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What you need to know

e Point estimation:
MLE
Bayesian learning
MAP

e (Gaussian estimation

e Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off



Your first consulting job

e An IT billionaire from Beljing asks you a
guestion:

B: | have thumbtack, if | flip it, what's the
probabillity it will fall with the nail up?

Y: Please flip it a few times ...
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Y: The probability is 3/5

B: Why???
Y: Because...




Binomial Distribution

e P(Heads) = 0, P(Tails) = 1- 6
P(D|6) = (1-0)09(1-6)(1- )
e Flips are I.I.d.

Independent events

|dentically distributed according to Binomial
distribution

e Sequence D of a |, Heads and a ; Talils
P(D|8) =6 (1-0)"



Maximum Likelithood
Estimation

e Data: Observed set D of a , Heads and a ; Tails
e Hypothesis: Binomial distribution

e Learning 9 Is an optimization problem
What's the objective function?
D={T,H,H,T,T}
e MLE: Choose 6 that maximizes the probability of
observed data:

N\

¢ = argmaxP(D|&)
0
argmaxInP(D|8) =...
%



Maximum Likelihood
Estimation (cont.)

0 = argmax P(D | 6)
0

= argmaxIn(@“" (1-6)"")
0

= argmax(a, In8+a; In(1-6))

6
e Set derivative to zero:

ilnP(Dw):o 0 =
do




How many flips do | need?
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e B: | flipped 2 heads and 3 talls.

e Y: 0 =3/5,1can prove it!

e B: What if | flipped 20 heads and 30 tails?

e Y: Same answer, | can prove it!

e B: What's better?

e Y: Humm... The more the merrier???

e B: Is this why | am paying you the big bucks???



Simple bound
(based on Hoffding’s inequality)

~ o
e For N=a,+a; and 9= T

e Let 6 * be the true parameter, for any ¢ >O0:

P(é—ﬁ*‘ >g)<2e?| <5

N Zi[ln2—ln5]
2&

N > 27;:(&=0.1,68 = 0.01)



PAC Learning

e PAC: Probably Approximate Correct

e B: | want to know the thumbtack parameter
0, within ¢ = 0.1, with probability at least 1-
6 =0.99. How many flips?

o Y:27, ©



Prior:
knowledge before experiments

e B: Walit, | know that the thumbtack is “close” to 50-50. What can
you ...?

e Y:I|can learn it the Bayesian way...

e Rather than estimating a single 6, we obtain a distribution over
possible values of 6

A : A :
P(0) Prior Data P(0| D) Posterior

D={T,H,H,T, T}




Bayesian Learning

Posterior  Likelihood
v v
P(G)P(D|0)
P(D) <«— Data distribution

Normalization constant

e Bayes rule:

Posterior — P(@‘ D) —

e Or equivalently:

P(@|D) < P(@)P(D|8&)



Bayesian Learning in our case

e Likelihood function is simply Binomial:
P(D|8) =6 (1-0)"

e \What about prior?
Represent expert knowledge
Simple posterior form
e Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution



Beta prior distribution — P( 0)

e Prior: Beta distribution
p(6) - el ) Ve
B(Su. 5r)
e Likelihood: Binomial distribution
P(D|6) =60 (1-6)~
e Posterior:

~ Beta(8,, 5;)

P(@|D) o« P(O)P(D|O)
o« O(1-0)" e T1-6)""
~ Beta(ay, + by, a1 + 5;)



Using Bayesian posterior

e Posterior distribution:
P(6|D) ~ Beta(ay, + Sy, + ;)

e Bayesian inference:
No longer single parameter:

E[f(0)]~ | 1(6)P(¢] D)do

Integral, ®




MAP:
Maximum a posteriori approximation

P(6|D) ~ Beta(ay + Sy, a7 + ;)

approximation

E[f(0)] = f(6)P(6] D)do-

e MAP: use most likely parameter

0 =argmaxP(@|D) E[f(8)]~ f(0)—



MAP for Beta distribution

P(6|D) ~ Beta(ay, + Sy, a7 + ;)

e MAP: use most likely parameter

0 =argmax P(6| D) = o+ 1
Z a, + fpy o+ fr =2

e Beta prior equivalent to extra thumbtack flips
e As N—w | prior is “forgotten”
e But, for , prior is important!



Gaussian distribution

Continuous variable:

mean
1 e
P(X|u,0) ~ e 20
ON27
variance Normalize item

Consider the difference between continuous and discrete variables?



MLE for Gaussian

e Prob. of I.I.d. samples D={x,x,,...,x,}

likelihood P(D|u,o)= (

N —(4—p)°
j He 20°
e The magic of log (to likelihood)

\N N —i-)?
INnP(D|u,0) = e 20°
(D|p,0) (0 7 ) | H

_NIn(c27) - Z(X ~H)°




MLE for mean of a Gaussian

N N —(x-p)°
i|nP(D|,u,G) = iIn( - jHe 20°
ou ou \o+2r ) ia

_ i_ \ (Xi_,u)2
ou I 20°
N
X, —
_ Z(l 2/“) =O
izt O




MLE for variance of a Gaussian

P a N —(-u)°
Eln P(D|u o) (GFJ He 20°
_ _[ Nlnaf] ié (X'_“)]

= (90' 20°




Gaussian parameters learning

e MLE .
/}:WZXi

5 =%Z(xi )’

e Bayesian learning: prior?

e Conjugate priors:
Mean: Gaussian priors
Variance: Wishart Distribution




Prediction of continuous
variable

e B: Walit, that's not what | meant!
e Y: Chill out, dude.

e B: | want to predict a continuous variable for
continuous inputs: | want to predict salaries from
GPA.

e Y: | canregress that...

A

Salary




The regression problem

e Instances: <xt>
e Learn: mapping from x to t(x).

Given, basis functions H ={h,..., ﬁf}
Find coefficients w={w,,...,w, }

e Problem formulation: k
w =argmin ) [t(x;) - > wh (x)]*
w j i=1

e Hypothesis space: t(x)zf(x):iwihi



But, why sum squared error?

e Model:
[t= " wih ()T

P(t|X,w,o) = e 20"
(t] ) oo

e Learn w using MLE



Maximizing log-likelthood

—[t; —Zi w; by (X )]’

€

InP(D|w,o)=In] | -

10 2

— mmz —[t; - wih; (x;)]°

202

2072

)



Bias-Variance Tradeoff

e Choice of hypothesis basis introduce learning
bias:
More complex basis:

Less bias
More variance (over-fitting)
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What you need to know

e Point estimation:
aximal | ikelihood = stimation
Bayesian learning
aximal osterior

e Gaussian estimation
e Regression
Basis function = features

Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off



Homework

e Finish the “Gaussian parameters learning”
Please use google, M *
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