Hidden Markov Models

Zhang Hongxin
zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU
2007-03-22
Outline

- Background
- Markov Chains
- Hidden Markov Models
Example: Video Texture

- Problem statement

video clip video texture
The approach

How do we find good transitions?
Finding good transitions

Compute L_2 distance $D_{i,j}$ between all frames

Similar frames make good transitions
Demo: Fish Tank
Mathematic model of Video Texture

A sequence of random variables \{A, D, E, A, B, E, D, A, D\}

A sequence of random variables \{B, D, A, C, B, D, C, A, D, C, B, A, D, C, A\}

Markov Model

The future is independent of the past and given by the present.
Markov Property

- **Formal definition**
 - Let $X=\{X_n\}_{n=0}^{N}$ be a sequence of random variables taking values $s_k \in \mathbb{N}$ if and only if
 $$P(X_m = s_m | X_0 = s_0, \ldots, X_{m-1} = s_{m-1}) = P(X_m = s_m | X_{m-1} = s_{m-1})$$
 then the X fulfills Markov property

- **Informal definition**
 - The future is independent of the past given the present.
History of MC

- Markov chain theory developed around 1900.
- Hidden Markov Models developed in late 1960’s.
- Used extensively in speech recognition in 1960-70.
- Introduced to computer science in 1989.

Applications

- Bioinformatics.
- Signal Processing
- Data analysis and Pattern recognition
Markov Chain

- A Markov chain is specified by
 - A state space $S = \{ s_1, s_2, ..., s_n \}$
 - An initial distribution a_0
 - A transition matrix A

Where $A(n)_{ij} = a_{ij} = P(q_t = s_j | q_{t-1} = s_i)$

- Graphical Representation
 as a directed graph where
 - Vertices represent states
 - Edges represent transitions with positive probability
Probability Axioms

- Marginal Probability – sum the joint probability

\[P(x = a_i) \equiv \sum_{y \in A_y} P(x = a_i, y) \]

- Conditional Probability

\[P(x = a_i \mid y = b_j) \equiv \frac{P(x = a_i, y = b_j)}{P(y = b_j)} \quad \text{if} \ P(y = b_j) \neq 0. \]
Calculating with Markov chains

- Probability of an observation sequence:
 - Let $X=\{x_t\}_{t=0}^L$ be an observation sequence from the Markov chain \(\{S, a_0, A\}\)

\[
P(x) = P(x_L, \ldots, x_1, x_0) \\
= P(x_L | x_{L-1}, \ldots, x_0)P(x_{L-1} | x_{L-2}, \ldots, x_0) \cdots P(x_0) \\
= P(x_L | x_{L-1})P(x_{L-1} | x_{L-2}) \cdots P(x_0) \\
= b_{x_0} \prod_{i=1}^{L} a_{x_{i-1}x_i}
\]
Example

Assume we are modeling a time series of high and low pressures during the Danish autumn.

Let $S = \{H, L\}$, $b = \pi = \begin{bmatrix} 3/11 \\ 8/11 \end{bmatrix}$, and $A = \begin{bmatrix} 0.2 & 0.8 \\ 0.3 & 0.7 \end{bmatrix}$.

Graphical representation of A
Example

Comparing likelihoods
We want to know the likelihood of one week of high pressure in Denmark (DK) versus California (Cal).

\[x = \text{HHHHHHHHH} \]

\[
P(x \mid DK) = b_H a_{HH} a_{HH} a_{HH} a_{HH} a_{HH} a_{HH} a_{HH}
\]

\[
= \frac{3}{11} \left(\frac{1}{5} \right)^6 \approx 0.0017\%
\]
Motivation of Hidden Markov Models

- **Hidden states**
 - The state of the entity we want to model is often not observable:
 - The state is then said to be hidden.

- **Observables**
 - Sometimes we can instead observe the state of entities influenced by the hidden state.

