Introduction to Solid Modeling

Hongxin Zhang and Jieqing Feng

2007-01-15

State Key Lab of CAD&CG
Zhejiang University
Contents

• Solid Representations: An Introduction
• Wireframe Models
• Boundary Representations
 • Manifolds
 • The Winged-Edge Data Structure
 • The Euler-Poincaré Formula
 • Euler Operators
• Constructive Solid Geometry
 • Interior, Exterior and Closure
 • Regularized Boolean Operators
 • CSG Design Examples
Solid Representations

- **Solid Model**: geometric object with interior, such as cube, piston engine
- **Solid representation**: describe the geometry and characteristics completely

What is a good solid representation?
Requirements for Solid Representation

- Domain
- Unambiguity
- Uniqueness
- Accuracy
- Validness
- Closure
- Compactness and Efficiency
Requirements for Solid Representation

• **Domain**

 While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects.

• **Unambiguity**

 When you see a representation of a solid, you will know what is being represented without any doubt. An unambiguous representation is usually referred to as a complete one.
Requirements for Solid Representation

• **Uniqueness**
 That is, there is only one way to represent a particular solid. If a representation is unique, then it is easy to determine if two solids are identical since one can just compare their representations.

• **Accuracy**
 A representation is said **accurate** if no approximation is required.
Requirements for Solid Representation

• Validness
 This means a representation should not create any invalid or impossible solids. More precisely, a representation will not represent an object that does not correspond to a solid.

• Closure
 Solids will be transformed and used with other operations such as union and intersection. "Closure" means that transforming a valid solid always yields a valid solid.
Requirements for Solid Representation

• Compactness and Efficiency
 A good representation should be compact enough for saving space and allow for efficient algorithms to determine desired physical characteristics
About Solid Representations

- Designing representations for solids is a difficult job
- The requirements may be contradictory with each other
 - Compromises are often necessary
- Three classical representations
 - Wireframes
 - Boundary Representations (B-Rep)
 - Constructive Solid Geometry (CSG)
Wireframe Models

- Wireframe model consists of two tables
 - **Vertex table**: vertices and their coordinate values
 - **Edge table**: two incident vertices of edges
- A wireframe model *does not* have face information
Example of Wireframe Model

Vertex Table

<table>
<thead>
<tr>
<th>Vertex #</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Edge Table

<table>
<thead>
<tr>
<th>Edge #</th>
<th>Start Vertex</th>
<th>End Vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Example of Wireframe Model

Wireframe model described by previous tables

Wireframe model with curve edges
Wireframe Models Are Ambiguous

- Examples: 16 vertices and 32 edges

All interpretations are right!
Application of Wireframe Models

- Preview the complex solid models
 - Shading is time-consuming
 - provide a general feeling of the final result
Boundary Representations

• Boundary Representation, or B-rep
 ♦ Extension to the wireframe model by adding face information
 ♦ A solid is bounded by its surface and has its interior and exterior
Boundary Representations

• Two types of information in B-rep
 ◦ Topological information:
 ▪ relationships among vertices, edges and faces
 ▪ orientation of edges and faces
 ◦ Geometric information:
 ▪ equations of the edges and faces
Boundary Representations

- Orientation of face is important
 - Count Clockwise: normal points to the exterior of model
 - Faces
 - Orientable
 - Non-orientable
Manifolds (Review)

• Manifold Solid Modeling
 • The surface of a solid is 2-D manifold
 • 2-D manifold
 ▪ For each point x on the surface, there exists an open ball with center x and sufficiently small radius, so that the intersection of this ball and the surface can be continuously deformed to an open disk
 ▪ Open ball: $x^2 + y^2 + z^2 < r^2$

• Non-manifold Solid Modeling
Example of 2-D manifold

2-D manifold

2-D non-manifold
The Winged-Edge Data Structure

- The winged-edge data structure uses *edges* to keep track all information in the solid model.
The Winged-Edge Data Structure

- In the following example, assuming
 - No hole in the face (can be extended later)
 - Edges and faces are line segments and polygons (extended to curves and surfaces)
 - Description
 - Vertices ➔ upper cases (A, B, C)
 - Edges ➔ lower cases (a, b, c)
 - Faces ➔ digits (1, 2, 3)
The Winged-Edge Data Structure

• Edge: \(a\)
 - Two incident vertices: \(X\) and \(Y\)
 - Two incident faces: 2(left) and 1 (right) in case \(a=XY\)

• Face: 1
 - Three ordered edges: \(a, c, b\)

• Edge: \(a\)
 - In face 1: \(X \rightarrow Y\)
 - In face 2: \(Y \rightarrow X\)

What information is important?
The Winged-Edge Data Structure

- Vertices of this edge
- Its \textit{left} and \textit{right} faces
- The predecessor and successor of this edge when traversing its left face, and
- The predecessor and successor of this edge when traversing its right face
Edge Table

- Edge name
- Start vertex and end vertex
- Left face and right face
- The predecessor and successor edges when traversing its left face
- the predecessor and successor edges when traversing its right face
Edge Table

