Introduction to Solid Modeling

Hongxin Zhang and Jieqing Feng

2007-01-15

State Key Lab of CAD&CG Zhejiang University

Contents

- Solid Representations: An Introduction
- <u>Wireframe Models</u>
- Boundary Representations
 - <u>Manifolds</u>
 - <u>The Winged-Edge Data Structure</u>
 - <u>The Euler-Poincaré Formula</u>
 - Euler Operators
- <u>Constructive Solid Geometry</u>
 - Interior, Exterior and Closure
 - <u>Regularized Boolean Operators</u>
 - <u>CSG Design Examples</u>

Solid Representations

- Solid Model: geometric object with interior, such as cube, piston engine
- Solid representation: describe the geometry and characteristics completely

What is a good solid representation?

- Domain
- Unambiguity
- Uniqueness
- Accuracy
- Validness
- Closure
- Compactness and Efficiency

• Domain

While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects.

Unambiguity

When you see a representation of a solid, you will know what is being represented without any doubt. An unambiguous representation is usually referred to as a complete one.

Uniqueness

That is, there is only one way to represent a particular solid. If a representation is unique, then it is easy to determine if two solids are identical since one can just compare their representations.

Accuracy

A representation is said **accurate** if no approximation is required.

Validness

This means a representation should not create any invalid or impossible solids. More precisely, a representation will not represent an object that does not correspond to a solid.

Closure

Solids will be transformed and used with other operations such as union and intersection. "Closure" means that transforming a valid solid always yields a valid solid

Compactness and Efficiency

A good representation should be compact enough for saving space and allow for efficient algorithms to determine desired physical characteristics

About Solid Representations

- Designing representations for solids is a difficult job
- The requirements may be contradictory with each other
 - Compromises are often necessary
- Three classical representations
 - Wireframes
 - Boundary Representations (B-Rep)
 - Constructive Solid Geometry (CSG)

Wireframe Models

- Wireframe model consists of two tables
 - Vertex table: vertices and their coordinate values
 - Edge table: two incident vertices of edges
- A wireframe model *does not* have face information

Example of Wireframe Model

Vertex Table					
Vertex #	х	У	z		
1	1	1	1		
2	1	-1	1		
3	-1	-1	1		
4	-1	1	1		
5	1	1	-1		
6	1	-1	-1		
7	-1	-1	-1		
8	-1	1	-1		

Edge Table					
Edge #	Start Vertex	End Vertex			
1	1	2			
2	2	3			
3	3	4			
4	4	1			
5	5	6			
6	6	7			
7	7	8			
8	8	5			
9	1	5			
10	2	6			
11	3	7			
12	4	8			

01/15/2007

State Key Lab of CAD&CG

Example of Wireframe Model

Wireframe model described by previous tables

Wireframe model with curve edges

Wireframe Models Are Ambiguous

• Examples: 16 vertices and 32 edges

All interpretations are right!

Application of Wireframe Models

- Preview the complex solid models
 - Shading is time-consuming
 - provide a general feeling of the final result

Boundary Representations

- Boundary Representation, or B-rep
 - Extension to the wireframe model by adding face information
 - A solid is bounded by its surface and has its interior and exterior

Boundary Representations

- Two types of information in B-rep
 - Topological information:
 - relationships among vertices, edges and faces
 - orientation of edges and faces
 - Geometric information:
 - equations of the edges and faces

Boundary Representations

- Orientation of face is important
 - Count Clockwise: normal points to the exterior of model
 - Faces
 - Orientable
 - Non-orientable

Manifolds (Review)

Manifold Solid Modeling

- The surface of a solid is 2-D manifold
- 2-D manifold
 - For each point x on the surface, there exists an open ball with center x and sufficiently small radius, so that the intersection of this ball and the surface can be continuously deformed to an open disk

• Open ball: $x^2 + y^2 + z^2 < r^2$

Non-manifold Solid Modeling

Example of 2-D manifold

2-D manifold

2-D non-manifold

 The winged-edge data structure uses edges to keep track all information in the solid model

- In the following example, assuming
 - No hole in the face (can be extended later)
 - Edges and faces are line segments and polygons (extended to curves and surfaces)

Description

- Vertices → upper cases (A, B, C)
- Edges → lower cases (a, b, c)
- Faces \rightarrow digits (1, 2, 3)

• Edge: a

- Two incident vertices: X and Y
- Two incident faces: 2(left) and 1 (right) in case a=XY
- Face: 1
 - Three ordered edges: a, c, b
- Edge: a
 - In face 1: X → Y
 - In face 2: Y → X

What information is important?