- **A system can be modeled by an HMM if:**
 - The sequence of hidden states is Markov
 - The sequence of observations are independent (or Markov) given the hidden
Hidden Markov Model

- Definition $M=\{S, V, A, B, \pi\}$
 - Set of states $S = \{s_1, s_2, \ldots, s_N\}$
 - Observation symbols $V = \{v_1, v_2, \ldots, v_M\}$
 - Transition probabilities A between any two states $a_{ij} = P(q_t=s_j|q_{t-1}=s_i)$
 - Emission probabilities B within each state $b_j(O_t) = P(O_t=v_j|q_t=s_j)$
 - Start probabilities $\pi = \{a_0\}$

Use $\lambda = (A, B, \pi)$ to indicate the parameter set of the model.
Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state q_1 according to prob a_{0t1}
2. Emit letter o_1 according to prob $e_{t1}(o_1)$
3. Go to state q_2 according to prob a_{t1t2}
4. … until emitting o_n
Example

Model of high and low pressures
Assume we can not measure high and low pressures.
The state of the weather is influenced by the air pressure.
We make an HMM with hidden states representing high and low pressure and observations representing the weather:

Hidden states: L L L L H H L
Observations: 😞😊😊😊😊sad

Diagram:
- States: H, L
- Transitions: H → L (0.8), L → H (0.3), H → H (0.2), L → L (0.7)
- Observations:
 - H: 😊 0.8
 - L: 😊 0.2, 😞 0.8
Calculating with Hidden Markov Model

Consider one such fixed state sequence

\[Q = q_1 q_2 \cdots q_T \]

The observation sequence \(O \) for the \(Q \) is

\[
P(O | Q, \lambda) = \prod_{t=1}^{T} P(O_t | q_t, \lambda) = b_{q_1}(O_1) \cdot b_{q_2}(O_2) \cdots b_{q_T}(O_T)
\]
Calculating with Hidden Markov Model (cont.)

The probability of such a state sequence Q is:

$$P(Q \mid \lambda) = a_{0q_1} a_{q_1q_2} \cdot a_{q_2q_3} \cdots a_{q_{T-1}q_T}$$

The probability that O and Q occur simultaneously, is simply the product of the above two terms, i.e.,

$$P(O, Q \mid \lambda) = P(O \mid Q, \lambda) P(Q \mid \lambda)$$

$$P(O, Q \mid \lambda) = a_{0q_1} b_{q_1}(O_1) a_{q_1q_2} b_{q_2}(O_2) a_{q_2q_3} \cdots a_{q_{T-1}q_T} b_{q_T}(O_T)$$
Example

\[P(x, \pi) = (a_{0L}e_L(R))(a_{LL}e_L(R))(a_{LL}e_L(S))(a_{LL}e_L(R))(a_{LH}e_H(S))(a_{HH}e_H(S))(a_{HL}e_L(R)) \]
\[= \begin{pmatrix} 8 & 8 \\ 11 & 10 \end{pmatrix} \begin{pmatrix} 7 & 8 \\ 10 & 10 \end{pmatrix} \begin{pmatrix} 7 & 8 \\ 10 & 10 \end{pmatrix} \begin{pmatrix} 3 & 8 \\ 10 & 10 \end{pmatrix} \begin{pmatrix} 2 & 8 \\ 10 & 10 \end{pmatrix} \begin{pmatrix} 8 & 8 \\ 10 & 10 \end{pmatrix} \]
\[= 0.0006278 \]
The three main questions on HMMs

1. Evaluation
 GIVEN a HMM $M=(S, V, A, B, \pi)$, and a sequence O,
 FIND $P[O|M]$

2. Decoding
 GIVEN a HMM $M=(S, V, A, B, \pi)$, and a sequence O,
 FIND the sequence Q of states that maximizes $P(O, Q | \lambda)$

3. Learning
 GIVEN a HMM $M=(S, V, A, B, \pi)$, with unspecified transition/emission probabilities and a sequence Q,
 FIND parameters $\theta = (e_i(.), a_{ij})$ that maximize $P[x|\theta]$
Evaluation

- Find the likelihood a sequence is generated by the model

- A straightforward way (穷举法)
 - The probability of O is obtained by summing all possible state sequences q giving

\[
P(O \mid \lambda) = \sum_{all \, Q} P(O \mid Q, \lambda) P(Q \mid \lambda)
\]

\[
= \sum_{q_1, q_2 \ldots q_T} \pi_{q_1} \, b_{q_1} (O_1) a_{q_1q_2} \, b_{q_2} (O_2) a_{q_2q_3} \ldots a_{q_{T-1}q_T} \, b_{q_T} (O_T)
\]

Complexity is $O(N^T)$

Calculations is unfeasible
The Forward Algorithm

- A more elaborate algorithm
- The Forward Algorithm

\[P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i) \]

\[\alpha_2(1) = \left[\sum_{i=1}^{N} \alpha_1(i) a_{i1} \right] b_1(O_2) \]

\[P(O_1O_2 \mid \lambda) = \sum_{i=1}^{N} \alpha_2(i) \]
The Forward Algorithm

The Forward variable

\[\alpha_t(i) = P(O_1O_2 \cdots O_t, q_t = S_i \mid \lambda) \]

