complex basis:
- Less bias
- More variance (over-fitting)

What you need to know

- Point estimation:
- Maximal Likelihood Estimation
- Bayesian learning
- Maximal a Posterior
- Gaussian estimation
- Regression
- Basis function = features
- Optimizing sum squared error
- Relationship between regression and Gaussians
- Bias-Variance trade-off

Homework

Finish the "Gaussian parameters learning"

- Please use google, ^_*