- Vertices of this edge
- Its left and right faces
- The predecessor and successor of this edge when traversing its left face, and
- The predecessor and successor of this edge when traversing its right face

Edge Table

- Edge name
- Start vertex and end vertex
- Left face and right face
- The predecessor and successor edges when traversing its left face
- the predecessor and successor edges when traversing its right face

Edge Table

Edge	Vert	ices	Fa	ces	Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
а	Х	Y	1	2	b	d	е	С

State Key Lab of CAD&CG

Complete Edge Tables

Edge	Vertices		Faces		Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
а	А	D	3	1	е	f	b	С
b	А	В	1	4	С	а	f	d
С	В	D	1	2	а	b	d	е
d	В	С	2	4	е	С	b	f
е	С	D	2	3	С	d	f	а
f	Α	С	4	3	d	b	а	е

Other Tables

- Vertex table: an edge incidents to this vertex
- Face Table: an face contains this edge

These tables are not unique!

The Adjacency Relation

The Adjacency Relation

- ◆ From edge → vertex, face, edge ?
- From face \rightarrow vertex, edge, face ?
- From vertex edge, face, vertex ?

• The Winged Edge data structure can accomplish these queries efficiently!

Face with Holes

Two solutions

1. Introducing loops: reverse direction of face edge order

- 2. Introducing auxiliary edges:
 - Identify the auxiliary edges: its left and right faces are same

The Euler-Poincaré Formula

 Euler-Poincaré Formula can be used for check the validness of a solid

 A more elaborate formula: for potholes and penetrated holes

V - E + F - (L - F) - 2(S - G) = 0

V-E+F-(L-F)-2(S-G)=0

- V: the number of vertices
- E: the number of edges
- F: the number of faces
- **G**: the number of penetrated holes (*genus*)
- S: the number of shells
 - A shell is bounded by a 2-manifold surface, which can have its own genus value
 - The solid itself is counted as a shell
- L: the number of all outer and inner loops

Examples (1)

 A cube: eight vertices (V = 8), 12 edges (E = 12) and six faces (F = 6), no holes and one shell (S=1); L = F (each face has only one outer loop)

```
V-E+F-(L-F)-2(S-G)
= 8-12+6-(6-6)-2(1-0)
= 0
```

Examples (2)

 16 vertices, 24 edges, 11 faces, no holes, 1 shell and 12 loops (11 faces + one inner loop on the top face)

> V-E+F-(L-F)-2(S-G) = 16-24+11-(12-11)-2(1-0) =0

Examples (3)

 16 vertices, 24 edges, 10 faces, 1 hole (*i.e.*, genus is 1), 1 shell and 12 loops (10 faces + 2 inner loops on top and bottom faces)

Examples (4)

The following solid has a penetrating hole and an internal cubic chamber as shown by the right cut-away figure. It has 24 vertices, 12*3 (cubes) = 36 edges, 6*3 (cubes) - 2 (top and bottom openings) = 16 faces, 1 hole (*i.e.*, genus is 1), 2 shells and 18 loops (16 faces + 2 inner loops on top and bottom faces)

V-E+F-(L-F)-2(S-G) = 24-36+16-(18-16)-2(2-1) =0

Examples (4)

The following solid has two penetrating holes and no internal chamber as shown by the right cut-away figure. It has 24 vertices, 36 edges, 14 faces, 2 hole (*i.e.*, genus is 2), 1 shells and 18 loops (14 faces + 4)

```
V-E+F-(L-F)-2(S-G)
=24-36+14-(18-14)-2(1-2)
=0
```


The Euler-Poincaré Formula

- Topological information and geometric information should be consistent
- Checking validness of solid by Euler-Poincaré formula
 - If the value of Euler-Poincaré formula is non-zero, the representation is definitely not a valid solid
 - the value of the Euler-Poincaré formula being zero does not guarantee the representation would yield a valid solid

10 vertices, 15 edges, 7 faces, 1 shell and no hole

V-E+F-(L-F)-2(S-G) = 10-15+7-(7-7)-2(1-0)=0

Count Genus Correctly

- The Euler-Poincaré Formula describes the topological property amount vertices, edges, faces, loops, shells and genus
- Any topological transformation applied to the model will *not* alter this relationship

Sphere Punched by Three Tunnels

State Key Lab of CAD&CG

Euler Operators

 Euler Operators: modification of solid model while keeping the Euler-Poincaré formula tenable

V-E+F-(L-F)-2(S-G)=0

- There are two groups of such operators
 the Make group: M
 - the Kill group: K

Euler Operators

- Euler operators are written as:
 - Mxyz: x,y,z are vertex, edge, face, loop, shell and genus, e.g., MEV—adding an edge and a vertex
 - Kxyz: similar
- Euler operators form a complete set of modeling primitives for manifold solids (Mantyla) <->
 Every topologically valid polyhedron can be constructed from an initial polyhedron by a finite sequence of Euler operations

The Make Group of Euler Operators

 Adding some elements into the existing model creating a new one: V-E+F-(L-F)-2(S-G)=0

