Outline

- Flat clustering
 - Mixture of Gaussians
 - K-means
- Hierarchical clustering
 - bottom-up
- Spectral based clustering
- Applications
Clustering

- Given set of data points, group them
- Unsupervised learning
- Learn the similarity. Which patient are similar? (or customers, faces, earthquakes, …)
Clustering vs. Classification

- **Clustering**
 - **Instance:** $\{x_i\}_{i=1}^N$
 - **Learn:** $<x_i, t_i>$ and/or mapping from x to $t(x)$

- **Classification/Regression**
 - **Instance:** $<x_i, t_i>$
 - **Learn:** mapping from x to $t(x)$
Clustering: image segmentation

Mean-shift segmentation
Mixtures of Gaussians

- Mixture distribution:
 - Assume $P(x)$ is a mixture of K different Gaussians
 - Assume each data point, x, is generated by 2-step process
 - Choose one of the K Gaussians as label z
 - Generate x according to the Gaussian $N(\mu_z, \Sigma_z)$

$$P(x) = \sum_{z=1}^{K} P(Z = z \mid \pi) N(x \mid \mu_z, \Sigma_z)$$

- What object function shall we optimize?
 - Maximize data likelihood
Mixtures of Gaussians (cont.)

- Multivariate Gaussian model

\[p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- How to generate it?

\[F_{\mu, \sigma^2}(x) = \int_{-\infty}^{x} p(z|\mu, \sigma^2) dz \]

\[u \sim \text{Uniform}(0, 1) \Rightarrow x = F_{\mu, \sigma^2}^{-1}(u) \sim p(x|\mu, \sigma^2) \]

\[z_i \sim p(z_i|\mu = 0, \sigma^2 = 1), \; z = [z_1, \ldots, z_d]^T \]

\[x = \Sigma^{1/2} z + \mu \]
Multi-variate density estimation

- A mixture of Gaussians model

\[p(x|\theta) = \sum_{i=1}^{k} p_j p(x|\mu_j, \Sigma_j) \]

where \(\theta = \{p_1, \ldots, p_k, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k\} \) contains all the parameters of the mixture model. \(\{p_j\} \) are known as mixing proportions or coefficients.
Mixtures of Gaussians: Wishart distribution

- A mixture of Gaussian Model:

\[
p(x|\theta) = \sum_{i=1}^{k} p_j p(x|\mu_j, \Sigma_j)
\]

\[
\theta = \{p_1, \ldots, p_k, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k\}
\]

- Wishart prior

\[
P(\Sigma|S, n') \propto \frac{1}{\det(\Sigma)^{n'/2}} \exp\left(-\frac{n'}{2}\text{Trace}(\Sigma^{-1} S)\right)
\]

\(S\) = “prior” covariance matrix

\(n'\) = equivalent sample size
Mixture density

- Data generation process:

\[
p(x|\theta) = \sum_{j=1,2} P(y = j) \cdot p(x|y = j) \quad \text{(generic mixture)}
\]

\[
= \sum_{j=1,2} p_j \cdot p(x|\mu_j, \Sigma_j) \quad \text{(mixture of Gaussians)}
\]

- Any data point \(x \) could have been generated in two ways
Mixture density

- If we are given just \(x \) we don’t know which mixture component this example came from

\[
p(x|\theta) = \sum_{j=1,2} p_j p(x|\mu_j, \Sigma_j)
\]

- We can evaluate the posterior probability that an observed \(x \) was generated from the first mixture component

\[
P(y = 1|x, \theta) = \frac{P(y = 1) \cdot p(x|y = 1)}{\sum_{j=1,2} P(y = j) \cdot p(x|y = j)}
= \frac{p_1 p(x|\mu_1, \Sigma_1)}{\sum_{j=1,2} p_j p(x|\mu_j, \Sigma_j)}
\]

- This solves a credit assignment problem
Consider sampling x from the mixture density, then y from the posterior over the components given x, and finally x' from the component density indicated by y:

\[
\begin{align*}
x & \sim p(x|\theta) \\
y & \sim P(y|x, \theta) \\
x' & \sim p(x'|y, \theta)
\end{align*}
\]

Is y a fair sample from the prior distribution $P(y)$?
Is x' a fair sample from the mixture density $p(x'|\theta)$?
Mixture density estimation

- Suppose we want to estimate a two component mixture of Gaussians model.

\[p(x|\theta) = p_1 p(x|\mu_1, \Sigma_1) + p_2 p(x|\mu_2, \Sigma_2) \]

- If each example \(x_i \) in the training set were labeled \(y_i = 1, 2 \) according to which mixture component (1 or 2) had generated it, then the estimation would be easy.

- Labeled examples \(\Rightarrow \) no credit assignment problem
Mixture density estimation

When examples are already assigned to mixture components (labeled), we can estimate each Gaussian independently.

- If \hat{n}_j is the number of examples labeled j, then for each $j = 1, 2$ we set

$$\hat{p}_j \leftarrow \frac{\hat{n}_j}{n}$$

$$\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} x_i$$

$$\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^T$$
Mixture density estimation:
credit assignment

- Of course we don’t have such labels … but we can guess what the labels might be based on our current mixture distribution.

