Introduction to Solid Modeling

Hongxin Zhang and Jieqing Feng

2007-01-15

State Key Lab of CAD\&CG
Zhejiang University

Contents

- Solid Representations: An Introduction
- Wireframe Models
- Boundary Representations
- Manifolds
- The Winged-Edge Data Structure
- The Euler-Poincaré Formula
- Euler Operators
- Constructive Solid Geometry
- Interior, Exterior and Closure
- Regularized Boolean Operators
- CSG Design Examples

Solid Representations

- Solid Model: geometric object with interior, such as cube, piston engine
- Solid representation: describe the geometry and characteristics completely

What is a good solid representation?

Requirements for Solid Representation

- Domain
- Unambiguity
- Uniqueness
- Accuracy
- Validness
- Closure
- Compactness and Efficiency

Requirements for Solid Representation

- Domain

While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects.

- Unambiguity

When you see a representation of a solid, you will know what is being represented without any doubt. An unambiguous representation is usually referred to as a complete one.

Requirements for Solid Representation

- Uniqueness

That is, there is only one way to represent a particular solid. If a representation is unique, then it is easy to determine if two solids are identical since one can just compare their representations.

- Accuracy

A representation is said accurate if no approximation is required.

Requirements for Solid Representation

- Validness

This means a representation should not create any invalid or impossible solids. More precisely, a representation will not represent an object that does not correspond to a solid.

- Closure

Solids will be transformed and used with other operations such as union and intersection. "Closure" means that transforming a valid solid always yields a valid solid

Requirements for Solid Representation

- Compactness and Efficiency

A good representation should be compact enough for saving space and allow for efficient algorithms to determine desired physical characteristics

About Solid Representations

- Designing representations for solids is a difficult job
- The requirements may be contradictory with each other
- Compromises are often necessary
- Three classical representations
- Wireframes
- Boundary Representations (B-Rep)
- Constructive Solid Geometry (CSG)

Wireframe Models

- Wireframe model consists of two tables
- Vertex table: vertices and their coordinate values
- Edge table: two incident vertices of edges
- A wireframe model does not have face information

Example of Wireframe Model

Vertex Table			
Vertex \#	x	y	z
1	1	1	1
2	1	-1	1
3	-1	-1	1
4	-1	1	1
5	1	1	-1
6	1	-1	-1
7	-1	-1	-1
8	-1	1	-1

Edge Table		
Edge \#	Start Vertex	End Vertex
1	1	2
2	2	3
3	3	4
4	4	1
5	5	6
6	6	7
7	7	8
8	8	5
9	1	5
10	2	6
11	3	7
12	4	8

State Key Lab of CAD\&CG

Example of Wireframe Model

Wireframe model described by previous tables

Wireframe model with curve edges

Wireframe Models Are Ambiguous

- Examples: 16 vertices and 32 edges

All interpretations are right!

Application of Wireframe Models

- Preview the complex solid models
- Shading is time-consuming
- provide a general feeling of the final result

Boundary Representations

- Boundary Representation, or B-rep
- Extension to the wireframe model by adding face information
- A solid is bounded by its surface and has its interior and exterior

Boundary Representations

- Two types of information in B-rep
- Topological information:
- relationships among vertices, edges and faces
- orientation of edges and faces
- Geometric information:
- equations of the edges and faces

Boundary Representations

- Orientation of face is important
- Count Clockwise: normal points to the exterior of model
- Faces
- Orientable
- Non-orientable

Manifolds (Review)

- Manifold Solid Modeling
- The surface of a solid is 2-D manifold
- 2-D manifold
- For each point x on the surface, there exists an open ball with center x and sufficiently small radius, so that the intersection of this ball and the surface can be continuously deformed to an open disk
- Open ball: $x^{2}+y^{2}+z^{2}<r^{2}$
- Non-manifold Solid Modeling

Example of 2-D manifold

\uparrow

The Winged-Edge Data Structure

- The winged-edge data structure uses edges to keep track all information in the solid model

