Implicit Surface Modeling

Hongxin Zhang and Jieqing Feng

2007-01-04

State Key Lab of CAD&CG Zhejiang University

Contents

- Introduction of Implicit Surface Modeling
- Implicit Surface Modeling for Computer Graphics and Animation: Field Function Defined Implicit Surface
- Quadric Surfaces
- <u>Download Course</u>

Introduction of Implicit Surface Modeling

- What is implicit surface?
- <u>Comparison: implicit v.s. parametric</u> surfaces
- Implicit methods for graphics and animation
- Implicit methods for CAD/CAM
- Other topics in implicit modeling

What is implicit surface?

- Implicit surfaces are two-dimensional, geometric shapes that exist in three dimensional space.
 - Defined in **R**³:
 - 2-D manifold:
 - A surface embedded in R³
 - Infinitesimal neighborhood around any point on the surface is topologically equivalent (' locally diffeomorphic') to a disk.

What is implicit surface?

2D manifold can be

- bounded (or closed): sphere
- Unbounded: plane
- A manifold with boundary: topologically equivalent to either a disk or a half-disk locally.
- Nonmanifold

Manifold

Manifold with boundary

Nonmanifold

State Key Lab of CAD&CG

What is implicit surface?

Manifold or not? Eule-Poincaré formula

v-e+f=2-2h

- v: number of vertices
- e: number of edges
- f: number of faces
- h: number of holes

Examples of implicit surfaces

Metaball

Skeleton Surface and Metaball

Convolution Surface

Examples of implicit surfaces

Quadric Surface

A-Patch

Compactly Supported Radial Basis Functions

Definition of implicit surface

Definition

{
$$p=(x,y,z): f(p)=0, p \in \mathbb{R}^3$$
}

- Implicit function *f* : three classes of specification (definition)
 - Discrete sampling: a set of points on or within an object
 - Mathematical function: one or more equations are used to compute the coordinates of points on or within an object
 - Procedural methods: an algorithmic process computes points on or within an object

Algebraic Function

- Algebraic surface: when *f* is algebraic function, i.e., polynomial function
 - The coefficients are not unique

f=*ax*+*by*+*cz*=0

- *a*=*b*=*c*=1
- $a=b=c=1/\sqrt{3}$
- Algebraic distance: The value of f(p) is the approximation of distance from p to the algebraic surface f=0

Transcendental Function

- Transcendental Function
 - Trigonometric, exponential, logarithmic, hyperbolic functions, etc.
 - Approximated by convergent power series: Taylor series

Definition of implicit surface

- Regular point p on the surface
 - $\nabla f(p) = (\partial f / \partial x, \partial f / \partial y, \partial f / \partial z) \neq \mathbf{0}$
 - For cone, 0 is not the regular value for *f*

The cone $f=-x^2+y^2+z^2$ is regular with the exception of a singularity at the origin (0,0,0).

Mathematical Foundation

• Implicit Function Theorem:

if 0 a regular value of continuous function f(p), the implicit surface $f^{1}(0)$ is a two-dimensional manifold

Jordan-Brouwer Separation Theorem

A 2D manifold separates R³ into surface itself and two connected open sets: an infinite(finite) `outside' and a finite(infinite) 'inside'.

Mathematical Foundation

Implicit v.s. Parametric Surfaces

Disadvantages		
Explicit	Implicit	Parametric
 Infinite slopes are impossible if f(x) is a polynomial. Axis dependent (difficult to transform). Closed and multivalued curves are difficult to represent. 	 Difficult to fit and manipulate free form shapes. Axis dependent. Complex to trace. 	• High flexibility compli- cates intersections and point classification.
Advantages		
Explicit	Implicit	Parametric
• Easy to trace.	 Closed and multivalued curves and infinite slopes can be represented. Point classification (solid modeling, interference check) is easy. Intersections/offsets can be represented. 	 Closed and multivalued curves and infinite slopes can be represented. Axis independent (easy to transform). Easy to generate composite curves. Easy to trace. Easy in fitting and manipulating free-form shapes.