<table>
<thead>
<tr>
<th>Edge</th>
<th>Vertices</th>
<th>Faces</th>
<th>Left Traverse</th>
<th>Right Traverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Start</td>
<td>End</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>a</td>
<td>X</td>
<td>Y</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Winged edge **a**: b, c, d, e are the wings of edge **a**!
Complete Edge Tables

<table>
<thead>
<tr>
<th>Edge</th>
<th>Vertices</th>
<th>Faces</th>
<th>Left Traverse</th>
<th>Right Traverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Start</td>
<td>End</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>a</td>
<td>A</td>
<td>D</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>A</td>
<td>B</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>B</td>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>C</td>
<td>D</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>f</td>
<td>A</td>
<td>C</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Other Tables

- Vertex table: an edge incidents to this vertex
- Face Table: an face contains this edge

<table>
<thead>
<tr>
<th>Vertex Name</th>
<th>Incident Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>d</td>
</tr>
<tr>
<td>D</td>
<td>e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Face Name</th>
<th>Incident Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
</tbody>
</table>

These tables are not unique!
The Adjacency Relation

- The Adjacency Relation
 - From edge \(\rightarrow\) vertex, face, edge ?
 - From face \(\rightarrow\) vertex, edge, face ?
 - From vertex \(\rightarrow\) edge, face, vertex ?

- The Winged Edge data structure can accomplish these queries efficiently!
Face with Holes

- Two solutions
 1. Introducing loops: reverse direction of face edge order
 2. Introducing auxiliary edges:
 - Identify the auxiliary edges: its left and right faces are same
The Euler-Poincaré Formula

- Euler-Poincaré Formula can be used for check the validness of a solid

- A more elaborate formula: for potholes and penetrated holes

\[V - E + F - (L - F) - 2(S - G) = 0 \]
V-E+F-(L-F)-2(S-G)=0

- **V**: the number of vertices
- **E**: the number of edges
- **F**: the number of faces
- **G**: the number of penetrated holes (*genus*)
- **S**: the number of *shells*
 - A shell is bounded by a 2-manifold surface, which can have its own genus value
 - The solid itself is counted as a shell
- **L**: the number of all outer and inner loops
Examples (1)

- A cube: eight vertices \(V = 8 \), 12 edges \(E = 12 \) and six faces \(F = 6 \), no holes and one shell \(S=1 \); \(L = F \) (each face has only one outer loop)

\[
V - E + F - (L - F) - 2(S - G) = 8 - 12 + 6 - (6 - 6) - 2(1 - 0) = 0
\]
Examples (2)

- 16 vertices, 24 edges, 11 faces, no holes, 1 shell and 12 loops (11 faces + one inner loop on the top face)

\[V-E+F-(L-F)-2(S-G) = 16-24+11-(12-11)-2(1-0) = 0 \]
Examples (3)

- 16 vertices, 24 edges, 10 faces, 1 hole (i.e., genus is 1), 1 shell and 12 loops (10 faces + 2 inner loops on top and bottom faces)

\[V-E+F-(L-F)-2(S-G) = 16-24+10-(12-10)-2(1-1) = 0 \]
Examples (4)

The following solid has a penetrating hole and an internal cubic chamber as shown by the right cut-away figure. It has 24 vertices, 12×3 (cubes) = 36 edges, 6×3 (cubes) - 2 (top and bottom openings) = 16 faces, 1 hole (i.e., genus is 1), 2 shells and 18 loops (16 faces + 2 inner loops on top and bottom faces)

$$V-E+F-(L-F)-2(S-G) = 24-36+16-(18-16)-2(2-1)$$
$$=0$$
Examples (4)

The following solid has two penetrating holes and no internal chamber as shown by the right cut-away figure. It has 24 vertices, 36 edges, 14 faces, 2 hole (i.e., genus is 2), 1 shells and 18 loops (14 faces + 4)

\[V-E+F-(L-F)-2(S-G) \]
\[=24-36+14-(18-14)-2(1-2) \]
\[=0 \]
The Euler-Poincaré Formula

• Topological information and geometric information should be consistent

• Checking validness of solid by Euler-Poincaré formula
 - If the value of Euler-Poincaré formula is non-zero, the representation is definitely not a valid solid
 - the value of the Euler-Poincaré formula being zero does not guarantee the representation would yield a valid solid

10 vertices, 15 edges, 7 faces, 1 shell and no hole

\[V-E+F-(L-F)-2(S-G) = 10-15+7-(7-7)-2(1-0) = 0 \]
Count Genus Correctly

- The Euler-Poincaré Formula describes the topological property amount vertices, edges, faces, loops, shells and genus
- Any topological transformation applied to the model will not alter this relationship
Sphere Punched by Three Tunnels

The Genus is 2
Euler Operators

• Euler Operators: modification of solid model while keeping the Euler-Poincaré formula tenable
 \[V - E + F - (L - F) - 2(S - G) = 0 \]

• There are two groups of such operators
 - the Make group: M
 - the Kill group: K
Euler Operators

- Euler operators are written as:
 - M_{xyz}: x, y, z are vertex, edge, face, loop, shell and genus, e.g., MEV—adding an edge and a vertex
 - K_{xyz}: similar

