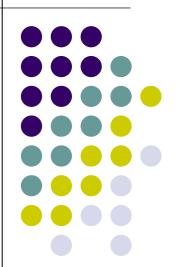
### Clustering

Dr. Zhang Hongxin State key lab of CAD&CG,ZJU 2005-06-23

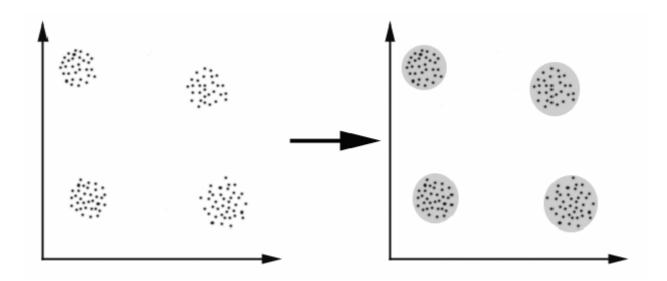


#### **Outline**

- Flat clustering
  - Mixture of Gaussians
  - K-means
- Hierarchical clustering
  - bottom-up
- Spectral based clustering
- Applications

### Clustering

- Given set of data points, group them
- Unsupervised learning
- Learn the similarity. Which patient are similar? (or customers, faces, earthquakes, ...)







#### Clustering

- Instance:  $\{\mathbf{x}_i\}_{i=1}^N$
- Learn:  $\langle \mathbf{x}_i, t_i \rangle$  and/or mapping from  $\mathbf{x}$  to  $t(\mathbf{x})$

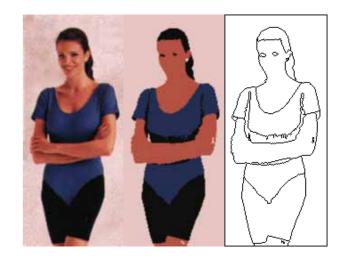
#### Classification/Regression

- Instance:  $\langle \mathbf{x}_i, t_i \rangle$
- Learn: mapping from x to t(x)

# Clustering: image segmentation



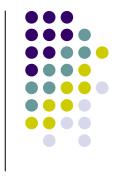






Mean-shift segmentation

#### **Mixtures of Gaussians**

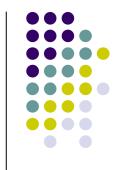


- Mixture distribution:
  - Assume P(x) is a mixture of K different Gaussians
  - Assume each data point, x, is generated by 2-step process
    - Choose one of the K Gaussians as labelz
    - Generate x according to the Gaussian  $N(\mu_z, \Sigma_z)$

$$P(\mathbf{x}) = \sum_{z=1}^{K} P(Z = z \mid \pi) N(\mathbf{x} \mid \mu_z, \Sigma_z)$$

- What object function shall we optimize?
  - Maximize data likelihood

### Mixtures of Gaussians (cont.)



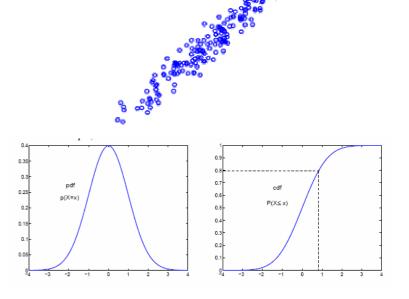
Multivariate Gaussian model

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\}$$

How to generate it?

$$F_{\mu,\sigma^2}(x) = \int_{-\infty}^x p(z|\mu,\sigma^2)dz$$
 
$$u \sim \mathsf{Uniform}(0,1) \Rightarrow x = F_{\mu,\sigma^2}^{-1}(u) \sim p(x|\mu,\sigma^2)$$

$$z_i \sim p(z_i|\mu=0, \sigma^2=1), \mathbf{z} = [z_1, \dots, z_d]^T$$
  
 $\mathbf{x} = \Sigma^{1/2}\mathbf{z} + \mu$ 



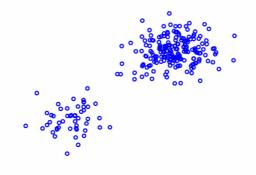




A mixture of Gaussians model

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{k} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

where  $\theta = \{p_1, \dots, p_k, \mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k\}$  contains all the parameters of the mixture model.  $\{p_j\}$  are known as mixing proportions or coefficients.