Complex Surface Modeling

Complex surface constructed by smoothly joined B-spline surface patches

Complex surface constructed by convolution surface method

Surfaces Intersection

Parametric Surface Intersection

Implicit Surface Intersection

Tessellation

Up: tessellation of implicit surface

Bottom: tessellation of NURBS surface

Blending or rounding

Left: Blending by using parametric surface Right: Blending by using implicit surface

Texture mapping

Texture mapping for NURBS surface Texture mapping for implicit surface

Solid Modeling

Solid Modeling via NURBS Surface

Solid Modeling via Implicit Surface

Implicit v.s. Parametric Surfaces

• Implicitization:

Parametric Implicit representation representation

Parameterization

Implicit Parametric representation

About conversions

Implicitization

- Any rational parametric surface can be implicitzed by elimination of parameters in the parametric form
- Implicitization is often computational demanding
- The degree of implicit form is higher than its parametric form, the implicit representation of
 - A parametric triangular patch of degree n is degree n^2
 - A tensor product surface of degree *m* by *n* is degree 2*mn*
 - The number of terms in algebraic surface of degree n is 3Cⁿ₂
 (bicubic patch is degree 18, with 1330 terms!)
 - Approximated implicitization

About conversions

- Parameterization: not always possible
 - Algebraic surfaces of fourth and higher degree cannot be parameterized by rational functions
 - Parameterization is always possible for nondegenerate quadrics and for cubics that have a singular point.

Example:sphere

• Trigonometric:

 $f(\alpha,\beta) = (\cos\alpha\cos\beta, \cos\alpha\sin\beta, \sin\alpha)$ $\alpha \in [0,\pi], \ \beta \in [0,2\pi]$

Rational:

 $x=4st, y=2t(1-s^2), z=(1-t^2)(1+s^2), w=(1+t^2)(1+s^2)$

• Implicit:

$$f(x,y,z) = x^2 + y^2 + z^2 - 1$$

Example: sphere

- Points on the parametrically defined sphere are readily found by substitution of α and β into the equations for x, y, and z (similarly for s and t).
- The mapping from parametric space to geometric space is convenient.
- There is no obvious mapping for implicit form!

Implicit methods for graphics and animation

- Blobby (metaball, soft objects)
- Implicit surface defined by skeletons
 - Distance surface
 - Convolution surface
- Variational Implicit Surfaces
- Level-Set Methods
- Procedural Models
- Animation applications

Blobby (metaball, soft objects)

State Key Lab of CAD&CG

Implicit surface defined by skeletons

Variational Implicit Surfaces

Level-Set Surface Models

(g) reconstruction on a 39×31×31 grid (b) reconstruction on a 80×60×60 grid

01/04/2007

State Key Lab of CAD&CG

Procedural Models

01/04/2007

State Key Lab of CAD&CG

Reconstruction

The polygonal bunny model was approximated by metaballs.

01/04/2007

State Key Lab of CAD&CG

Animation applications

01/04/2007

State Key Lab of CAD&CG

Implicit methods for CAD/CAM

- Quadric surface
- Algebraic surface patches
 - A-patch
 - Tensor-product algebraic surface patches

Quadric Surface

State Key Lab of CAD&CG
A-patch: Algebraic Surface Patch

A-patch: Algebraic Surface Patch

Tensor-product algebraic surface patches

Tensor-product algebraic surface patches

Other Topics in Implicit Modeling

- Functional representation
- Visualizing implicit surfaces
- Animation by using implicit models
- Texture mapping

Functional Representation (Frep)

- F-rep: denfines a whole geometric object by a single real continuous function of several variables as F(X)≥0
 - At least C⁰ continuous
 - F: a formula or an evaluation procedure
 - F-rep: combines classic implicits, skeleton based implicits, set-theoretic solids, sweeps, volumetric objects, parametric and procedural models

Functional Representation (Frep)

- Set-theoretic operations
- Blending set-theoretic operations
- Offsetting
- Cartesian product
- Bijective mapping
- Metamorphosis