The Winged-Edge Data Structure

- In the following example, assuming
- No hole in the face (can be extended later)
- Edges and faces are line segments and polygons (extended to curves and surfaces)
- Description
- Vertices \rightarrow upper cases (A, B, C)
- Edges \rightarrow lower cases (a, b, c)
- Faces \rightarrow digits $(1,2,3)$

The Winged-Edge Data Structure

- Edge: a
- Two incident vertices: X and Y
- Two incident faces: 2 (left) and 1 (right) in case a=XY
- Face: 1
- Three ordered edges: a, c, b
- Edge: a
- In face 1: $X \rightarrow Y$
- In face 2: $Y \rightarrow X$

What information is important?

The Winged-Edge Data Structure

- Vertices of this edge
- Its left and right faces
- The predecessor and successor of this edge when traversing its left face, and
- The predecessor and successor of this edge when traversing its right face

Edge Table

- Edge name
- Start vertex and end vertex
- Left face and right face
- The predecessor and successor edges when traversing its left face
- the predecessor and successor edges when traversing its right face

Edge Table

Edge	Vertices		Faces		Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
a	X	Y	1	2	b	d	e	c

Winged edge a: b, c, d, e are the wings of edge a!

Complete Edge Tables

Edge	Vertices		Faces		Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
a	A	D	3	1	e	f	b	c
b	A	B	1	4	c	a	f	d
c	B	D	1	2	a	b	d	e
d	B	C	2	4	e	c	b	f
e	C	D	2	3	c	d	f	a
f	A	C	4	3	d	b	a	e

Other Tables

- Vertex table: an edge incidents to this vertex
- Face Table: an face contains this edge

Vertex Name	Incident Edge
A	a
B	b
C	d
D	e

Face Name	Incident Edge
1	a
2	c
3	a
4	b

These tables are not unique!

The Adjacency Relation

- The Adjacency Relation
- From edge \rightarrow vertex, face, edge ?
- From face \rightarrow vertex, edge, face?
- From vertex \rightarrow edge, face, vertex ?
- The Winged Edge data structure can accomplish these queries efficiently!

Face with Holes

Two solutions

1. Introducing loops: reverse direction of face edge order

2. Introducing auxiliary edges:

- Identify the auxiliary edges: its left and right faces are same

个

The Euler-Poincaré Formula

- Euler-Poincaré Formula can be used for check the validness of a solid
- A more elaborate formula: for potholes and penetrated holes

$$
V-E+F-(L-F)-2(S-G)=0
$$

V-E+F-(L-F)-2(S-G)=0

- \mathbf{V} : the number of vertices
- E : the number of edges
- F: the number of faces
- G: the number of penetrated holes (genus)
- S : the number of shells
- A shell is bounded by a 2-manifold surface, which can have its own genus value
- The solid itself is counted as a shell
- L : the number of all outer and inner loops

Examples (1)

- A cube: eight vertices (V=8), 12 edges (\mathbf{E} $=12$) and six faces ($\mathbf{F}=6$), no holes and one shell ($\mathbf{S = 1}$); $\mathbf{L}=\mathbf{F}$ (each face has only one outer loop)

$$
\begin{aligned}
& V-E+F-(L-F)-2(S-G) \\
= & 8-12+6-(6-6)-2(1-0) \\
= & 0
\end{aligned}
$$

Examples (2)

- 16 vertices, 24 edges, 11 faces, no holes, 1 shell and 12 loops (11 faces + one inner loop on the top face)

$$
\begin{aligned}
& V-E+F-(L-F)-2(S-G) \\
= & 16-24+11-(12-11)-2(1-0) \\
= & 0
\end{aligned}
$$

Examples (3)

- 16 vertices, 24 edges, 10 faces, 1 hole (i.e., genus is 1), 1 shell and 12 loops (10 faces +2 inner loops on top and bottom faces)

$$
\begin{aligned}
& V-E+F-(L-F)-2(S-G) \\
= & 16-24+10-(12-10)-2(1-1) \\
= & 0
\end{aligned}
$$

Examples (4)