- We get soft labels or posterior probabilities of which Gaussian generated which example:

 \[\hat{p}(j|i) \leftarrow P(y_i = j|x_i, \theta) \]

 where \[\sum_{j=1,2} \hat{p}(j|i) = 1 \] for all \[i = 1, \ldots, n. \]

- When the Gaussians are almost identical (as in the figure), \[\hat{p}(1|i) \approx \hat{p}(2|i) \] for almost any available point \(x_i \).

 Even slight differences can help us determine how we should modify the Gaussians.
The EM algorithm

E-step: softly assign examples to mixture components
\[\hat{p}(j|i) \leftarrow P(y_i = j|x_i, \theta), \quad \text{for all } j = 1, 2 \text{ and } i = 1, \ldots, n \]

M-step: re-estimate the parameters (separately for the two Gaussians) based on the soft assignments.

\[\hat{n}_j \leftarrow \sum_{i=1}^{n} \hat{p}(j|i) = \text{Soft \# of examples labeled } j \]

\[\hat{p}_j \leftarrow \frac{\hat{n}_j}{n} \]

\[\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^{n} \hat{p}(j|i) x_i \]

\[\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i=1}^{n} \hat{p}(j|i) (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^T \]
The EM-algorithm

- Each iteration of the EM-algorithm \textit{monotonically} increases the (log-)likelihood of the n training examples x_1, \ldots, x_n:

$$
\log p(\text{data} | \theta) = \sum_{i=1}^{n} \log \left(\frac{p(x_i | \theta)}{p_1 p(x_i | \mu_1, \Sigma_1) + p_2 p(x_i | \mu_2, \Sigma_2)} \right)
$$

where $\theta = \{p_1, p_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ contains all the parameters of the mixture model.
The EM algorithm

- The EM-algorithm finds a local maximum of $l(\theta; D)$

E-step: evaluate the expected complete log-likelihood

$$J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|x_i, \theta^{(t)})} \log \left(p_j p(x_i | \mu_j, \Sigma_j) \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1,2} P(j| x_i, \theta^{(t)}) \log \left(p_j p(x_i | \mu_j, \Sigma_j) \right)$$

M-step: find the new parameters by maximizing the expected complete log-likelihood

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} J(\theta; \theta^{(t)})$$
Regularized EM algorithm

- To maximize a penalized (regularized) log-likelihood

\[l'(\theta; D) = \sum_{i=1}^{n} \log p(x_i|\theta) + \log p(\theta) \]

we only need to modify the M-step of the EM-algorithm. Specifically, in the M-step, we find \(\theta \) that maximize a penalized expected complete log-likelihood:

\[J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|x_i, \theta^{(t)})} \log \left(p_j p(x_i|\mu_j, \Sigma_j) \right) \]
\[+ \log p(p_1, p_2) + \log p(\Sigma_1) + \log p(\Sigma_1) \]

where, for example, \(p(p_1, p_2) \) could be a Dirichlet and each \(p(\Sigma_j) \) a Wishart prior.
Selecting the number of components

- As a simple strategy for selecting the appropriate number of mixture components, we can find k that minimize the following asymptotic approximation to the description length:

$$DL \approx -\log p(\text{data}|\hat{\theta}_k) + \frac{d_k}{2} \log(n)$$

where n is the number of training points, $\hat{\theta}_k$ is the maximum likelihood parameter estimate for the k-component mixture, and d_k is the (effective) number of parameters in the k-mixture.
Mixture density estimation: example
K-means clustering

Given data \(\langle x_1 \ldots x_n \rangle \), and K, assign each \(x_i \) to one of K clusters, \(C_1 \ldots C_K \), minimizing

\[
J = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \mu_j||^2
\]

Where \(\mu_j \) is mean over all points in cluster \(C_j \).

K-Means Algorithm:

1. Initialize \(\mu_1 \ldots \mu_K \) randomly
2. Repeat until convergence:
 1. Assign each point \(x_i \) to the cluster with the closest mean \(\mu_j \)
 2. Calculate the new mean for each cluster
 \[
 \mu_j \leftarrow \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i
 \]
K-Means vs. Mixture of Gaussians

- Both are iterative algorithms to assign points to clusters

- Objective function
 - K Means: minimize
 - MoG: maximize likelihood

- MoG the more general formulation
 - Equivalent to K Means when $\Sigma_k = \sigma I$, and $\sigma \to 0$
Hierarchical (bottom-up) clustering

- Hierarchical agglomerative clustering: we sequentially merge the pair of “closest” points/clusters

- The procedure
 1. Find two closest points (clusters) and merge them
 2. Proceed until we have a single cluster (all the points)

- Two prerequisites:
 1. distance measure $d(x_i, x_j)$ between two points
 2. distance measure between clusters (cluster linkage)
Hierarchical (bottom-up) clustering