### Mixtures of Gaussians: Wishart distribution



#### A mixture of Gaussian Model:

$$p(\mathbf{x}|\theta) = \sum_{i=1}^k p_j \, p(\mathbf{x}|\mu_j, \Sigma_j) \qquad \begin{array}{l} \text{High dimensional} \\ \text{parameters} \end{array}$$
 
$$\theta = \{p_1, \dots, p_k, \mu_1, \dots, \mu_k, \underline{\Sigma_1, \dots, \Sigma_k}\}$$

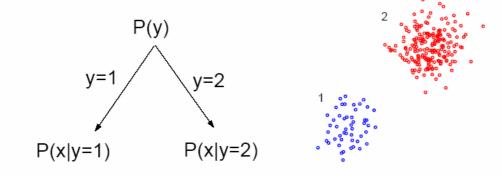
#### Wishart prior

$$\begin{split} P(\Sigma|S,n') &\propto \frac{1}{|\Sigma|^{n'/2}} \exp\left(-\frac{n'}{2} \mathrm{Trace}(\Sigma^{-1}\,S)\,\right) \\ S &= \text{ "prior" covariance matrix} \\ n' &= \text{ equivalent sample size} \end{split}$$

#### **Mixture density**



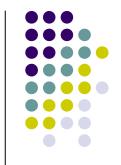
Data generation process:



$$\begin{split} p(\mathbf{x}|\theta) &= \sum_{j=1,2} P(y=j) \cdot p(\mathbf{x}|y=j) \quad \text{(generic mixture)} \\ &= \sum_{j=1,2} p_j \cdot p(\mathbf{x}|\mu_j, \Sigma_j) \quad \text{(mixture of Gaussians)} \end{split}$$

Any data point x could have been generated in two ways

### **Mixture density**



ullet If we are given just  ${f x}$  we don't know which mixture component this example came from

$$p(\mathbf{x}|\theta) = \sum_{j=1,2} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

 We can evaluate the posterior probability that an observed x was generated from the first mixture component

$$P(y = 1|\mathbf{x}, \theta) = \frac{P(y = 1) \cdot p(\mathbf{x}|y = 1)}{\sum_{j=1,2} P(y = j) \cdot p(\mathbf{x}|y = j)}$$
$$= \frac{p_1 p(\mathbf{x}|\mu_1, \Sigma_1)}{\sum_{j=1,2} p_j p(\mathbf{x}|\mu_j, \Sigma_j)}$$

This solves a credit assignment problem

# Mixture density: posterior sampling



• Consider sampling x from the mixture density, then y from the posterior over the components given x, and finally x' from the component density indicated by y:

$$\mathbf{x} \sim p(\mathbf{x}|\theta)$$
 $y \sim P(y|\mathbf{x},\theta)$ 
 $\mathbf{x}' \sim p(\mathbf{x}'|y,\theta)$ 

Is y a fair sample from the prior distribution P(y)? Is  $\mathbf{x}'$  a fair sample from the mixture density  $p(\mathbf{x}'|\theta)$ ?

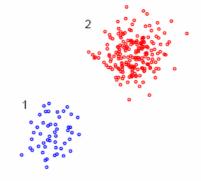
### Mixture density estimation



 Suppose we want to estimate a two component mixture of Gaussians model.

$$p(\mathbf{x}|\theta) = p_1 p(\mathbf{x}|\mu_1, \Sigma_1) + p_2 p(\mathbf{x}|\mu_2, \Sigma_2)$$

• If each example  $\mathbf{x}_i$  in the training set were labeled  $y_i = 1,2$  according to which mixture component (1 or 2) had generated it, then the estimation would be easy.

