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Introduction

e Goal: choosing suitable transforms, so as to
obtain high “information packing”.
Raw data -> Meaningful features.
Unsupervised/Automatic methods.

e To exploit and remove information
redundancies via transform.



Feature extraction

e Data independent A
» DFT, DWT, DCT b
A single piece of signal | -

e Data dependent SIS SUNUEE D
o PCA, K-PCA, ICA, ISO-MAP, LLE ...
A set of signals (images, motion data, shapes,...)

e Key: define desirable transforms
o Raw data -> Feature space




PCA: example

Digit data
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130 threes, a subset of 638 such threes and part of the
handwritten digit dataset. Each three is a 16 >< 16 greyscale

Image, and the variables Xj, j = 1
values for each pixel.

.....

256 are the greyscale



Digit:
rank-2 model for threes
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Two-component model has the form
J(A) = T+ Mv+ Ay

= 3 +)\1-+)\2- 3

Here we have displayed the first two principal

component directions, v; and vy, as images.




Principal Components

e Suppose we have N measurements on each of p
variables Xi j=1...k . There are several equivalent

approaches to principal components:
Produce a derived (and small) set of uncorrelated variables
Z, = aI X,k=1..,0<p thatare linear combinations of the original
variables, and that explain most of the variation in the original set.

Approximate the original set of N points in SR P by a least-squares
optimal linear manifold of co-dimension 4 <P .

Approximate the q < P data matrix X by the best rank-q matrix X(p) .
This is the usual motivation for the SVD.



Basis Vectors and Images

e Input samples
X" =[X(D), X(2),.... X(p)]

e Unitary pxp matrix A and transformed Vector

7= AX

e Basis vector representation
N-1

X=Az= Z Z(i)a;

1=0

P
T - -
=1



PCA:
Derived Variables

Component

® 7, =a X isthe projection of the data onto the longest direction,
and has the largest variance amongst all such normalized
projections.

e ¢ isthe largest eigenvalue of ¥, the sample covariance matrix of
X.Z, and «a, correspond to the second-largest eigenvector.



PCA:
Least Squares Approximation

Find the linear manifold
f(A) = u+VA

that best approximates the
data in a least-squares
sense:

Solution:




PCA:.
iIngular Value Decomposition

Let X be the N x p data matrix (assume N> p ).
Singular values
X0,0 X1,0 X20 7 AN-1,0 l
Xo1 X1 X210 XN-11
X = s . . . - =USV
Xo,p-1 | *,p-1| X2,p-1 °° XN-1,p1 Nxp \/
is the SVD of X, where Xq Unitary Matrices
, U is N>p orthogonal, the left singular vectors.
> V is p>p orthogonal, the right singular vectors.
> S is diagonal, withd, =d, = ... = dp = 0, the singular values.

v The SVD always exists, and is unique up to signs.



PCA:.
iIngular Value Decomposition

Singular values

X0,0 X1,0 X20 " AN-1,0 l
X X X ce X
0.1 1,1 21 N-11
X = X ; . ) . =USV
Xo,p-1 | *,p-1| X2,p-1 ° XN-1,p1 Nxp \/
X Unitary Matrices

Let s, be s with all but the first ¢ diagonal
elements set to zero. Then x,=us,»" solves

min

X-X,
rank (X,)=9




PCA: example
Eigenfaces

e G. D. Finlayson, B. Schiele & J. Crowley. Comprehensive colour
image normalization. ECCV 98 pp. 475~490.




Problems of PCA

\J

e Only suitable for normal
distributed data

e More consideration

ICA: Independent
components.

K-PCA: Nonlinear



Nonlinear dimension reduction
algorithms:

e Locally Linear Embedding (LLE), Science

Sam T. Roweis and Lawrence K. Saul

e A Global Geometric Framework for Nonlinear
Dimensionality Reduction (Isomap), Science

Joshua B. Tenenbaum, Vin de Silva, John C. Langford

e BoostMap: A Method for Efficient Approximate
Similarity Rankings, CVPR 2004

Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George
Kollios



Locally Linear Embedding
(LLE)

e Recovers global nonlinear structure from locally
linear fits.

e Each data point and it's neighbors is expected to
lie on or close to a locally linear patch.

e Each data point is constructed by it's neighbors:
Xi=> W, X,
j

—_

W. =0 if X .is not a neighbor of X.

i j i
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o000
LLE: °°
Getting the Reconstruction Weights
e We want to minimize B P
the error function: - W, X
j
o Wlth the ConStrainS: W — O if X J is not a neighbor of X

ZW =1

e Solution (using lagrange multipliers):
W, ZC (X7, + A)

A=1- ZC (xnk)/



LLE: sell.