- A *linkage* method: we have to be able to measure distances between clusters of examples C_k and C_l

a) Single linkage:

$$d_{kl} = \min_{i \in C_k, j \in C_l} d(x_i, x_j)$$

b) Average linkage:

$$d_{kl} = \frac{1}{|C_l||C_k|} \sum_{i \in C_k, j \in C_l} d(x_i, x_j)$$

c) Centroid linkage:

$$d_{kl} = d(\bar{x}_k, \bar{x}_l), \quad \bar{x}_l = \frac{1}{|C_l|} \sum_{i \in C_l} x_i$$
Hierarchical (bottom-up) clustering

- A dendrogram representation of hierarchical clustering

The height of each pair represents the distance between the merged clusters; the specific linear ordering of points is chosen for clarity.
Spectral clustering

- The spectral clustering method we define relies on a random walk representation over the points. We construct this in three steps:
 1. a nearest neighbor graph
 2. similarity weights on the edges:
 \[W_{ij} = \exp\{-\beta \|x_i - x_j\|\} \]
 where \(W_{ii} = 1 \) and the weight is zero for non-edges.
 3. transition probability matrix
 \[P_{ij} = \frac{W_{ij}}{\sum_{j'} W_{ij'}} \]
Properties of the random walk

- If we start from \(i_0 \), the distribution of points \(i_t \) that we end up in after \(t \) steps is given by

\[
\begin{align*}
 i_1 & \sim \pi_{i_0 i_1}, \\
 i_2 & \sim \sum_{i_1} \pi_{i_0 i_1} \pi_{i_1 i_2} = [P^2]_{i_0 i_2}, \\
 i_3 & \sim \sum_{i_1} \sum_{i_2} \pi_{i_0 i_1} \pi_{i_1 i_2} \pi_{i_2 i_3} = [P^3]_{i_0 i_3}, \\
 & \vdots \\
 i_t & \sim [P^t]_{i_0 i_t}
\end{align*}
\]

where \(P^t = PP \ldots P \) (\(t \) matrix products) and \([\cdot]_{ij}\) denotes the \(i, j \) component of the matrix.
Random walk and clustering

- The distributions of points we end up in after \(t \) steps converge as \(t \) increases. If the graph is connected, the resulting distribution is independent of the starting point.

Even for large \(t \), the transition probabilities \([P^t]_{ij} \) have a slightly higher probability of transitioning within “clusters” than across; we want to recover this effect from eigenvalues/vectors.
Eigenvalues/vectors and spectral clustering

- Let W be the matrix with components W_{ij} and D a diagonal matrix such that $D_{ii} = \sum_j W_{ij}$. Then
 \[P = D^{-1}W \]

- To find out how P^t behaves for large t it is useful to examine the eigen-decomposition of the following symmetric matrix
 \[D^{-\frac{1}{2}}WD^{-\frac{1}{2}} = \lambda_1 z_1 z_1^T + \lambda_2 z_2 z_2^T + \ldots + \lambda_n z_n z_n^T \]
 where the ordering is such that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.
Eigenvalues/vectors cont’d

- The symmetric matrix is related to P^t since

$$
(D^{-rac{1}{2}}WD^{-rac{1}{2}}) \cdots (D^{-rac{1}{2}}WD^{-rac{1}{2}}) = D^{rac{1}{2}} (P \cdots P) D^{-rac{1}{2}}
$$

This allows us to write the t step transition probability matrix in terms of the eigenvalues/vectors of the symmetric matrix

$$
P^t = D^{-rac{1}{2}} \left(D^{-rac{1}{2}}WD^{-rac{1}{2}} \right)^t D^{rac{1}{2}}
$$

$$
= D^{-rac{1}{2}} \left(\lambda_1^t z_1 z_1^T + \lambda_2^t z_2 z_2^T + \ldots + \lambda_n^t z_n z_n^T \right) D^{rac{1}{2}}
$$

where $\lambda_1 = 1$ and

$$
P^\infty = D^{-rac{1}{2}} \left(z_1 z_1^T \right) D^{rac{1}{2}}$$
Eigenvalues/vectors and spectral clustering

- We are interested in the largest correction to the asymptotic limit

\[P^t \approx P^\infty + D^{-\frac{1}{2}} \left(\lambda_2^t \mathbf{z}_2 \mathbf{z}_2^T \right) D^{\frac{1}{2}} \]

Note: \([\mathbf{z}_2 \mathbf{z}_2^T]_{ij} = \mathbb{z}_{2i} \mathbb{z}_{2j} \) and thus the largest correction term increases the probability of transitions between points that share the same sign of \(\mathbb{z}_{2i} \) and decreases transitions across points with different signs.

- Binary spectral clustering: we divide the points into clusters based on the sign of the elements of \(\mathbf{z}_2 \)

\[\mathbb{z}_{2j} > 0 \Rightarrow \text{cluster 1}, \text{otherwise cluster 0} \]
Spectral clustering: example

Components of the eigenvector corresponding to the second largest eigenvalue
Reference papers of SC

- And more about image segmentations …
 - Graph cut
 - Mean-shift
An example: ISO/BLE-charts

- **ISO-Charts:**
 - ISOMAP + Spectral Clustering + Stretch Minimization

- **BLE-Charts:**
 - Statistical Embedding + Spectral Clustering + Stretch Minimization