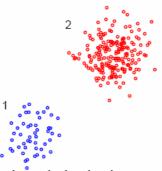


ullet Labeled examples  $\Rightarrow$  no credit assignment problem

#### Mixture density estimation



When examples are already assigned to mixture components (labeled), we can estimate each Gaussian independently



• If  $\hat{n}_j$  is the number of examples labeled j, then for each j=1,2 we set

$$\hat{p}_j \leftarrow \frac{\hat{n}_j}{n}$$

$$\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} \mathbf{x}_i$$

$$\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} (\mathbf{x}_i - \hat{\mu}_j)(\mathbf{x}_i - \hat{\mu}_j)^T$$

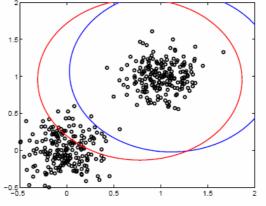
# Mixture density estimation: credit assignment



- Of course we don't have such labels ... but we can guess what the labels might be based on our current mixture distribution
- We get soft labels or posterior <sup>2</sup> probabilities of which Gaussian 1.5 generated which example:

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta)$$

where  $\sum_{j=1,2} \hat{p}(j|i) = 1$  for all  $i = 1, \dots, n$ .



• When the Gaussians are almost identical (as in the figure),  $\hat{p}(1|i) \approx \hat{p}(2|i)$  for almost any available point  $\mathbf{x}_i$ .

Even slight differences can help us determine how we should modify the Gaussians.

#### The EM algorithm



**E-step**: softly assign examples to mixture components

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta), \text{ for all } j = 1, 2 \text{ and } i = 1, \dots, n$$

**M-step**: re-estimate the parameters (separately for the two Gaussians) based on the soft assignments.

$$\hat{n}_{j} \leftarrow \sum_{i=1}^{n} \hat{p}(j|i) = \text{Soft } \# \text{ of examples labeled } j$$

$$\hat{p}_{j} \leftarrow \frac{\hat{n}_{j}}{n}$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{i}} \sum_{i=1}^{n} \hat{p}(j|i) (\mathbf{x}_{i} - \hat{\mu}_{j}) (\mathbf{x}_{i} - \hat{\mu}_{j})^{T}$$

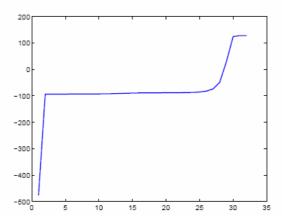
### The EM-algorithm



• Each iteration of the EM-algorithm monotonically increases the (log-)likelihood of the n training examples  $\mathbf{x}_1, \dots, \mathbf{x}_n$ :

$$\log p(\operatorname{data}|\theta) = \sum_{i=1}^{n} \log \left( \underbrace{p_1 \, p(\mathbf{x}_i | \mu_1, \Sigma_1) + p_2 \, p(\mathbf{x}_i | \mu_2, \Sigma_2)}_{p_1 \, p(\mathbf{x}_i | \mu_1, \Sigma_1) + p_2 \, p(\mathbf{x}_i | \mu_2, \Sigma_2)} \right)$$

where  $\theta = \{p_1, p_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$  contains all the parameters of the mixture model.



### The EM algorithm



• The EM-algorithm finds a local maximum of  $l(\theta; D)$ 

E-step: evaluate the expected complete log-likelihood

$$J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|\mathbf{x}_i, \theta^{(t)})} \log \left( p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1,2} P(j|\mathbf{x}_i, \theta^{(t)}) \log \left( p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right)$$

**M-step:** find the new parameters by maximizing the expected complete log-likelhood

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} J(\theta; \theta^{(t)})$$

### Regularized EM algorithm



To maximize a penalized (regularized) log-likelihood

$$l'(\theta; D) = \sum_{i=1}^{n} \log p(\mathbf{x}_i | \theta) + \log p(\theta)$$

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find  $\theta$  that maximize a penalized expected complete log-likelihood:

$$J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|\mathbf{x}_i, \theta^{(t)})} \log \left( p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right) + \log p(p_1, p_2) + \log p(\Sigma_1) + \log p(\Sigma_1)$$

where, for example,  $p(p_1, p_2)$  could be a *Dirichlet* and each  $p(\Sigma_j)$  a *Wishart* prior.