The following solid has a penetrating hole and an internal cubic chamber as shown by the right cut-away figure. It has 24 vertices, $12 * 3$ (cubes) $=36$ edges, $6 \star 3$ (cubes) -2 (top and bottom openings) $=16$ faces, 1 hole (i.e., genus is 1), 2 shells and 18 loops (16 faces +2 inner loops on top and bottom faces)

$$
\begin{aligned}
& V-E+F-(L-F)-2(S-G) \\
= & 24-36+16-(18-16)-2(2-1) \\
= & 0
\end{aligned}
$$

Examples (4)

The following solid has two penetrating holes and no internal chamber as shown by the right cut-away figure. It has 24 vertices, 36 edges, 14 faces, 2 hole (i.e., genus is 2), 1 shells and 18 loops (14 faces +4)

$$
\begin{aligned}
& V-E+F-(L-F)-2(S-G) \\
= & 24-36+14-(18-14)-2(1-2) \\
= & 0
\end{aligned}
$$

The Euler-Poincaré Formula

- Topological information and geometric information should be consistent
- Checking validness of solid by Euler-Poincaré formula
- If the value of Euler-Poincaré formula is non-zero, the representation is definitely not a valid solid
- the value of the Euler-Poincaré formula being zero does not guarantee the representation would yield a valid solid

10 vertices, 15 edges, 7 faces, 1 shell and no hole
V-E+F-(L-F)-2(S-G) = 10-15+7-(7-7)-2(1-0)=0

Count Genus Correctly

- The Euler-Poincaré Formula describes the topological property amount vertices, edges, faces, loops, shells and genus
- Any topological transformation applied to the model will not alter this relationship

Sphere Punched by Three Tunnels

Euler Operators

- Euler Operators: modification of solid model while keeping the Euler-Poincaré formula tenable
V-E+F-(L-F)-2(S-G)=0
- There are two groups of such operators
* the Make group: M
* the Kill group: K

Euler Operators

- Euler operators are written as:
- Mxyz: x, y, z are vertex, edge, face, loop, shell and genus, e.g., MEV—adding an edge and a vertex
- Kxyz: similar
- Euler operators form a complete set of modeling primitives for manifold solids (Mantyla) \leftrightarrows Every topologically valid polyhedron can be constructed from an initial polyhedron by a finite sequence of Euler operations

The Make Group of Euler Operators

- Adding some elements into the existing model creating a new one: V-E+F-(L-F)-2(S-G)=0

Operator Name	Meaning	V	E	F	L	S	G
MEV	Make an edge and a vertex	+1	+1				
MFE	Make a face and an edge		+1	+1	+1		
MSFV	Make a shell, a face and a vertex	+1		+1	+1	+1	
MSG	Make a shell and a hole					+1	+1
MEKL	Make an edge and kill a loop		+1		-1		

Note: adding a face produces a loop, the outer loop of that face

Example: construct a tetrahedron

Operator Name	Meaning	V	E	F	L	S	G	Result
MSFV	Make a shell, a face and a vertex	+1		+1	+1	+1		
MEV	Make an edge and a vertex	+1	+1					
MEV	Make an edge and a vertex	+1	+1					
MEV	Make an edge and a vertex	+1	+1					
MFE	Make a face and an edge		+1	+1		+1		
MFE	Make a face and an edge		+1	+1		+1		
MFE	Make a face and an edge		+1	+1		+1		

Example: MEKL

- MEKL: make an edge and kill a loop

The Kill Group of Euler Operators

- The Kill group just performs the opposite of what the Make group does

Operator Name	Meaning	V	E	F	L	S	G
KEV	Kill an edge and a vertex	-1	-1				
KFE	Kill a face and an edge		-1	-1	-1		
KSFV	Kill a shell, a face and a vertex	-1		-1	-1	-1	
KSG	Kill a shell and a hole					-1	-1
KEML	Kill an edge and make a loop		-1		+1		

Constructive Solid Geometry

- Solids representation: Constructive Solid Geometry, or CSG for short
- A CSG solid is constructed from a few primitives with Boolean operators
- CSG solid
- Representation
- Design methodology, Design process