We can compute \(\alpha(i) \) for all \(N, i \),

Initialization:

\[\alpha_1(i) = a_i b_i(O_1) \quad i = 1 \ldots N \]

Iteration:

\[\alpha_{t+1}(i) = \left[\sum_{j=1}^{N} \alpha_t(j) a_{ij} \right] b_j(O_{t+1}) \quad t = 1 \ldots T - 1 \]

Termination:

\[P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
The Backward Algorithm

The backward variable

$$\beta_t(i) = P(O_{t+1}O_{t+2}\cdots O_T \mid q_t = S_i, \lambda)$$

Similar, we can compute backward variable for all $N, i,$

Initialization:

$$\beta_T(i) = 1, \ i = 1, \ldots, N$$

Iteration:

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) \quad t = T - 1, T - 2, \ldots, 1, 1 \leq i \leq N$$

Termination:

$$P(O \mid \lambda) = \sum_{j=1}^{N} a_{0j} b_1(O_1) \beta_1(j)$$
Consider \(\alpha_T(i) = P(O_1O_2\ldots O_T, q_T = S_i | \lambda) \)

Thus \(P(q_T = S_i | O) = \frac{P(O, q_T = S_i)}{P(O)} = \frac{\alpha_T(i_T)}{\sum_i \alpha_T(i_T)} \)

Also \(P(q_t = S_i | O) = \frac{P(O, q_t = S_i)}{P(O)} \)

\[
P (O_1O_2\ldots O_t, q_t = S_i, O_{t+1}O_{t+2}\ldots O_T)
= \frac{P (O_1O_2\ldots O_T, q_t = S_i)P(O_{t+1}O_{t+2}\ldots O_T | O_1O_2\ldots O_t, q_t = S_i)}{P (O)}
= \frac{\alpha_t(i_t) \beta_t(i_t)}{P (O)}
= \frac{\alpha_t(i) \beta_t(i)}{\sum_i \alpha_T(i)} = \gamma(i)
\]
Decoding

GIVEN a HMM, and a sequence O.
Suppose that we know the parameters of the Hidden Markov Model
and the observed sequence of observations O_1, O_2, \ldots, O_T.

FIND the sequence Q of states that maximizes $P(Q|O, \lambda)$
Determining the sequence of States q_1, q_2, \ldots, q_T, which is optimal in
some meaningful sense. (i.e. best “explain” the observations)
Decoding

Consider \(P(Q|O, \lambda) = \frac{P(O,Q|\lambda)}{P(O|\lambda)} \)

To maximize the above probability is equivalent to maximizing \(P(O,Q|\lambda) \)

\[
= a_{i_1} b_{i_1 o_1} a_{i_2} b_{i_2 o_2} a_{i_3} b_{i_3 o_3} \ldots a_{i_{T-1} i_T} b_{i_T o_T}
\]

A best path finding problem

\[
\max P(O,Q|\lambda) = \max \ln(P(O,Q|\lambda))
\]

\[
= \max(\ln(a_{i_1} b_{i_1 o_1}) + \ln(a_{i_2} b_{i_2 o_2}) \ldots + \ln(a_{i_{T-1} i_T} b_{i_T o_T}))
\]
Viterbi Algorithm

[Dynamic programming]

Initialization:
\[\delta_1(i) = a_{0i} b_i(O_1), \quad i = 1 \ldots N \]
\[\psi_1(i) = 0. \]

Recursion:
\[\delta_t(j) = \max_i [\delta_{t-1}(i) a_{ij}] b_j(O_t) \quad t=2 \ldots T \quad j=1 \ldots N \]
\[\psi_t(j) = \arg\max_i [\delta_{t-1}(i) a_{ij}] \quad t=2 \ldots T \quad j=1 \ldots N \]

Termination:
\[P^* = \max_i \delta_T(i) \]
\[q_T^* = \arg\max_i [\delta_T(i)] \]

Traceback:
\[q_t^* = \psi_1(q_{t+1}^*) \quad t=T-1,T-2,\ldots,1. \]
The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time: \(O(K^2N) \)

