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Outline

e Flat clustering
Mixture of Gaussians
K-means

e Hierarchical clustering
bottom-up

e Spectral based clustering
e Applications




Clustering

e Glven set of data points, group them
o learning

e Learn the similarity. Which patient are similar?
(or customers, faces, earthquakes, ...)
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Clustering vs. Classification

e Clustering
e Instance: {x;}.,
e Learn: <x,t > and/or mapping from x to t(x)

e Classification/Regression
e Instance: <x,t >
e Learn: mapping from x to t(x)



Clustering:
Image segmentation

Mean-shift segmentation



Mixtures of Gaussians

e Mixture distribution:
Assume P(x) is a mixture of K different Gaussians
Assume each data point, X, is generated by 2-step process

Choose one of the K Gaussians as labelz
Generate x according to the Gaussian N(g,,X))

P(X)=2 P(@Z=2|7)N(X| 1,%,)

z=1

e What object function shall we optimize?
Maximize data likelihood



Mixtures of Gaussians (cont.)

e Multivariate Gaussian model

1 1 B |
e DIEE expq —§(X — ,U-)TE 1(X — )}

p(x[p, ) =

e How to generate It?

1
F,o2(x) = / p(z|p, 0?)dz
L’ 7(x:

u~ Uniform(0.1) = x=F"

La(u) ~ plalp. 0?)

2z o~ plzlp=0,02=1), z2=[z,...,2]

x = XYz 44




Multi-variate density estimation

e A mixture of Gaussians model

p(x|6) Z pj p(x|p;, T

where 6 = {p1,.. . Pry 1y - - -5 Jbks 21, - - -, L+ contains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixtures of Gaussians:
Wishart distribution

o A mixture of Gaussian Model:

High dimensional
p(x|f) = Z p; P(X|pj, & parameters

e Wishart prior

1 _..!
P(X|S,n') x IRLE exp (%Trace(zl 5))

S = prior’” covariance matrix

n' = equivalent sample size




Mixture density

e Data generation process:

R
P(y) s,
°wé§%ﬁf*
n) Sl
y=1 y=2 “’
1 2.
::,"“‘:%ua:.
%“}wgo“u
P(x]y=1) P(xly=2) ¢
p(x|0) = Z P(y =7) p(x|ly=7) (generic mixture)

1=1,2
= Z pi-p(x|p;, X)) (mixture of Gaussians)
j=1.,2

e Any data point x could have been generated in two ways



Mixture density

e [f we are given just x we don't know which mixture
component this example came from

p(x0) = > pip(x|p;. ;)
i=1.2

e We can evaluate the posterior probability that an observed
X was generated from the first mixture component

Ply=1) pxly=1)
Zj:Lg Py =17) -p(X‘y =7)
p1p(x|p1, 1)
D> im1.0P5 P(X|pj, 2j)

P(y =1/x,0)

e [his solves a credit assignment problem



Mixture density:
posterior sampling

e Consider sampling x from the mixture density, then v from
the posterior over the components given x, and finally x’
from the component density indicated by y:

x ~ p(x]6)
y ~ P(yx,0)

/

x' ~ p(x'|y,6)

Is v a fair sample from the prior distribution ()7

Is x” a fair sample from the mixture density p(x’|#)7




Mixture density estimation

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x|0) = p1p(x|p1, ¥1) + p2 p(x|p2, ¥o)

e |f each example x; in the training set were labeled vy; =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.

e Labeled examples = no credit assignment problem



Mixture density estimation
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Mixture density estimation:
credit assignment

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior
probabilities of which Gaussian ..
generated which example:

p(jli) — P(y; = jlx;, 0
where ijl,Qﬁ(J‘ i) =1 for all

e When the Gaussians are almost identical (as in the figure),
p(1]i) ~ p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The EM algorithm

E-step: softly assign examples to mixture components

p(jli) «— P(y; = j|x;,6), forall j=1,2andi=1,...,n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

Nj Zﬁ(j\i) — Soft # of examples labeled j

1=1
Pi < o
) Tl
1 T
p;o— — > pljli)x
L%
) o
Yj p(717) (%3 — fi;)(Xs — fi;)




The EM-algorithm

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x1, ..., X,:

n p(x;]0)
logp(datalf) = > log (131 POl B1) + p2 p(Xiliiz, Eg)‘)
i=1

where 8 = {py, po, i1, i2, 21, 22} contains all the parameters
of the mixture model.
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The EM algorithm

e The EM-algorithm finds a local maximum of ((6; D)

E-step: evaluate the expected complete log-likelihood

J(6;0)) = Z B p(ilx.00) 108 (pjp(xf,uj. E?))

i=1
B Z > P(jlx:,60") log (p?p X115, w;))
=1 7=1,2

M-step: find the new parameters by maximizing the
expected complete log-likelhood

olt+1) arg max J(6;60)



Regularized EM algorithm

e To maximize a penalized (regularized) log-likelihood

I'(6:D) =Y logp(xi|0) + log p(#)
i=1

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find # that maximize a
penalized expected complete log-likelihood:

J(6:69) = D> E,_p(jix,00) 108 (pjp(xmwzj))
i=1

+ log p(p1.p2) + log p(X1) + log p(X4)

where, for example, p(p1,p2) could be a Dirichlet and each
p(X;) a Wishart prior,



Selecting the number of
components

e As a simple strategy for selecting the appropriate number
of mixture components, we can find & that minimize the
following asymptotic approximation to the description length:

- 1
DL ~ — log p(datal|f;) + %log(n)

where n is the number of training points, 0y is the maximum
likelihood parameter estimate for the k-component mixture,
and dj, is the (effective) number of parameters in the k-
mixture.