Operator Name	Meaning	V	Е	F	L	S	G
MEV	Make an edge and a vertex	+1	+1				
MFE	Make a face and an edge		+1	+1	+1		
MSFV	Make a shell, a face and a vertex	+1		+1	+1	+1	
MSG	Make a shell and a hole					+1	+1
MEKL	Make an edge and kill a loop		+1		-1		

Note: adding a face produces a loop, the outer loop of that face

Example: construct a tetrahedron

Operator Name	Meaning	V	E	F	L	S	G	Result
MSFV	Make a shell, a face and a vertex	+1		+1	+1	+1		
MEV	Make an edge and a vertex	+1	+1					
MEV	Make an edge and a vertex	+1	+1					
MEV	Make an edge and a vertex	+1	+1					
MFE	Make a face and an edge		+1	+1		+1		
MFE	Make a face and an edge		+1	+1		+1		
MFE	Make a face and an edge		+1	+1		+1		

Example: MEKL

• MEKL: make an edge and kill a loop

The Kill Group of Euler Operators

 The Kill group just performs the opposite of what the Make group does

Operator Name	Meaning	V	Е	F	L	S	G
KEV	Kill an edge and a vertex	-1	-1				
KFE	Kill a face and an edge		-1	-1	-1		
KSFV	Kill a shell, a face and a vertex	-1		-1	-1	-1	
KSG	Kill a shell and a hole					-1	-1
KEML	Kill an edge and make a loop		-1		+1		

Constructive Solid Geometry

- Solids representation: Constructive Solid Geometry, or CSG for short
- A CSG solid is constructed from a few primitives with Boolean operators
- CSG solid
 - Representation
 - Design methodology, Design process

CSG Primitives

- Standard CSG primitives: block (cube), triangular prism, sphere, cylinder, cone, torus
- Instantiated primitives via transformation: scaling, translation, rotation

Block: center (0,0,0), size (2,2,2)

instantiated block: center(3,2,3), size(5,3,3)

translate(scale(Block, < 2.5, 1.5, 1.5 >), < 3, 2, 3 >)

Boolean Operators

- Set operations between sets A and B
 - Union: all points from either A or B
 - Intersection: all points in both A and B
 - Difference: all points in A but not in B
- Example: A and B are two orthogonal cylinders

Boolean Operators

- Bracket Model Example
 - scaling blocks and cylinder
 - (scaled block) union (scaled block)
 or (block) difference (scaled block)
 - (union blocks) difference (scaled cylinder) or (difference blocks) difference (scaled cylinder)

CSG Expressions

 use +, ^ and - for (regularized) set union, intersection and difference

CSG representations are not unique

Interior, Exterior and Closure

• A solid is a 3D object, so does its interior and exterior, its boundary is a 2D surface

- Example
 - sphere: x²+y²+z²=1
 - Interior: x²+y²+z²<1</p>
 - Closure of interior: x²+y²+z²≤1
 - Exterior: x²+y²+z²>1

Formal Definitions: interior

• int(*S*):

- A point *P* is an *interior point* of a solid *S* if there exists a radius *r* such that the open ball with center *P* and radius *r* is contained in the solid *S*.
- The set of all interior points of solid S is the interior of S, written as int(S)

Formal Definitions: exterior

• ext(S):

- A point Q is an exterior point of a solid S if there exists a radius r such that the open ball with center Q and radius r does not intersect the solid S.
- The set of all exterior points of solid S is the exterior of S, written as ext(S)

Formal Definitions: closure

- b(S): Those points that are not in the interior nor in the exterior of a solid S constitutes the *boundary* of solid S, written as b(S).
- closure(S): The closure of a solid S is defined to be the union of S's interior and boundary, written as closure(S)

Formal Definitions: some notes

- The union of interior, exterior and boundary of a solid is the whole space.
- The closure of solid S contains all points that are not in the exterior of S

Examples

A: interior point B: exterior point C: boundary point

State Key Lab of CAD&CG

Regularized Boolean Operators

 The Boolean operation of two solids is always still solid?

Regularized Boolean Operators

- Let +, ^ and be regularized set union, intersection and difference
 - A+B = closure(int(set union of A and B)
 A^B = closure(int(set intersection of A and B)
 A-B = closure(int(set difference of A and B)

CSG Design Examples

Download courses

http://www.cad.zju.edu.cn/home/jqfeng/GM/GM08.zip

About project and report

Deadline: 2007.03.01

- Compressed all files, which should include
 - 1) Descriptions of your work: name, student number, master or Ph.D student, grade, programming environment, report topic, etc.
 - 2) Source codes and report
 - 3) File format: GM_ChineseName_StudentNum.rar
- Send email to: zhx at cad . zju . edu . cn
- Sincerely welcome comments on GM course to {jqfeng, zhx} at cad . zju . edu. cn

