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Example: Video Texture

Problem statement

video clip video texture



The approach

How do we find good transitions?



Finding good transitions

Compute L2 distance Di, j between all frames

Similar frames make good transitions 

frame i

frame j



Demo: Fish Tank



Mathematic model of 
Video Texture

A sequence of random variables

{ADEABEDADBCAD}

A sequence of random variables

{BDACBDCACDBCADCBADCA}

Mathematic Model

The future is independent of the 
past and given by the present.

Markov Model



Markov Property

Formal definition
Let X={Xn}n=0…N be a sequence of random 
variables taking values  sk∈N if and only if 
P(Xm=sm|X0=s0,…,Xm-1=sm-1) = P(Xm=sm| Xm-1=sm-1)

then the X fulfills Markov property

Informal definition
The future is independent of the past given the 
present.



History of MC

Markov chain theory developed around 1900.  
Hidden Markov Models developed in late 1960’s. 
Used extensively in speech recognition in 1960-70. 
Introduced to computer science in 1989. 

Bioinformatics.
Signal Processing
Data analysis and Pattern recognition

Applications



Markov Chain
A Markov chain is specified by

A state space S = { s1, s2..., sn }
An initial distribution a0
A transition matrix A

Where A(n)ij= aij = P(qt=sj|qt-1=si)

Graphical Representation
as a directed graph where

Vertices represent states 
Edges represent transitions with positive probability



Marginal Probability – sum the joint 
probability

Conditional Probability

Probability Axioms
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Calculating with Markov chains
Probability of an observation sequence: 

Let X={xt}L
t=0 be an observation sequence from 

the Markov chain {S, a0, A}







Motivation of 
Hidden Markov Models

Hidden states
The state of the entity we want to model is often not 
observable: 

The state is then said to be hidden. 
Observables

Sometimes we can instead observe the state of entities 
influenced by the hidden state.

A system can be modeled by an HMM if:
The sequence of hidden states is Markov 
The sequence of observations are independent (or Markov) 
given the hidden 



Hidden Markov Model

Definition M={S,V,A,B,π }
Set of states S = { s1, s2, …, sN}
Observation symbols V = { v1, v2, …, vM}
Transition probabilities

A between any two states    aij = P(qt=sj|qt-1=si)

Emission probabilities
B within each state bj(Ot) = P( Ot=vj| qt = sj)

Start probabilities π = {a0}

Use λ = (A, B, π) to indicate the parameter set of the model.

q2q1 q3 q4 qn

O1 O2 O3 O4 On

…



Generating a sequence by the 
model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state q1 according to prob a0t1

2. Emit letter o1 according to prob et1(o1)

3. Go to state q2 according to prob at1t2

4. … until emitting on 1
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Example



Calculating with Hidden Markov 
Model

Consider one such fixed state sequence

The observation sequence O for the Q is
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The probability of such a state sequence Q

The probability that O and Q occur simultaneously,
is simply the product of the above two terms, i.e.,
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Calculating with Hidden Markov 
Model (cont.)



Example



The three main questions on
HMMs

1. Evaluation
GIVEN a HMM M=(S, V, A, B, π), and a sequence O,
FIND P[O|M]

2. Decoding
GIVEN a HMM M=(S, V, A, B, π), and a sequence O,
FIND the sequence Q of states that maximizes P(O, Q | λ)

3. Learning
GIVEN a HMM M=(S, V, A, B, π), with unspecified 

transition/emission probabilities and a sequence Q,
FIND parameters θ = (ei(.), aij) that maximize P[x|θ]



Evaluation
Find the likelihood a sequence is generated by the model

A straightforward way （穷举法）

The probability of O is obtained by summing all possible state 
sequences q giving
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Complexity is O(NT)

Calculations is unfeasible



The Forward Algorithm
A more elaborate algorithm

The Forward Algorithm
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The Forward Algorithm
The Forward variable 

We can compute α(i) for all N, i,
Initialization:
α1(i) = aibi(O1)     i = 1…N

Iteration:

Termination:
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The Backward Algorithm
The backward variable

Similar, we can compute backward variable for all N, i,

Initialization:

Iteration:

Termination:
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Decoding
GIVEN a HMM, and a sequence O.

Suppose that we know the parameters of the Hidden Markov Model 
and the  observed sequence of observations O1, O2, ... , OT.

FIND the sequence Q of states that maximizes P(Q|O,λ)
Determining the sequence of States q1, q2, ... , qT, which is optimal in 

some meaningful sense. (i.e. best “explain” the observations)



Decoding
Consider

To maximize the above probability is equivalent to maximizing
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A best path finding problem



Viterbi Algorithm

[Dynamic programming]

Initialization:
δ1(i)  = a0ibi(O1) ,     i = 1…N
ψ1(i) = 0.

Recursion:
δt(j)  = maxi [δt-1(i) aij]bj(Ot) t=2…T j=1…N
ψ1(j) = argmaxi [δt-1(i) aij] t=2…T j=1…N

Termination:
P*  = maxi δT(i) 
qT* = argmaxi [δT(i) ] 

Traceback:
qt* = ψ1(q*t+1 ) t=T-1,T-2,…,1.
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The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time: O(K2N)
Space: O(KN)

x1 x2 x3 ………………………………………..xN

State 1

2

K

Vj(i)



Learning
Estimation of Parameters of a Hidden Markov Model
1. Both the sequence of observations O and the 

sequence of States Q is observed 

learning λ = (A, B, π)
2. Only the sequence of observations O are 

observed 

learning Q and λ = (A, B, π)



Maximal Likelihood Estimation 
Given O and Q, the Likelihood is given by:
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Maximal Likelihood Estimation 
the log-Likelihood is:
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In such case these parameters computed by 
Maximum Likelihood estimation are:
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Maximal Likelihood Estimation
Only the sequence of observations O are observed

It is difficult to find the Maximum Likelihood Estimates 
directly from the Likelihood function.
The Techniques that are used are

1. The Segmental K-means Algorith
2. The Baum-Welch (E-M) Algorithm
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The Baum-Welch Algorithm

The E-M algorithm was designed originally to handle 
“Missing observations”. 

In this case the missing observations are the states 
{q1, q2, ... , qT}.

Assuming a model, the states are estimated by 
finding their expected values under this model. (The 
E part of the E-M algorithm). 



The Baum-Welch Algorithm

With these values the model is estimated by 
Maximum Likelihood Estimation (The M part 
of the E-M algorithm). 

The process is repeated until the estimated 
model converges.



The Baum-Welch Algorithm
Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:
Forward
Backward
Calculate Akl, Ek(b)
Calculate new model parameters akl, ek(b)
Calculate new log-likelihood P(x | θ)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | θ) does not change much



The Baum-Welch Algorithm

Let                                     denote the joint 
distribution of Q,O.
Consider the function: 

Starting with an initial estimate of                . 
A sequence of estimates           are formed 
by finding                  to maximize       
with respect to     .
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The Baum-Welch Algorithm

The sequence of estimates  
converge to a local maximum of the likelihood 
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Markov Random field

See webpage



Belief Network (Propagation)
Y. Weiss and W. T. Freeman 

Correctness of Belief Propagation in Gaussian Graphical Models of 
Arbitrary Topology. in: Advances in Neural Information Processing 
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000. 
MERL-TR99-38. 

http://www.merl.com/papers/TR99-38/


Motion Texture

Motion Texture: A Two-Level Statistical Model for Character Motion 
Synthesis. Yan Li, Tianshu Wang, and Heung-Yeung Shum. 
SIGGRAPH 2002.



Plant Texture



Homework

Read the motion texture siggraph paper.
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