- Relations
- Sweeping by a moving solid
- Deformation with algebraic sums
- Three-dimensional texture modeling
- Interaction

F-rep: examples

Moving solid

Artistic shape modeling using real functions

F-rep: hairs

Using real functions with application to hair modeling

01/04/2007

State Key Lab of CAD&CG

Visualizing implicit surfaces

- Polygonization: Generation of polygons from implicit surface or volume data
 - Uniform
 - Adaptive
- Ray tracing
 - Classical
 - Sphere tracing
- Particle system

Uniform Polygonization

A sphere approximated from depths 1 through 5.

State Key Lab of CAD&CG

Adaptive Polygonization

Polygonization of non-manifold

Non-manifold surface consisting of a spheroid blended to a bicubic patch; the patch is automatically trimmed to the seam between spheroid and patch (see SIGGRAPH 95)

State Key Lab of CAD&CG

Classic Ray Tracing

State Key Lab of CAD&CG

Sphere tracing

Sphere tracing

Particle system: display and control

http://graphics.cs.uiuc.edu/projects/surface/ State Key Lab of CAD&CG

Field Function Defined Implicit Surface

- Field Function in 3D
- Simple Control Primitives: point etc.
 - Blobby Molecules
 - Metaball
 - Soft Objects
 - Discussion and Extensions
- <u>Skeletal Primitives</u>
 - Distance surface
 - Convolution surface

Field Function in 3D

Consider implicit surface D(x,y,z)-Iso=0

D is called scalar field function

Distance field is one of good choice

Distance to a Curve: 3 and 9 linear segments

Example of Distance Field

- Consider function D(r)=1/r², control points in 3D space, where r is the distance to one control points
- The total field strength at any point in space is the sum of the field strengths due to each control point

Example of Distance Field

• Changing control points as line segments

Blobby Molecules by Blinn

Jim Blinn

- Second Graphics Fellow at Microsoft
- 1983 -- The first Siggraph Computer Graphics Achievement Award for work in lighting and surface modeling techniques.
- 1989 -- IEEE Outstanding Contribution Award for Jim Blinn's corner

http://research.microsoft.com/users/blinn/

Blobby Molecules

 Hydrogen atoms electron density fields (Gaussian Distribution)

 $D(r) = ae^{-br^2}$

- "b" : standard deviation of Gaussian curve
- "a" : height of Gaussian Curve
- "r": the distance to atom center, $r \ge 0$

1D Gaussian Function

Multiple Blobby Molecules

• The overall density at a given point for multiple atoms is summation of individual ones:

$$D(p) = \sum a_i e^{-b_i r^2} = Iso$$

- The "blobbiness" of a model can be controlled by adjusting the parameters a_i and b_i .
 - *a_i* is weight/strength of *i*th blobby molecule
 - b_i is influence radius of *i*th blobby molecule
- The implicit surface is defined as all points where the density is equal to some threshold value *Iso*.

Examples of Blobby Models

Blobby Molecules

- Disadvantages of Blobby Molecules
 - Exponential distribution of density is Global
 - Computationally expensive!
 - Blinn: Cut off after r >R

Metaball by Nishimura

 Nishimura at Osaka University in Japan proposed Metaball in 1983 (Almost same with Blinn)

Metaball by Nishimura

 Piecewise quadrics to approximate the Gaussian function

$$D(r) = \begin{cases} a\left(1 - \frac{3r^2}{b^2}\right) & 0 \le r \le b/3 \\ \frac{3a}{2}\left(1 - \frac{r}{b}\right)^2 & b/3 \le r \le b \\ 0 & r \ge b \end{cases}$$

- "b" : Influence radius of metaball
- "a" : weight of metaball
- "r" : the distance to metaball center, $r \ge 0$

Metaball Systems

 The system is composed of several metaball

$$D(p) = \sum_{i} D_{i}(p) = Iso$$

Each metaball has its own parameters (a_i, b_i)
Fusion effects

Examples of Metaballs

Metaball

Advantages

- Field function is locally defined in [0,b]
- Fast ray and metaball intersection computation!
- Disadvantage
 - Distance r: square root , expensive