Find Embedded Coordinates oot

e Choose d-dimensional
coordinates, Y, to minimize: ¢(Y)=)_

2

Yi -2 WY,
J

Under: )Y, = 0, T YT =1

¢(Y) = Z Mij(Y_}Vj)

M =(1-W)T (I -W)

e Solution: compute bottom d+1 eigenvectors of M.
(discard the last one)



000
LLE:
Summary o
o c; % . (1) Select neighbors

e Input: N data items

in D dimension (X). T
e Output: d <D 1 ®

dimensional "linear weights

embedding

coordinates (Y) for

the input points.

-
---------

Map to embedded coordinates



LLE:
Example

e N=8588 (RGB) images

of lips of size 108x84.
D=27216

e Num of neighbors K=16

233O DARDIAIHY:

JIIII I3 33333



Isomap: (Science 2001)
Isometric feature mapping

e Preserve the intrinsic geometry of the data.

e Use the geodesic manifold distances between all
pairs.

Three steps algorithm




Isomap:
Construct Neighborhood Graph

e Determine which points are neighbors, based on the
distances d(i,j) .
- K nearest neighbors e
- g-radius

e Create a graph G, with edgéﬁeiweén heighb(;rs
and distance weights.



Isomap:
Compute Shortest Paths

e Estimate the geodesic distances.
e Compute all-pairs shortest paths in G.
e Can be done using Floyd’s algorithm, O(N*InN)

d. (1, J)=d(i, J) neighboring 1, ]
d.(i, )= othewise

 Graph Distance

Manifold Distance

fork=1,2,...,N
de (1, J)=min{d; (1, J), dg(i,k)+dg(k, J)}



Isomap:

Construct d-dimensional Embedding

Classical with dg(i,)),
minimize the cost function:

E = HT(DG) -7(Dy)

L2

where DY (i’ J) = HYi - yjH
Ds (1, J) =dg (1, ])

and

7(D)=5(1-HD*(1 - )

Solution: take top d
eigenvectors of the

matrix 7 (DG)



o00
o000
Isomap: °se’
Classical Vulti-cdimensional Scaling :
1 i = Y sy Ti,
X'X=—2JEJ E: Euclidian distance matrix -
?. dfj — Z (Tia — Ijﬂ-)g
B=—=—-JMJ M: Manifold distance matrix a=1
) 21 E=cl +1c - 2XX'
LIX)=|-=J(E—M JH '
X) 2 ) J=1-— %11"
— | XX — BH B = —%J(clf +1c¢’ — 2XXNJ
1 1
. 1 = —Je0' — Z0c'T + JXX'J
B=QAQ X=QiAzZ e

Eigen-structure analysis, SVD again



Isomap:
Classical Multi-dimensional Scaling (2D)
J = eye(n)—ones(n)./n;
B = —-05+«J+M=xJ;
% Find largest eigenvalues+their eigenvectors:
QL] = eigs(B,2,’LM):
% Extract the coordinates:
newy = sqrt(L(1,1)). % Q(:1);
newx = sqrt(L(2,2)).* Q(:,2);




Isomap: application
texture mapping

(a) (b)

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of
a face. (b) The flattened texture image of the face.




Isomap
Examples
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Isomap:
More Results

Input: 698
Images of 64x64

K=7, d=2

Two-dimensional lsomap embedding (with neighborhood graph).
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Isomap:
More Results

e Same inputs, but this time with d=3

698 images of 64x64 K=7
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BoostMap:
A different perspective of embedding

e (Goal — Significantly reduce retrieval time in
Image database systems.

e Embedding is formulated as a machine learning
task.

e AdaBoost is used to combine many simple 1D
embeddings into a d-dimensional embedding.

e Obtain ranking of all DB objects in order of
similarity to a query object.



BoostMap:
Problem Definition

Embeddings are seen as classifiers.
Estimate for a, b, c if a is closer to b or c.
X — set of objects

D, — distance measure.

[ 1if Dy (0, %) <Dx(q,X,)

Py (0, %, %,) =9 0 1f Dy (0, %) =Dy (9, %,)

\_1 If Dx(q’ Xl) > Dx(q’ Xz)

e Find an Embedding F: X > R? and a measure D iy
that is used for evaluating any triplet.

F(9,%,%) =D, (F(),F(x,))~D_, (F(q), F(x,))



BoostMap - Outputs

e The output is a classifier: H =2 aF,

e The final output is an embedding F : X > Rd
And a distance measure D : R4xR? > Rd

1




BoostMap - Results

Hand shapes
used in the
training set

Orientations
used in the
training set

Retrieval results

original The Correct
query  match



Summary:
Nonlinear Dimensionality Reduction

S Use the geodesic manifold distances between all pairs.
sees more than just the Euclidean structure.
polynomial time procedure.

o Recovers global nonlinear structure from locally linear fits.
no need no estimate pair-wise distances.
optimization do not involve local minima.

° looks at embeddings as classifiers, uses AdaBoost.

main usage: similarity retrieval from database.
main advantage: trained offline, applicable online.

e Manifold learning ...



Homework
e Algorithm implementations

Eigenface
ISOMAP

e Read the ISOMAP, LLE and BoostMap papers.

e Keep on thinking:

How to use dimension reduction results
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