Space: \(O(KN) \)
Learning

- Estimation of Parameters of a Hidden Markov Model
 1. Both the sequence of observations O and the sequence of States Q is observed

 learning $\lambda = (A, B, \pi)$

 2. Only the sequence of observations O are observed

 learning Q and $\lambda = (A, B, \pi)$
Maximal Likelihood Estimation

- Given O and Q, the Likelihood is given by:

$$L(A, B, \pi) = a_{i_1} b_{i_{o_1}} a_{i_1 i_2} b_{i_2 o_2} a_{i_2 i_3} b_{i_3 o_3} \ldots a_{i_{T-1} i_T} b_{i_T o_T}$$
Maximal Likelihood Estimation

- The log-Likelihood is:

\[
l(A, B, \pi) = \ln L(A, B, \pi) = \ln(a_{i_1}) + \ln(b_{i_1o_1}) + \ln(a_{i_1i_2}) + \ln(a_{i_2i_3}) + \ln(b_{i_2o_2}) \ldots + \ln(a_{i_{T-1}i_T}) + \ln(b_{i_To_T})
\]

\[
= \sum_{i=1}^{M} f_{i0} \ln(a_i) + \sum_{i=1}^{M} \sum_{j=1}^{M} f_{ij} \ln(a_{ij}) + \sum_{i=1}^{M} \sum_{o(i)} \ln(b_{io})
\]

Where:
- \(f_{i0} = \) the number of times state \(i \) occurs in the first state
- \(f_{ij} = \) the number of times state \(i \) changes to state \(j \).
- \(\beta_{iy} = f(y | \theta_i) \) (or \(p(y | \theta_i) \) in the discrete case)
- \(\sum_{o(i)} = \) the sum of all observations \(o_t \) where \(q_t = S_i \)
In such case these parameters computed by Maximum Likelihood estimation are:

\[\hat{a}_i = \frac{f_{i0}}{1}, \quad \hat{a}_{ij} = \frac{f_{ij}}{\sum_{j=1}^{M} f_{ij}}, \text{ and} \]

\[\hat{b}_i = \text{the MLE of } b_i \text{ computed from the observations } o_t \text{ where } q_t = S_i. \]
Maximal Likelihood Estimation

- Only the sequence of observations O are observed

$$L(A, B, \pi) = \sum_{i_1, i_2 \ldots i_T} a_{i_1} b_{i_1 o_1} a_{i_1 i_2} b_{i_2 o_2} a_{i_2 i_3} b_{i_3 o_3} \ldots a_{i_{T-1} i_T} b_{i_T o_T}$$

- It is difficult to find the Maximum Likelihood Estimates directly from the Likelihood function.

- The Techniques that are used are
 1. The Segmental K-means Algorithm
 2. The Baum-Welch (E-M) Algorithm
The Baum-Welch Algorithm

- The E-M algorithm was designed originally to handle “Missing observations”.

- In this case the missing observations are the states \(\{q_1, q_2, \ldots, q_T\} \).

- Assuming a model, the states are estimated by finding their expected values under this model. (The E part of the E-M algorithm).
The Baum-Welch Algorithm

- With these values the model is estimated by Maximum Likelihood Estimation (The M part of the E-M algorithm).

- The process is repeated until the estimated model converges.
The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters (or arbitrary)

Iteration:
Forward
Backward
Calculate A_{kl}, $E_k(b)$
Calculate new model parameters a_{kl}, $e_k(b)$
Calculate new log-likelihood $P(x \mid \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much
The Baum-Welch Algorithm

Let \(f(O, Q | \lambda) = L(O, Q, \lambda) \) denote the joint distribution of \(Q, O \).

Consider the function:

\[
Q(\lambda, \lambda') = E_x \left(\ln L(O, Q, \lambda) | Q, \lambda' \right)
\]

Starting with an initial estimate of \(\lambda \) \((\lambda^{(1)}) \). A sequence of estimates \(\{\lambda^{(m)}\} \) are formed by finding \(\lambda = \lambda^{(m+1)} \) to maximize \(Q(\lambda, \lambda^{(m)}) \) with respect to \(\lambda \).
The Baum-Welch Algorithm

The sequence of estimates \(\{\lambda^{(m)}\} \) converge to a local maximum of the likelihood

\[
L(Q, \lambda) = f(Q|\lambda)
\]
Markov Random field

- See webpage
Belief Network (Propagation)

Y. Weiss and W. T. Freeman

Motion Texture

Plant Texture

(a)~(b): photographs. (c): recovered sample. (d)~(f): synthesized plants

Figure 8. Yulan
Homework

- Read the motion texture siggraph paper.