Soft Object by Wyvill Brothers

 Soft objects is proposed by Wyvills in Canada and New Zealand: truncated Taylor expansion series of exponential function

Brian Wyvill

Geoff Wyvill

Field Function for Soft Object

Definition

$$D(r) = \begin{cases} a \left(1 - \frac{4r^6}{9b^6} + \frac{17r^4}{9b^4} - \frac{22r^2}{9b^2} \right) & r \le b \\ 0 & r > b \end{cases}$$

The function has following properties

D(0)=1, D(b)=0, D(b/2)=0.5, C'(0)=C'(b)=0

 The volume bounded by D(r)<m is one half of that bounded by D(r)<m/2

01/04/2007

State Key Lab of CAD&CG

Examples of Soft Objects

Examples of Soft Objects

Two blend soft objects with different threshold: 84, 44, 24, 11

25 balls, threshold is 0.5

Trains modeled by soft objects

Soft Object

Advantages

- Only square term of the distance r, square root computation is removed!
- Finite extent of each ball
- Computational costs:

Blobby >> Metaball > Soft object

Discussions

- The functions described here guarantee a continuously and smoothly changing surface
- Comparison of four field functions

• The blending function can be designed freely!

Extensions

• Minus primitives: set weight negative

Applications of Metaball

Shape approximation and representation by metaballs

01/04/2007

State Key Lab of CAD&CG

Skeletal Primitives

 Disadvantage of point primitives: flat surfaces can only be approximated.

Evenly spaced grid of metaballs(16): threshold is 1.66 or 0.5

Skeletal Primitives

- The use of complex skeletons is one possible solution to this problem.
 - Point can be replace as lines, polygons, curves, surfaces, volumes and any other complex geometric skeletons
 - The shape of a primitive follows the shape of its skeletons
- Two Approaches
 - Distance surfaces
 - Convolution Surfaces

Examples of Skeletal Primitives

skeletons

contour line drawing

ray traced image State Key Lab of CAD&CG

01/04/2007

Examples of Skeletal Primitives

Complex skeletons: ellipsoid, sphere, line segments, points

Distance surface

- A distance surface is a surface that is defined by distance to some set of base skeleton elements
 - Union of skeletons: Distance surface to the union of skeletons
 - Union of primitive surfaces: Boolean operation
 - Blending of primitive surfaces: Algebraic blending

Union of Skeletons

Definition

$$f(S, p) = \max_{s \in S} \exp\left(-\frac{\|s - p\|^2}{2}\right)$$

- S is the skeleton set
- *s* is the point on one of the skeleton
- max: maximum field value, nearest point on the skeleton
- Field function can be specified as <u>before</u>, not restricted as exponential function

About Union of Skeletons

- Distance surface is rounded when skeleton is convex.
- Distance surface is tangent discontinuous and exhibits a crease when the skeleton is concave

Left: curve shown as dashed and distance shown as greyscale intensity middle and right: curve approximated by three and nine segments

Union of Distance Surfaces

- Union of distance surface is defined as weighted union of each primitive surface
- Definition

$$F_{total}(p) = \sum_{i} c_i F_i(r_i)$$

- *c_i*: weight, positive or negative
- *F_i*: field function as <u>before</u>
- *r_i*: the distance from *p* to the nearest point on the *i*-th skeleton.

About Union of Distance Surfaces

 Simple union of distance surfaces will produce <u>bulges</u> and <u>creases</u> may area where the skeletons meet.