- Euler operators form a complete set of modeling primitives for manifold solids (Mantyla) \leftrightarrow
 Every topologically valid polyhedron can be constructed from an initial polyhedron by a finite sequence of Euler operations
The Make Group of Euler Operators

- Adding some elements into the existing model creating a new one: $V - E + F - (L - F) - 2(S - G) = 0$

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td></td>
<td></td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td></td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Make a shell and a hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>MEKL</td>
<td>Make an edge and kill a loop</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

Note: adding a face produces a loop, the outer loop of that face
Example: construct a tetrahedron

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFV</td>
<td>Make a shell, a face and a vertex</td>
<td>+1</td>
<td></td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEV</td>
<td>Make an edge and a vertex</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE</td>
<td>Make a face and an edge</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: MEKL

- MEKL: make an edge and kill a loop
The Kill Group of Euler Operators

• The Kill group just performs the opposite of what the Make group does

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Meaning</th>
<th>V</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEV</td>
<td>Kill an edge and a vertex</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFE</td>
<td>Kill a face and an edge</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSFV</td>
<td>Kill a shell, a face and a vertex</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSG</td>
<td>Kill a shell and a hole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>KEML</td>
<td>Kill an edge and make a loop</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>
Constructive Solid Geometry

- Solids representation: *Constructive Solid Geometry*, or *CSG* for short
- A CSG solid is constructed from a few *primitives* with *Boolean operators*
- CSG solid
 - Representation
 - Design methodology, Design process
CSG Primitives

- Standard CSG primitives: block (cube), triangular prism, sphere, cylinder, cone, torus
- *Instantiated* primitives via transformation: scaling, translation, rotation
 Block: center (0,0,0), size (2,2,2)
 instantiated block: center(3,2,3), size(5,3,3)
 \[
 \text{translate(scale(Block, < 2.5, 1.5, 1.5 >), < 3, 2, 3 >)}
 \]
Boolean Operators

- Set operations between sets A and B
 - Union: all points from either A or B
 - Intersection: all points in both A and B
 - Difference: all points in A but not in B

- Example: A and B are two orthogonal cylinders
Boolean Operators

• Bracket Model Example
 - scaling blocks and cylinder
 - (scaled block) union (scaled block)
 or (block) difference (scaled block)
 - (union blocks) difference (scaled cylinder)
 or (difference blocks) difference (scaled cylinder)
CSG Expressions

- use +, ^ and - for (regularized) set union, intersection and difference

![CSG Tree]

- CSG representations are not unique
Interior, Exterior and Closure

• A solid is a 3D object, so does its interior and exterior, its boundary is a 2D surface.

• Example
 - sphere: $x^2+y^2+z^2=1$
 - Interior: $x^2+y^2+z^2<1$
 - Closure of interior: $x^2+y^2+z^2\leq1$
 - Exterior: $x^2+y^2+z^2>1$
Formal Definitions: interior

- \text{int}(S):
 - A point \(P \) is an \textit{interior point} of a solid \(S \) if there exists a radius \(r \) such that the open ball with center \(P \) and radius \(r \) is contained in the solid \(S \).
 - The set of all interior points of solid \(S \) is the \textit{interior} of \(S \), written as \(\text{int}(S) \).
Formal Definitions: exterior

- $\text{ext}(S)$:
 - A point Q is an *exterior point* of a solid S if there exists a radius r such that the open ball with center Q and radius r does not intersect the solid S.
 - The set of all exterior points of solid S is the *exterior* of S, written as $\text{ext}(S)$.
Formal Definitions: closure

- $b(S)$: Those points that are not in the interior nor in the exterior of a solid S constitutes the boundary of solid S, written as $b(S)$.

- $\text{closure}(S)$: The closure of a solid S is defined to be the union of S's interior and boundary, written as $\text{closure}(S)$.
Formal Definitions: some notes

• The union of interior, exterior and boundary of a solid is the whole space.
• The closure of solid S contains all points that are not in the exterior of S
Examples

A: interior point B: exterior point C: boundary point
Regularized Boolean Operators

- The Boolean operation of two solids is always still solid?

[Image of two cylinders and an intersection arrow]
Regularized Boolean Operators

- Let $+$, \wedge and $-$ be regularized set union, intersection and difference

\[
A + B = \text{closure} (\text{int} (\text{set union of } A \text{ and } B))
\]

\[
A \wedge B = \text{closure} (\text{int} (\text{set intersection of } A \text{ and } B))
\]

\[
A - B = \text{closure} (\text{int} (\text{set difference of } A \text{ and } B))
\]
CSG Design Examples
Download courses

http://www.cad.zju.edu.cn/home/jqfeng/GM/GM08.zip
About project and report

- Deadline: 2007.03.01
- Compressed all files, which should include
 1) Descriptions of your work: name, student number, master or Ph.D student, grade, programming environment, report topic, etc.
 2) Source codes and report
 3) File format: GM_ChineseName_StudentNum.rar
- Send email to: zhx at cad . zju . edu . cn
- Sincerely welcome comments on GM course to {jqfeng, zhx} at cad . zju . edu . cn
Thanks