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Introduction

z Goal: choosing suitable transforms, so as to 
obtain high “information packing”.
z Raw data -> Meaningful features.
z Unsupervised/Automatic methods.

z To exploit and remove information 
redundancies via transform. 



Feature extraction
z Data independent

z DFT, DWT, DCT
z A single piece of signal

z Data dependent
z PCA, K-PCA, ICA, ISO-MAP, LLE …

z A set of signals (images, motion data, shapes,…)

z Key: define desirable transforms
z Raw data -> Feature space



PCA: example
Digit data
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130 threes, a subset of 638 such threes and part of the 
handwritten digit dataset. Each three is a 16 × 16 greyscale
image, and the variables Xj, j = 1, . . . , 256 are the greyscale
values for each pixel.



Digit:
rank-2 model for threes



Principal Components
z Suppose we have N measurements on each of p

variables     ,                 . There are several equivalent 
approaches to principal components:
z Produce a derived (and small) set of uncorrelated variables 

that are linear combinations of the original 
variables, and that explain most of the variation in the original set.

z Approximate the original set of N points in        by a least-squares 
optimal linear manifold of co-dimension             .

z Approximate the            data matrix        by the best rank-q matrix            . 
This is the usual motivation for the SVD.
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Basis Vectors and Images

z Input samples

z Unitary pxp matrix    and transformed Vector

z Basis vector representation

[ (1), (2),..., ( )]T X X X p=X

=Z AX

1

0
( )

N

i
i

z i
−

=
= = ∑x Az a

1
, ( ) , ( )

p
T

j j j i
i

z i z j
=

< >= = < > =∑a x a x a a

A



PCA: 
Derived Variables

TΣ = X X

z is the projection of the data onto the longest direction, 
and has the largest variance amongst all such normalized 
projections.

z is the largest eigenvalue of     , the sample covariance matrix of 
X.      and      correspond to the second-largest eigenvector.
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PCA:
Least Squares Approximation
Find the linear manifold 

that best approximates the 
data in a least-squares 
sense:

Solution:

( ) qf λ µ λ= +V

,{ }, 1
min

i q

N

i q i
iµ λ

µ λ
=

− −∑
V

x V

, ,k k k kx v a Zµ λ= = =



PCA: 
Singular Value Decomposition
Let       be the centered data matrix (assume           ).

is the SVD of      , where 
¾ U is N×p orthogonal, the left singular vectors.
¾ V is p×p orthogonal, the right singular vectors.
¾ S is diagonal, with d1≥ d2≥ . . . ≥ dp≥ 0, the singular values. 

9 The SVD always exists, and is unique up to signs. The columns of V are the 
principal components, and Zj = Ujdj.
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PCA: 
Singular Value Decomposition
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Unitary Matrices

Let      be    with all but the first     diagonal 
elements set to zero. Then               solves
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PCA: example
Eigenfaces
z G. D. Finlayson, B. Schiele & J. Crowley.  Comprehensive colour

image normalization. ECCV 98 pp. 475~490.

z Eigen-X, ☺



Problems of PCA
z Only suitable for normal 

distributed data

z More consideration
z ICA: Independent 

components.
z K-PCA: Nonlinear
z …
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Nonlinear dimension reduction 
algorithms:
z Locally Linear Embedding (LLE), Science

Sam T. Roweis and Lawrence K. Saul

z A Global Geometric Framework for Nonlinear 
Dimensionality Reduction (Isomap), Science
Joshua B. Tenenbaum, Vin de Silva, John C. Langford

z BoostMap: A Method for Efficient Approximate 
Similarity Rankings, CVPR 2004
Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George 
Kollios



Locally Linear Embedding 
(LLE)

z Recovers global nonlinear structure from locally 
linear fits.

z Each data point and it’s neighbors is expected to 
lie on or close to a locally linear patch.

z Each data point is constructed by it’s neighbors: 
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LLE:
Getting the Reconstruction Weights

z We want to minimize 
the error function:

z With the constrains:
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z Solution (using lagrange multipliers):

∑∑

∑
−−

−

−=

+=

jk
jk

jk
kjk

k
kjkj

CXC

XCW

11

1

)(1

)(

ηλ

λη



LLE:
Find Embedded Coordinates 

z Choose d-dimensional 
coordinates, Y, to minimize:

Under:
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z Solution: compute bottom d+1 eigenvectors of M.
(discard the last one)



LLE:
Summary

z Input: N data items 
in D dimension (X).

z Output: d < D 
dimensional 
embedding 
coordinates (Y) for 
the input points. 



LLE:
Example

z N=8588 (RGB) images
of lips of size 108x84. 
D=27216

z Num of neighbors K=16



Isomap: (Science 2001) 
Isometric feature mapping
z Preserve the intrinsic geometry of the data.
z Use the geodesic manifold distances between all 

pairs.

Three steps algorithm



Isomap:
Construct Neighborhood Graph 

z Determine which points are neighbors, based on the 
distances d(i,j) .
• K nearest neighbors 
• ε-radius 

z Create a graph G, with edges between neighbors 
and distance weights. 



Isomap:
Compute Shortest Paths
z Estimate the geodesic distances.
z Compute all-pairs shortest paths in G.
z Can be done using Floyd’s algorithm,              .

)},(),(  ),,(min{),(     
N1,2,...,k 

othewise         ),(
ji,  gneighborin  ),(),(

jkdkidjidjid
for

jid
jidjid

GGGG

G

G

+=
=

∞=
=

2( ln )O N N



Isomap:
Construct d-dimensional Embedding

Classical MDS with dG(i,j), 
minimize the cost function:
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Isomap:
Classical Multi-dimensional Scaling

M: Manifold distance matrix
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E: Euclidian distance matrix

Eigen-structure analysis, SVD again



Isomap:
Classical Multi-dimensional Scaling (2D)



Isomap: application
texture mapping



Isomap:
Examples

z N=2000 images 
64x64 pixels K=6



Isomap:
More Results

Input: 698 
images of 64x64

K=7, d=2

Outputs:



Isomap:
More Results
z Same inputs, but this time with d=3

698 images of 64x64 K=7



BoostMap:
A different perspective of embedding

z Goal – Significantly reduce retrieval time in 
image database systems.

z Embedding is formulated as a machine learning 
task.

z AdaBoost is used to combine many simple 1D 
embeddings into a d-dimensional embedding.

z Obtain ranking of all DB objects in order of 
similarity to a query object.



BoostMap:
Problem Definition 

z Embeddings are seen as classifiers.
z Estimate for a, b, c if a is closer to b or c.
z X – set of objects
z DX – distance measure.
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BoostMap - Outputs

z The output is a classifier: 

z The final output is an embedding F : X Æ Rd

And a distance measure D : Rd xRd Æ Rd
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BoostMap - Results

Hand shapes 
used in the 
training set

Orientations 
used in the 
training set

Retrieval results

original The 
query

Correct 
match



Summary: 
Nonlinear Dimensionality Reduction

z Isomap - Use the geodesic manifold distances between all pairs.
z sees more than just the Euclidean structure.
z polynomial time procedure.

z LLE - Recovers global nonlinear structure from locally linear fits.
z no need no estimate pair-wise distances.
z optimization do not involve local minima.

z BoostMap - looks at embeddings as classifiers, uses AdaBoost.
z main usage: similarity retrieval from database.
z main advantage: trained offline, applicable online.

z Manifold learning …



Homework
z Algorithm implementations

z Eigenface
z ISOMAP

z Read the ISOMAP, LLE and BoostMap papers.

z Keep on thinking:
z How to use dimension reduction results
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