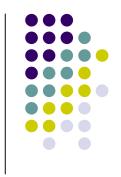

Concept Learning

By Zhang Hongxin and Xu Dong State Key Lab of CAD&CG, ZJU 2005-06-09



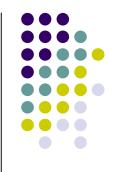
Overview

- Introduction
- Perspective
- Algorithms
- Remarks
- Inductive Bias
- Conclusions

Introduction

- What is concept learning?
 - Induce Boolean function from a sample of positive/negative training examples.
- Concept learning in daily life
 - 根据人证物证判断犯罪嫌疑人是否有罪
 - 根据笔试面试决定是否录用
 - Any more ?

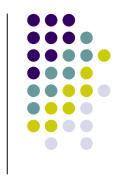
A Demo Task – EnjoySport


• Given:

- Instances X: Possible days, each described by the attributes
 - Sky (Sunny, Cloudy, and Rainy)
 - Temp (Warm and Cold)
 - Humidity (Normal and High)
 - Wind (Strong and Weak)
 - Water (Warm and Cool)
 - Forecast (Same and Change)
- Hypotheses H: Each hypothesis is described by a conjunction of constraints. These constraints may be "?" (any value), "0" (no value), or a specific value.

Determine:

• A hypothesis h in **H** such that h(x) = c(x) for all x in **X**.


ID	Sky	Temp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

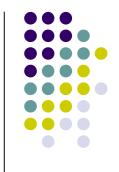
The Inductive Learning Hypothesis

- Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.
- 根据已知推断未知,假定已知满足某种规律

Perspective

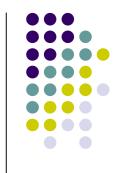
- Concept learning can be formulated as a searching - through a predefined space of potential hypotheses for the hypothesis that best fits the training examples.
- General-to-specific ordering

$$h_j \ge_g h_k \longleftrightarrow (\forall x \in X)[(h_k(x) = 1) \to (h_j(x) = 1)]$$


- Example : <Sunny,?,?,?,?,> >= <Sunny,?,?,Strong,?,?>
- Introduce a hierarchy structure into hypotheses space, which leads to efficient searching strategy.

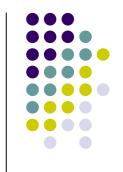
Algorithm	Order	Strategy	N/P	
FIND-S	Specific-to- general	Top-down	Positive	
LIST-THEN- ELIMINATE	General-to- Specific	Bottom-up	Negative	
CANDIDATE- ELIMINATION	Bi-directional	Bi-directional	Both	

FIND-S


- h0 = <0, 0, 0, 0, 0>
- h1 = <Sunny, Warm, Normal, Strong, Warm, Same>
- h2 = <Sunny, Warm, ?, Strong, Warm, Same>
- h3 = <Sunny, Warm, ?, Strong, Warm, Same>
- h4 = <Sunny, Warm, ?, Strong, ?, ?>

Training examples:

- <a> < Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = **Yes**
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes
- 3. <Rainy, Cold, High, Strong, Warm, Change>, Enjoy Sport = No
- 4. <Sunny, Warm, High, Strong, Cool, Change>, Enjoy Sport = Yes


Report the *most specific* hypothesis

LIST-THEN-ELIMINATE

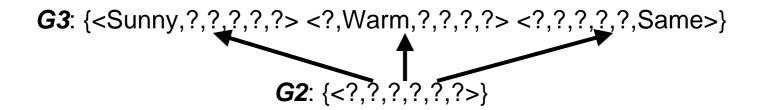
Report the *most general* hypothesis

CANDIDATE-ELIMINATION (1)

S1: {<Sunny, Warm, Normal, Strong, Warm, Same>}

S2: {<Sunny, Warm, ?, Strong, Warm, Same>}

G0, G1, G2: {<?, ?, ?, ?, ?, ?>}


Training examples:

- <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = **Yes**
- <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = **Yes**

\$2,\$3: {<Sunny, Warm, ?, Strong, Warm, Same>}

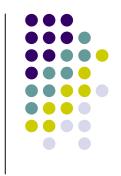
Training examples:

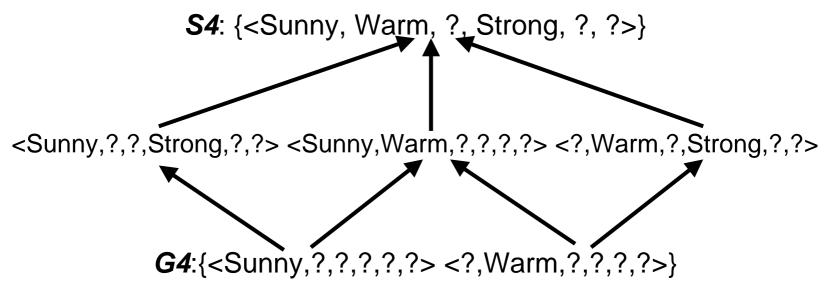
3. <Rainy, Cold, High, Strong, Warm, Change>, Enjoy Sport = *No*

CANDIDATE-ELIMINATION (3)

S3: {<Sunny, Warm, ?, Strong, Warm, Same>}

S4: {<Sunny, Warm, ?, Strong, ?, ?>}


G4:{<Sunny,?,?,?,?,?,<


G3:{<Sunny,?,?,?,?,><?,Warm,?,?,?,?><?,?,?,?,Same>

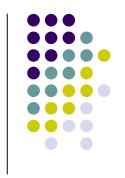
Training examples:

4. <Sunny, Warm, High, Strong, Cool, Change>, Enjoy Sport = **Yes**

Report the *version space* – all possible hypotheses

<Sunny,Warm,Normal,Strong,Cool,Change>
<Rainy,Cold,Normal,Light,Warm,Same>
<Sunny,Warm,Normal,Light,Warm,Same>
<Sunny,Cold,Normal,strong,Warm,Same>

Remarks


- Convergence Condition
 - Noise Free (No Errors)
 - The target concept **DOES** exist in the searching hypotheses space *H*
- What Training Example Should the Learner Request Next?
 - Satisfy half the hypotheses in the current version space
 - Fastest Convergence, Least Sample Needed, Best Uncertainty Elimination
- How Can Partially Learned Concepts Be Used?
 - Absolutely Accept <Sunny, Warm, Normal, Strong, Cool, Change>
 - Absolutely Deny <Rainy,Cold,Normal,Light,Warm,Same>
 - Pending
 - <Sunny,Warm,Normal,Light,Warm,Same>
 - <Sunny,Cold,Normal,strong,Warm,Same>

Inductive Bias

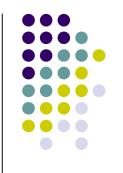
Bias Vs. Unbiase

- The Futility of Bias-Free Learning
 - Too large searching space
 - The convergence is impossible
 - Rational inference is impossible
- Inductive bias of CANDIDATE-ELIMINATION algorithm
 - The target concept c is contained in the given hypothesis space
 H.
 - Inductive System == Deductive System + Inductive Bias

Summary

- Concept learning can be cast as Searching through predefined hypotheses space.
- The general-to-specific partial ordering of hypotheses leads to efficient searching strategy, such as CANDIDATE-ELIMINATION algorithm.
- A practical concept learning methods must employ inductive bias. Otherwise, they can only classify the observed training examples.
- Version spaces and the CANDIDATE-ELIMINATION algorithm provide a useful *conceptual framework* for studying concept learning. However, their correctness rely on the noise-free training examples and the ability of provided hypotheses space to express the unknown target concepts.

EnjoySport revisit


Given:

- Instances X: Possible days, each described by the attributes
 - Sky (Sunny, Cloudy, and Rainy)
 - Temp (Warm and Cold)
 - Humidity (Normal and High)
 - Wind (Strong and Weak)
 - Water (Warm and Cool)
 - Forecast (Same and Change)
- Hypotheses H: Each hypothesis is described by a conjunction of constraints. These constraints may be "?" (any value), "0" (no value), or a specific value.

Determine:

• A hypothesis h in **H** such that h(x) = c(x) for all x in **X**.

 Machine Learning, Chapter 2. <u>Tom</u> <u>Mitchell</u>, McGraw Hill, 1997.