Mixture density estimation:
example




K-means clustering

Given data <x, ... x>, and K, assign each Xx; to one of K clusters,
K

C,...Co,mnimMizing ; — N N (g — 0112
Ly L 11 1

i ~j

J=1lz;eC;

Where #4; is mean over all points in cluster C,

K-Means Algorithm:

Initialize 11 - - - K randomly
Repeat until convergence:
1. Assign each point x; to the cluster with the closest mean g,

2. Calculate the new mean for each cluster




K-Means Vvs.
Mixture of Gaussians

e Both are iterative algorithms to assign points
to clusters

e Objective function :
K Means: minimize =X 2 el
MoG: maximize likelihood P(xe)

e MoG the more general formulation
Equivalent to K Means when z,--1, and o -0



Hierarchical (bottom-up)
clustering

e Hierarchical agglomerative clustering: we sequentially merge
the pair of “closest” points/clusters

e The procedure
Find two closest points (clusters) and merge them
Proceed until we have a single cluster (all the points)

e Two prerequisites:
distance measure d(xi, Xj) between two points
distance measure between clusters (cluster linkage)



Hierarchical (bottom-up)
clustering

e A linkage method: we have to be able to measure distances

between clusters of examples '}, and ()
a) Single linkage:

diy = min  d(x; X;)

b) Average linkage:

1
dpl = ———= d(x;, X
AP

c) Centroid linkage:

1
di = d(Xy. X1), X = C Z X;




Hierarchical (bottom-up)
clustering

e A dendrogram representation of hierarchical clustering
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The height of each pair represents the distance between
the merged clusters; the specific linear ordering of points is
chosen for clarity



Spectral clustering

e [he spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps
1. a nearest neighbor graph

2. similarity weights on the edges:
Wi = exp{—p||x; — x;||}

where W;; = 1 and the weight is 7
zero for non-edges.

3. transition probability matrix o}

Pij = Wi/ > Wiy 2
j !/




Properties of the random walk

e If we start from 7y, the distribution of points 7; that we end
up in after t steps is given by
W, ] .
i1~ Py i, Fi; = UT-J' where ;. = Z Wi,
(A j'

- 2
12 ~ E :Pi(),'élph io — [P ]zfo 99
Zl ) - | | | | |
2 o 3 10 |
U E E :Pi()~'i1pi1i2 1983 {P ]270 i3 ' i "#« |
Z]_ 22 i |

where P' = PP ... P (t matrix products) and [-];; denotes
the 7,7 component of the matrix.

it ~ [P

) I




Random walk and clustering

e [hedistributions of points we end up in after ¢ steps converge
as t increases. |f the graph is connected, the resulting
distribution is independent of the starting point

Even for large ¢, the transition probabilities [P];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues /vectors
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Eigenvalues/vectors and
spectral clustering

e Let I be the matrix with components W;; and D a diagonal
matrix such that D;; = Zj W;;. Then

P=D"'W

e To find out how P! behaves for large ¢ it is useful to examine
the eigen-decomposition of the following symmetric matrix

T

T

1l 1
D7 2WD72 = \z1z! + Mozozl + ...+ \2p2z

where the ordering is such that |[A{| > [Xo| > ... > |A,].



Eigenvalues/vectors cont’d

e The symmetric matrix is related to P! since
(D"*WD~%)...(D"*WD~%) = D*(P..- P)D™?

This allows us to write the ¢ step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

P! = D3 (D%WD%> D

= D~ (/\lezl + Azozd 4+ ..+ )\;znzzj D2

where Ay = 1 and



Eigenvalues/vectors and
spectral clustering

e We are interested in the largest correction to the asymptotic
limit

B =

P!~ P* 4 D7 (Agz2z§> D

Note: [ZQZ;% = 29;72; and thus the largest correction term
increases the probability of transitions between points that
share the same sign of 25, and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z-

z9j > 0 = cluster 1, otherwise cluster 0



Spectral clustering: example
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Components of the eigenvector corresponding to the second
largest eigenvalue



Reference papers of SC

e A.Y.Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:
Analysis and an algorithm, NIPS, (2001)

e Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV,
(1999)

e J. Shiand J. Malik, Normalized cuts and image segmentation, IEEE
TPAMI, 22 (2000)

e And more about image segmentations ...

e Graph cut \
EE | A

e Mean-shift



An example: ISO/BLE-charts

e |ISO-Charts:

e ISOMAP + Spectral Clustering + Stretch Minimization

e BLE-Charts:

e Statistical Embedding + Spectral Clustering + Stretch Minimization
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