CSG Primitives

- Standard CSG primitives: block (cube), triangular prism, sphere, cylinder, cone, torus
- Instantiated primitives via transformation: scaling, translation, rotation
Block: center $(0,0,0)$, size $(2,2,2)$ instantiated block: center($3,2,3$), size $(5,3,3)$ translate(scale(Block, < 2.5, 1.5, $1.5>$), < 3, 2, $3>$)

Boolean Operators

- Set operations between sets A and B
- Union: all points from either A or B
- Intersection: all points in both A and B
- Difference: all points in A but not in B
- Example: A and B are two orthogonal cylinders

Boolean Operators

- Bracket Model Example
- scaling blocks and cylinder
- (scaled block) union (scaled block) or (block) difference (scaled block)
- (union blocks) difference (scaled cylinder) or (difference blocks) difference (scaled cylinder)

CSG Expressions

- use +, ^ and - for (regularized) set union, intersection and difference

- CSG representations are not unique \uparrow

Interior, Exterior and Closure

- A solid is a 3D object, so does its interior and exterior, its boundary is a 2D surface
- Example
- sphere: $x^{2}+y^{2}+z^{2}=1$
- Interior: $x^{2}+y^{2}+z^{2}<1$
- Closure of interior: $x^{2}+y^{2}+z^{2} \leq 1$
- Exterior: $x^{2}+y^{2}+z^{2}>1$

Formal Definitions: interior

- int(S):
- A point \boldsymbol{P} is an interior point of a solid \mathbf{S} if there exists a radius r such that the open ball with center \boldsymbol{P} and radius r is contained in the solid S.
- The set of all interior points of solid \boldsymbol{S} is the interior of \boldsymbol{S}, written as $\operatorname{int}(\mathbf{S})$

Formal Definitions: exterior

- ext(S):
- A point \mathbf{Q} is an exterior point of a solid \mathbf{S} if there exists a radius r such that the open ball with center \mathbf{Q} and radius r does not intersect the solid \mathbf{S}.
- The set of all exterior points of solid \boldsymbol{S} is the exterior of \boldsymbol{S}, written as $\operatorname{ext}(\boldsymbol{S})$

Formal Definitions: closure

- b(S): Those points that are not in the interior nor in the exterior of a solid \boldsymbol{S} constitutes the boundary of solid \boldsymbol{S}, written as b(S).
- closure(S): The closure of a solid \mathbf{S} is defined to be the union of S^{\prime} s interior and boundary, written as closure(S)

Formal Definitions: some notes

- The union of interior, exterior and boundary of a solid is the whole space.
- The closure of solid \boldsymbol{S} contains all points that are not in the exterior of \boldsymbol{S}

Examples

A: interior point
B: exterior point
C: boundary point

Regularized Boolean Operators

- The Boolean operation of two solids is always still solid?

Regularized Boolean Operators

- Let +, ^ and - be regularized set union, intersection and difference
$\boldsymbol{A}+\boldsymbol{B}=$ closure(int(set union of \boldsymbol{A} and \boldsymbol{B}) $\boldsymbol{A}^{\wedge} \boldsymbol{B}=$ closure(int(set intersection of \boldsymbol{A} and \boldsymbol{B}) $\boldsymbol{A}-\boldsymbol{B}=\mathbf{c l o s u r e}($ int (set difference of \boldsymbol{A} and \boldsymbol{B})

CSG Design Examples

Download courses

http://www.cad.zju.edu.cn/home/jqfeng/GM/GM08.zip

About project and report

- Deadline: 2007.03.01
- Compressed all files, which should include

1) Descriptions of your work: name, student number, master or Ph.D student, grade, programming environment, report topic, etc.
2) Source codes and report
3) File format: GM_ChineseName_StudentNum.rar

- Send email to: zhx at cad . zju . edu . cn
- Sincerely welcome comments on GM course to \{jqfeng, zhx\} at cad. zju . edu. cn

Ihanks