Algebraic Blends of Primitives

- To eliminate creases or bulge, the primitive volumes ("metaball") must form a *blend*, rather than a union.
- What is blending: smooth transition along common boundary among several primitives

Blending Functions (1)

Super-elliptical Blending

$$f(\mathbf{p}) = B(P_1, P_2) = 1 - \left[1 - \frac{P_1(\mathbf{p})}{r_1}\right]_+^t - \left[1 - \frac{P_2(\mathbf{p})}{r_2}\right]_+^t$$

- *P*₁, *P*₂ are algebraic distances to skeletal elements 1 and 2, usually *C*¹ continuous
- r₁ and r₂ are the ranges of influence for primitives P₁ and P₂
- $[x]_+$ is max (0, x), and t is the 'thumbweight.'

Example of Blending Functions (1)

Super-elliptical Blending of sphere and cylinder primitives (t=3)

sphere:
$$P_1(p) = (p_x^2 + p_y^2 + p_z^2)^{1/2} - 1$$

cylinder:
$$P_2(\mathbf{p}) = \begin{cases} (\mathbf{p}_x^2 + \mathbf{p}_y^2 + \mathbf{p}_z^2)^{1/2} - .4, & \mathbf{p}_x < 0\\ (\mathbf{p}_y^2 + \mathbf{p}_z^2)^{1/2} - .4, & 0 < \mathbf{p}_x < 2\\ ((\mathbf{p}_x - 2)^2 + \mathbf{p}_y^2 + \mathbf{p}_z^2)^{1/2} - .4, & \mathbf{p}_x > 2 \end{cases}$$

01/04/2007

State Key Lab of CAD&CG

Example of Blending Functions (1)

Blending Functions (2)

Improved Super-elliptical Blending

$$B(P_1, P_2) = 1 - \left[1 - \frac{P_1(p)}{r_1(1 - \cos \theta)}\right]_+^t - \left[1 - \frac{P_2(p)}{r_2(1 - \cos \theta)}\right]_+^t$$

- θ: the angle between the gradients of the two
 primitives at a point p
- The influence range is diminished according to θ

Blending Functions (2)

- $\theta = 0$ the range is fully diminished and the simple union of the primitives results
- θ = 90°(concave condition), the range is undiminished, and a blend occurs.
- To avoid enlarging the primitive ranges, cos(θ) must be nonnegative

Blending Functions (3)

 Super-elliptical blend is extended to k primitives:

$$B_k = 1 - \sum_{i=1}^k \left[1 - \frac{P_i(p)}{r_i} \right]_+^t$$

Convolution Surface

• A bulge-free implicit blend technique

 The convolution surface treats a skeleton
 S as a set of points, each of which contributes to the implicit surface function according to its distance to p.

Convolution Surface

• <u>Blobby systems</u> by Blinn $f(p) = c - \sum_{i} e^{-||p - s_i||^2/2}$

where s_i is a point on the skeleton, c is threshold (constant)

Convolution Surface

If S = {s_i} is a set of infinitesimally spaced points, f can be expressed as an integral:

$$f(\mathbf{p}) = c - \int_{S} e^{-||\mathbf{p} - \mathbf{u}||^{2}/2} d\mathbf{u}$$

- where *u* ranges over all points on the skeleton. It defines a convolution surface
- Gaussian function is a 3D filter/kernel
- S = {s_i} can be any skeletons: point, line, curve, surface, volumes etc.

About Convolution Surface

- The convolution has been applied extensively in the processing of 1D audio signal, 2D image, 3D volume image.
- The convolution scaled the frequency components of the signal via filter(kernel)
 - Low-pass filter: smoothing effect, e.g., Gaussian kernel
 - High-pass filter: enhance detail effect

Gaussian Kernels

Infinite Sum is a Convolution

About Convolution Surface

• The <u>convolution</u> is a linear operator:

$h\otimes(s_1+s_2)=h\otimes s_1+h\otimes s_2$

- It is property of superposition
- The sum of the convolutions of any division of a skeleton is identically equal to the single convolution of the entire skeleton
- The convolution surface is a smooth shape without introducing bulges.