### Selecting the number of components



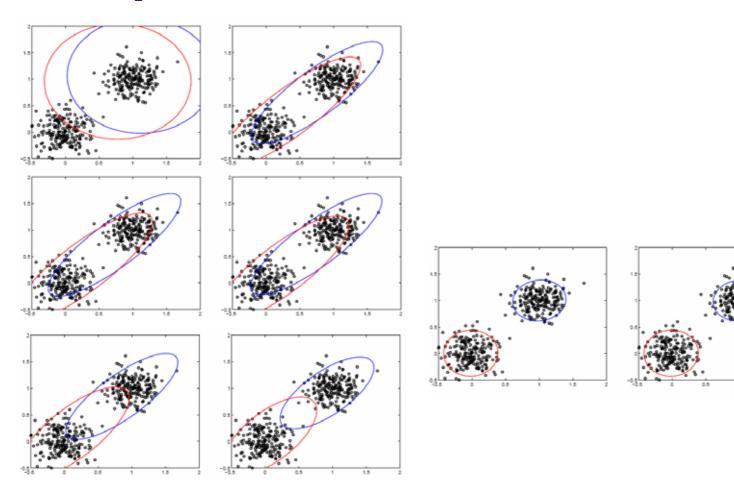
• As a simple strategy for selecting the appropriate number of mixture components, we can find k that minimize the following asymptotic approximation to the description length:

$$\mathsf{DL} pprox -\log p(\mathsf{data}|\hat{\theta}_k) + \frac{d_k}{2}\log(n)$$

where n is the number of training points,  $\hat{\theta}_k$  is the maximum likelihood parameter estimate for the k-component mixture, and  $d_k$  is the (effective) number of parameters in the k-mixture.

### Mixture density estimation: example









Given data  $\langle x_1 \dots x_n \rangle$ , and K, assign each  $x_i$  to one of K clusters,

$$C_1 \dots C_K$$
, minimizing  $J = \sum_{j=1}^K \sum_{x_i \in C_j} ||x_i - \mu_j||^2$ 

Where  $\mu_j$  is mean over all points in cluster  $C_j$ 

#### K-Means Algorithm:

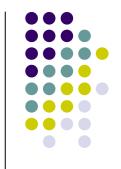
Initialize  $\mu_1 \dots \mu_K$  randomly

Repeat until convergence:

- 1. Assign each point  $x_i$  to the cluster with the closest mean  $\mu_i$
- 2. Calculate the new mean for each cluster

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

### K-Means vs. Mixture of Gaussians



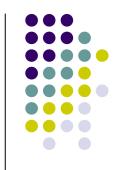
 Both are iterative algorithms to assign points to clusters

- Objective function
  - K Means: minimize
  - MoG: maximize likelihood  $P(X|\theta)$

• Equivalent to K Means when  $\Sigma_k = \sigma I$ , and

 $J = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \mu_j||^2$ 

# Hierarchical (bottom-up) clustering



- Hierarchical agglomerative clustering: we sequentially merge the pair of "closest" points/clusters
- The procedure
  - Find two closest points (clusters) and merge them
  - Proceed until we have a single cluster (all the points)
- Two prerequisites:
  - distance measure d(xi, xj) between two points
  - distance measure between clusters (cluster linkage)

### Hierarchical (bottom-up) clustering



- A linkage method: we have to be able to measure distances between clusters of examples  $C_k$  and  $C_l$ 
  - a) Single linkage:

$$d_{kl} = \min_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

b) Average linkage:

$$d_{kl} = \frac{1}{|C_l| |C_k|} \sum_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

