Point Estimation

Zhang Hongxin zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU 2007-03-01

What you need to know

- Point estimation:
 - Maximal Likelihood Estimation (MLE)
 - Bayesian learning
 - Maximize A Posterior (MAP)
- Gaussian estimation
- Regression
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Bias-Variance trade-off

Your first consulting job

- A billionaire from Beijing asks you a question:
 - B: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - Y: Please flip it a few times ...

- Y: The probability is 3/5
- B: Why???
- Y: Because...

Binomial Distribution

- P(Heads) = θ , P(Tails) = 1- θ $P(D \mid \theta) = (1-\theta)\theta\theta(1-\theta)(1-\theta)$
- Flips are i.i.d.
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of α Heads and α Tails

$$P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Maximum Likelihood Estimation

- **Data**: Observed set D of α _H Heads and α _T Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?

$$D = \{T, H, H, T, T\}$$

 MLE: Choose θ that maximizes the probability of observed data:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D | \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln P(D | \theta) = \dots$$

Maximum Likelihood **Estimation (cont.)**

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D | \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln(\theta^{\alpha_H} (1 - \theta)^{\alpha_T})$$

$$= \underset{\theta}{\operatorname{arg\,max}} (\alpha_H \ln \theta + \alpha_T \ln(1 - \theta))$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(D \mid \theta) = 0$$

$$\frac{d}{d\theta} \ln P(D \mid \theta) = 0 \qquad \hat{\theta} = \frac{\alpha_T}{\alpha_H + \alpha_T} = \frac{3}{2+3}$$

How many flips do I need?

$$\hat{\theta} = \frac{\alpha_T}{\alpha_H + \alpha_T}$$

- B: I flipped 2 heads and 3 tails.
- Y: $\theta = 3/5$, I can prove it!
- B: What if I flipped 20 heads and 30 tails?
- Y: Same answer, I can prove it!
- B: What's better?
- Y: Humm... The more the merrier???
- B: Is this why I am paying you the big bucks???

Simple bound (based on Höffding's inequality)

• For
$$N = \alpha_H + \alpha_T$$
 and $\hat{\theta} = \frac{\alpha_T}{\alpha_H + \alpha_T}$

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vc1/vc-l.html

• Let θ * be the true parameter, for any ϵ >0:

$$P(\left|\hat{\theta} - \theta^*\right| \ge \varepsilon) \le 2e^{-2N\varepsilon^2} \le \delta$$

$$N \ge \frac{1}{2\varepsilon^2} [\ln 2 - \ln \delta]$$

$$N \ge 270; (\varepsilon = 0.1, \delta = 0.01)$$

PAC Learning

- PAC: Probably Approximate Correct
- B: I want to know the thumbtack parameter
 - θ , within ε = 0.1, with probability at least 1-
 - δ = 0.99. How many flips?
- Y: 270, ©

Prior: knowledge before experiments

- B: Wait, I know that the thumbtack is "close" to 50-50. What can you ...?
- Y: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

Bayes rule:

Posterior
$$\rightarrow P(\theta \mid D) = \frac{P(\theta)P(D \mid \theta)}{P(D)}$$

(Normalization constant)

Prior

Likelihood

Or equivalently:

$$P(\theta \mid D) \propto P(\theta)P(D \mid \theta)$$

Bayesian Learning in our case

Likelihood function is simply Binomial:

$$P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution

Beta prior distribution – P(θ)

Prior: Beta distribution

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Likelihood: Binomial distribution

$$P(D \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Posterior:

$$P(\theta \mid D) \propto P(\theta)P(D \mid \theta)$$

$$\propto \theta^{\alpha_H} (1-\theta)^{\alpha_T} \theta^{\beta_H-1} (1-\theta)^{\beta_T-1}$$

$$\sim Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Using Bayesian posterior

Posterior distribution:

$$P(\theta \mid D) \sim Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] \sim \int_0^1 f(\theta) P(\theta \mid D) d\theta$$

Integral, ☺

MAP:

Maximum a posteriori approximation

$$P(\theta \mid D) \sim Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta \leftarrow \text{approximation}$$

MAP: use most likely parameter

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\theta \mid D) \qquad E[f(\theta)] \approx f(\widehat{\theta})$$

MAP for Beta distribution

$$P(\theta \mid D) \sim Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

MAP: use most likely parameter

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid D) = \frac{\alpha_T + \beta_T - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N = \alpha_T + \alpha_H \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

Gaussian distribution

Continuous variable:

mean

$$P(x \mid \mu, \delta) \sim \frac{1}{\delta \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\delta^2}}$$
variance variance Normalize item

Consider the difference between continuous and discrete variables?

MLE for Gaussian

• Prob. of i.i.d. samples $D = \{x_1, x_2, ..., x_N\}$

likelihood
$$P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

The magic of log (to likelihood)

$$\ln P(D \mid \mu, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$= -N \ln(\sigma\sqrt{2\pi}) - \sum_{i=1}^{N} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

MLE for mean of a Gaussian

$$\frac{\partial}{\partial \mu} \ln P(D \mid \mu, \sigma) = \frac{\partial}{\partial \mu} \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$= \frac{\partial}{\partial \mu} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$= \sum_{i=1}^N \frac{(x_i - \mu)}{\sigma^2} = 0$$

$$\mu = \frac{1}{N} \sum_i x_i$$

MLE for variance of a Gaussian

$$\frac{\partial}{\partial \sigma} \ln P(D \mid \mu, \sigma) = \frac{\partial}{\partial \sigma} \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$= \frac{\partial}{\partial \sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^N \frac{\partial}{\partial \sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

$$= -\frac{N}{\sigma} + \sum_{i=1}^N \frac{(x - \mu)^2}{\sigma^3} = 0$$

$$\sigma^2 = \frac{1}{N} \sum_i (x_i - \mu)^2$$

Gaussian parameters learning

MLE

$$\hat{\mu} = \frac{1}{N} \sum_{i} x_{i}$$

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{i} (x_{i} - \mu)^{2}$$

- Bayesian learning: prior?
- Conjugate priors:
 - Mean: Gaussian priors
 - Variance: Wishart Distribution

Prediction of continuous variable

- B: Wait, that's not what I meant!
- Y: Chill out, dude.
- B: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- Y: I can regress that...

The regression problem

- Instances: $\langle \mathbf{x}_i, t_i \rangle$
- Learn: mapping from x to t(x).
- **Hypothesis space:** $t(\mathbf{x}) \approx \hat{f}(x) = \sum_{i=1}^{k} w_i h_i$ Given, basis functions $H = \{h_1, ..., h_k\}$

 - Find coefficients $\mathbf{w} = \{w_1, ..., w_k\}$
- Problem formulation:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} [t(\mathbf{x}_j) - \sum_{i=1}^k w_i h_i(x)]^2$$

But, why sum squared error?

Model:

el:
$$P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t - \sum_{i} w_{i} h_{i}(x)]^{2}}{2\sigma^{2}}}$$
 n **w** using MLE

Learn w using MLE

Maximizing log-likelihood

$$\ln P(D \mid \mathbf{w}, \sigma) = \ln \prod_{j} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t_{j} - \sum_{i} w_{i} h_{i}(x_{j})]^{2}}{2\sigma^{2}}} \right)$$

$$\implies \min \sum_{j} \frac{-[t_{j} - \sum_{i} w_{i} h_{i}(x_{j})]^{2}}{2\sigma^{2}}$$

Bias-Variance Tradeoff

- Choice of hypothesis basis introduce learning bias:
 - More complex basis:
 - Less bias
 - More variance (over-fitting)

What you need to know

- Point estimation:
 - Maximal Likelihood Estimation
 - Bayesian learning
 - Maximal a Posterior
- Gaussian estimation
- Regression
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Bias-Variance trade-off

Homework

- Finish the "Gaussian parameters learning"
 - Please use google, ^_*