Illustration of Superposition

The superposition Property: The two line segment are brought together (left); sum of convolutions of the two segments (right), convolution of single segment (bottom)

Two Segments Convolved with the Gaussian Kernel

State Key Lab of CAD&CG

About Convolution Surface

- Along convex portions of the skeleton the surface mimics the union operator
- Along concave portions, the surface yields a blend.
- For isolated convex skeletons, such as triangles or segments, convolution produces surfaces of similar shape to distance surfaces.
- For complex skeletons, however, convolution yields crease-free surfaces with adjacent primitives blending without seam or bulge.

Gaussian kernel

For standard Gaussian kernel:

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=1$$

 A signal modified by such a kernel will maintain its original energy!

Convolution of a box with unit-integral kernel

Energy Discussion in Convolution

- Because the Gaussian is symmetric, the convolution equals ½ where the box function undergoes transitions
 - For an iso-surface contour level of ½, the convolution surface will pass through the endpoints of skeletal segments and through the edges of skeletal polygons.
- A kernel with integral less (greater) than one would attenuate (amplify) a signal

Gaussian kernel

- Advatnages of Gaussian Kernel
 - C[∞] Smooth
 - Unit integral
 - Separable

$$h(d) = e^{-||d||^2/2} = e^{-(d_x^2 + d_y^2 + d_z^2)/2} = e^{-d_x^2/2} e^{-d_y^2/2} e^{-d_z^2/2}$$

- Disadvantages of Gaussian Kernel
 - Globally Defined on the R^{1,2,3}
 - Cannot be analytical integrated, only numerically approximated

Examples of Convolution Surfaces

Two Segments Convolved with the Gaussian Kernel

Examples of Convolution Surfaces

Threshold=1.0, 0.75, 0.5, 0.35

Line segment and arc skeletons

State Key Lab of CAD&CG

Examples of Convolution Surfaces

Convolution Surface

Convolution Surface: Hand Crafted by Jules Bloomenthal

01/04/2007

State Key Lab of CAD&CG

Other kernels: Sinc Kernel

• Sinc kernel is : $\frac{\sin(\pi x)}{\pi x}$.

- The sinc is the ideal low-pass filter: its Fourier transform is the box function.
- Cutoff frequency effect

Other kernels: Sinc Kernel

Problem with sinc kernel: none monotonically

Convolution with Gaussian (left) and Sinc (right)

- Monotonicity of the kernel is a necessary property for a satisfactory convolution surface
 - Ringing of the filter may introduce a spurious contour

Other kernels: B-spline Kernels

 B-spline kernel has similar shape with Gaussian

- $h_{B-spline}(0)=2/3, h_{B-spline}(0.72235)\approx 1/2$
- The support of kernel is 2
- The integral of B-Spline kernel is 1, not separable

State Key Lab of CAD&CG
Other kernels: Wyvill Kernels

 Wyvill kernel also has similar shape with Gaussian

 $h_{Wyvill}(x) = (9-4x^6+17x^4-22x^2)/9.$

- After scale: $h_{Wyvill}(0)=1$, $h_{Wyvill}(1)=1/2$
- The integral of Wyvill kernel is 1
- The support of kernel is 1
- Not separable

 $(9-4x^6+17x^4-22x^2)/9$

 $(1 - x^2)^3$

Other kernels: Modified Wyvill Kernels

 Modified Wyvill kernel also has similar shape with Gaussian

$$h_{NewWyvill}(x) = (1-x^2)^3.$$

- After scale: h_{Wyvill}(0)=1
- The integral of Modified Wyvill kernel is 1
- The support of kernel is 1
- Not separable

 $(9-4x^6+17x^4-22x^2)/9$

Modified Wyvill kernel (blue)

 $(1 - x^2)^3$

Compare the different kernels

Comparison of Filter Kernels after scale

upper (in black): the Gaussian kernel, $e^{-0.69314715x2}$ middle (in red): the B-spline kernel, $(1.5)h_{Bspline}(0.72235x)$ lower (in blue): the Wyvill kernel, $h_{Wyvill}(0.5x)$

State Key Lab of CAD&CG

Computation of Convolution

- The Gaussian is separable and spherically symmetric
 - Integration by part!
- B-spline and Wyvill kernel is not separable
 - summation of point source terms
 - the product of integration and distance filters.