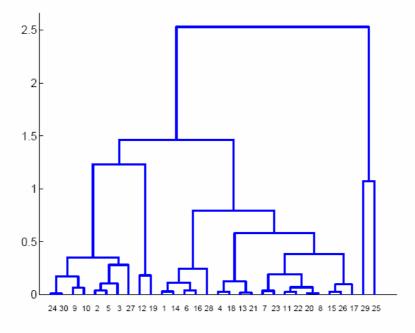
c) Centroid linkage:

$$d_{kl} = d(\bar{\mathbf{x}}_k, \bar{\mathbf{x}}_l), \quad \bar{\mathbf{x}}_l = \frac{1}{|C_l|} \sum_{i \in C_l} \mathbf{x}_i$$

# Hierarchical (bottom-up) clustering



A dendrogram representation of hierarchical clustering



The height of each pair represents the distance between the merged clusters; the specific linear ordering of points is chosen for clarity

### Spectral clustering



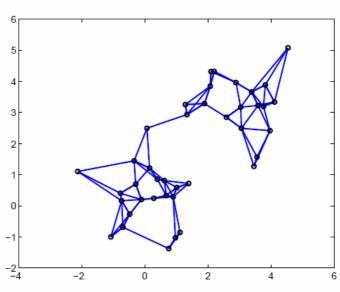
- The spectral clustering method we define relies on a random walk representation over the points. We construct this in three steps
  - 1. a nearest neighbor graph
  - 2. similarity weights on the edges:

$$W_{ij} = \exp\{-\beta \|\mathbf{x}_i - \mathbf{x}_j\|\}$$

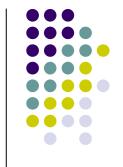
where  $W_{ii} = 1$  and the weight is zero for non-edges.

3. transition probability matrix

$$P_{ij} = W_{ij} / \sum_{j'} W_{ij'}$$



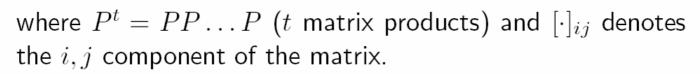
#### Properties of the random walk



• If we start from  $i_0$ , the distribution of points  $i_t$  that we end up in after t steps is given by

$$i_1 \sim P_{i_0 \, i_1}, \qquad P_{ij} = \frac{W_{ij}}{W_{i\cdot}}, \quad \text{where } W_{i\cdot} = \sum_j W_{ij}$$
  $i_2 \sim \sum_{i_1} P_{i_0, i_1} P_{i_1 \, i_2} = [P^2]_{i_0 \, i_2},$   $i_3 \sim \sum_{i_1} \sum_{i_2} P_{i_0, i_1} P_{i_1 \, i_2} P_{i_2 \, i_3} = [P^3]_{i_0 \, i_3},$ 

$$i_t \sim [P^t]_{i_0 i_t}$$

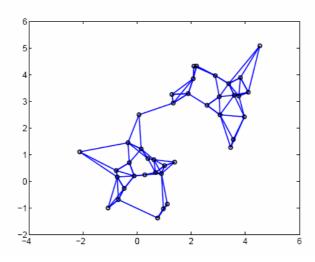






ullet The distributions of points we end up in after t steps converge as t increases. If the graph is connected, the resulting distribution is independent of the starting point

Even for large t, the transition probabilities  $[P^t]_{ij}$  have a slightly higher probability of transitioning within "clusters" than across; we want to recover this effect from eigenvalues/vectors



# Eigenvalues/vectors and spectral clustering



• Let W be the matrix with components  $W_{ij}$  and D a diagonal matrix such that  $D_{ii} = \sum_j W_{ij}$ . Then

$$P = D^{-1}W$$

ullet To find out how  $P^t$  behaves for large t it is useful to examine the eigen-decomposition of the following symmetric matrix

$$D^{-\frac{1}{2}}WD^{-\frac{1}{2}} = \lambda_1 \mathbf{z}_1 \mathbf{z}_1^T + \lambda_2 \mathbf{z}_2 \mathbf{z}_2^T + \dots + \lambda_n \mathbf{z}_n \mathbf{z}_n^T$$

where the ordering is such that  $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$ .