Computation of Convolution

Approximations to B-Spline Convolution

left: summation of point sources right: product of filters

Approximations to Wyvill Convolution

left: summation of point sources right: product of filters

Computation of Convolution

Gaussian Convolution approximation for 3, 7, and 15 Segments (left) or Points (right)

01/04/2007

Ramification Modeling

A Two-Ramiform with Constant Radii

A Trifurcated Ramiform

State Key Lab of CAD&CG

Snowflake

Maple tree

1.50%

A gourd shape

A dinosaur

An cartoon enforcer

State Key Lab of CAD&CG

Quadric Surfaces

- Basics of Quadric Surfaces
- Properties of Quadric Surfaces
- <u>Representation of Quadric Surfaces</u>
- <u>Applications of Quadric Surfaces</u>

Basics of Quadric Surfaces

- A general quadric surface is $Ax^{2} + By^{2} + Cz^{2} + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Jz + K = 0$
- Its matrix representation

$$\{x \mid F(x) = x^T Q x = 0\}$$

where

$$Q = \begin{bmatrix} A & D & E & G \\ D & B & F & H \\ E & F & C & J \\ G & H & J & K \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Basics of Quadric Surfaces

- There are nine types of general quadrics according coefficients of this algebraic equation
 - Ellipsoid
 - Elliptic cone
 - Cylinder (elliptic, parabolic, hyperbolic)
 - Hyperboloid (of 1 sheet, of 2 sheets)
 - Paraboloid (elliptic, hyperbolic)
- Degenerated cases
 - point, plane, parallel planes,
- Invalid shapes
 - imaginary quadric, intersecting imaginary planes, imaginary parallel planes

Sketches of General Quadric Surfaces

01/04/2007

State Key Lab of CAD&CG

Natural Quadrics

- Natural Quadrics: subset of general
 - sphere (special case of ellipsoid)
 - right circular cone (special case of elliptic cone)
 - right circular cylinder (special case of elliptic cylinder)
 - Planes

Natural Quadrics

- Natural quadrics are by far the most popular set of quadric: Prismatic Solid
 - Mechanical CAD domains

Quadric Surface Patches

 Pieced together with tangent plane (G¹) continuity to create free-form shapes

Some complex free-form solids modeled with quadric algebraic patches: (a) a genus five solid with 2,400 quadratic algebraic patches, (b) a bone head, the entire bone was modeled with 5,696 quadratic algebraic patches, and (c) a knot modeled with 6,912 quadratic algebraic patches.

Quadric Surface Patches

(a) A vase modeled with 336 quadratic algebraic patches, rendered with transparency to show some of its trunctets. (b) The same vase in an environment with multiple light sources and participating media.

Properties of Quadric Surfaces

• Let Q_A (Q_B) denotes the matrix representation of quadric surface in frame A(B), M denotes an affine transformation from frame A to from B

Then the transformation of quadrics is

 $Q_B = M^T Q_A M$

Properties of Quadric Surfaces

• Let Q_u denotes upper-left 3×3 sub-matrix of Q

$$Q_u = \left[egin{array}{ccc} A & D & E \ D & B & F \ E & F & C \end{array}
ight]$$

- The rank of both Q and Q_u are invariant under affine transformation
 - The type of quadric surface is invariant under affine transformations
- The quadric surfaces are invariant under rigid motions

Characteristic Function

Characteristic functions are

 $Det(Q-\lambda I) \quad Det(Q_u-\lambda I)$

- Invariant under rigid motion
- Used for classifying the type of quadrics according to its eignvalues

Characteristic Function (1)

$$\operatorname{Det}(Q \ - \ \lambda I) \ = \ \lambda^4 \ + \ D_1 \lambda^3 \ + \ D_2 \lambda^2 \ + \ D_3 \lambda \ + \ D_4$$

$$\begin{array}{rclrcl} D_1 &=& A \,+\, B \,+\, C \,+\, K \\ D_2 &=& AB \,+\, BC \,+\, CK \,+\, AK \,+\, AC \,+\, BK \\ && -D^2 \,-\, E^2 \,-\, F^2 \,-\, G^2 \,-\, H^2 \,-\, J^2 \end{array} \\ D_3 &=& ABC \,+\, ABK \,+\, ACK \,+\, BCK \,+\, 2(DEF \,+\, FGJ \,+\, DGH \,+\, EHJ) \\ && -(C \,+\, K)D^2 \,-\, (A \,+\, K)E^2 \,-\, (B \,+\, K)F^2 \\ && -(B \,+\, C)G^2 \,-\, (A \,+\, C)H^2 \,-\, (A \,+\, B)J^2 \end{array} \\ D_4 &=& \operatorname{Det}(Q) \end{array}$$

Characteristic Function (2)

$$Det(Q_u - \lambda I) = \lambda^3 + T_1\lambda^2 + T_2\lambda + T_3$$

- $T_1 \quad = \quad A + B + C$
- $T_2 = AB + BC + AC D^2 E^2 F^2$
- $T_3 = \operatorname{Det}(Q_u)$

Types of Quadric Surfaces

Types are decided by using a decision tree

01/04/2007

State Key Lab of CAD&CG

Ruled Quadric Surfaces

Ruled Quadric Surfaces

- A family of straight lines can be found which lie entirely on the quadric surface
- cylinders, cones, hyperbolic paraboloid, hyperboloid of one sheet

Pencils of two Quadric Surfaces

• $F_1(x,y,z)$ and $F_2(x,y,z)$ are two quadric surfaces, then the pencil of them is

 $F_1(x,y,z) + \alpha F_2(x,y,z)$

where α is real scalar

 Every quadric surface in the pencil of F₁(x,y,z) and F₂(x,y,z) pass the intersection curves of F₁(x,y,z) and F₂(x,y,z)

```
F_1(x,y,z)=0 and F_2(x,y,z)=0
```

Thus

$$F_1(x,y,z) + \alpha F_2(x,y,z) = 0$$

State Key Lab of CAD&CG

Pencils of two Quadric Surface

- At least one ruled quadric in the pencil of any two general quadrics
 - Ruled quadrics are easily parameterized
 - The quadric surface intersection curves can be expressed parametrically using the parameterization scheme for the ruled quadric in the pencil

Representation of Quadric Surfaces

- Two representation techniques:
 - Algebraic
 - Geometric

Algebraic Representation of Quadric Surfaces

- Represented by ten coefficients of <u>quadric</u> implicit polynomial equation F(x,y,z):
 - Advantage: a common set of routines can be written for handling all types of general quadric surfaces
 - Disadvantage: lack of computational robustness
 - Floating point data of imperfect accuracy
 - Internal inconsistency

Geometric Representation of Quadric Surfaces

• Represented by

- {1 point, 2 orthogonal unit vectors, 3 scalars}
- The point fixes the position of the surface
- The vectors define its orientation or axes
- The scalars determine its dimensions

• Example: Ellipsoid

- Its center (a point)
- Two of its three orthogonal axes (two orthogonal unit vectors)
- Three lengths (radii) along its three axes (three scalars)

Geometric Representation of Quadric Surfaces

- Advantages: its robustness and internal consistency
- Disadvantage: a large number of routines are needed to handle all the special cases that arise as a result of each type of surface being treated as a separate entity (e.g. a problem of combinatorial explosion in the number of intersection routines)

Applications of Quadric Surfaces

- A surface/surface or curve/surface intersection: computationally and topologically tractable as compared to parametric patches.
 - For example,

a quadric surface F(x,y,z)=0

a line L:(x(t),y(t),z(t)),

line and surface intersection F(x(t), y(t), z(t))=0 is a uni-variate quadratic function.

 Quadratic algebraic patches with smooth continuity for modeling complex free-form shapes
Download Course

http://www.cad.zju.edu.cn/home/jqfeng/GM/GM07.zip