### Eigenvalues/vectors cont'd



ullet The symmetric matrix is related to  $P^t$  since

$$(D^{-\frac{1}{2}}WD^{-\frac{1}{2}})\cdots(D^{-\frac{1}{2}}WD^{-\frac{1}{2}}) = D^{\frac{1}{2}}(P\cdots P)D^{-\frac{1}{2}}$$

This allows us to write the t step transition probability matrix in terms of the eigenvalues/vectors of the symmetric matrix

$$P^{t} = D^{-\frac{1}{2}} \left( D^{-\frac{1}{2}} W D^{-\frac{1}{2}} \right)^{t} D^{\frac{1}{2}}$$

$$= D^{-\frac{1}{2}} \left( \lambda_{1}^{t} \mathbf{z}_{1} \mathbf{z}_{1}^{T} + \lambda_{2}^{t} \mathbf{z}_{2} \mathbf{z}_{2}^{T} + \dots + \lambda_{n}^{t} \mathbf{z}_{n} \mathbf{z}_{n}^{T} \right) D^{\frac{1}{2}}$$

where  $\lambda_1 = 1$  and

$$P^{\infty} = D^{-\frac{1}{2}} \left( \mathbf{z}_1 \mathbf{z}_1^T \right) D^{\frac{1}{2}}$$

# Eigenvalues/vectors and spectral clustering



 We are interested in the largest correction to the asymptotic limit

$$P^t \approx P^\infty + D^{-\frac{1}{2}} \left( \lambda_2^t \mathbf{z}_2 \mathbf{z}_2^T \right) D^{\frac{1}{2}}$$

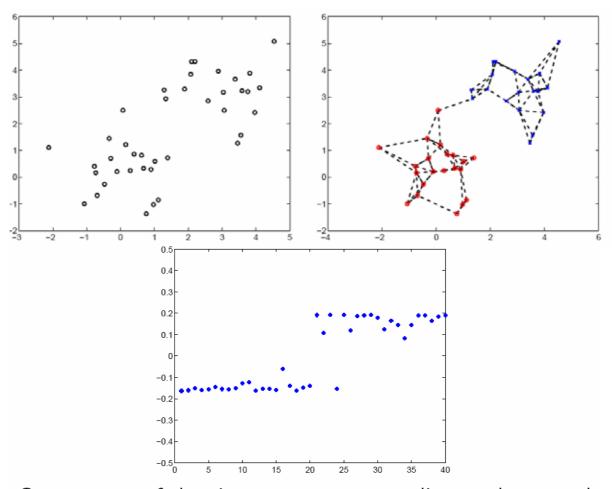
Note:  $[\mathbf{z}_2\mathbf{z}_2^T]_{ij} = z_{2i}z_{2j}$  and thus the largest correction term increases the probability of transitions between points that share the same sign of  $z_{2i}$  and decreases transitions across points with different signs

• Binary spectral clustering: we divide the points into clusters based on the sign of the elements of  $\mathbf{z}_2$ 

$$z_{2j} > 0 \Rightarrow$$
 cluster 1, otherwise cluster 0

### Spectral clustering: example





Components of the eigenvector corresponding to the second largest eigenvalue

#### Reference papers of SC

- A. Y. Ng, M. I. Jordan, and Y. Weiss, *On spectral clustering:* Analysis and an algorithm, NIPS, (2001)
- Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV, (1999)
- J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE TPAMI, 22 (2000)
- And more about image segmentations ...
  - Graph cut
  - Mean-shift











#### An example: ISO/BLE-charts



- ISO-Charts:
  - ISOMAP + Spectral Clustering + Stretch Minimization
- BLE-Charts:

Statistical Embedding + Spectral Clustering + Stretch Minimization



