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Introduction of Implicit Surface 
Modeling

• What is implicit surface?
• Comparison: implicit v.s. parametric 

surfaces
• Implicit methods for graphics and 

animation
• Implicit methods for CAD/CAM
• Other topics in implicit modeling
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What is implicit surface?

• Implicit surfaces are two-dimensional, 
geometric shapes that exist in three 
dimensional space.

Defined in R3: 
2-D manifold: 

A surface embedded in R3

Infinitesimal neighborhood around any point on the 
surface is topologically equivalent (‘ locally 
diffeomorphic’) to a disk.
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What is implicit surface?

2D manifold can be 
bounded (or closed): sphere
Unbounded: plane

A manifold with boundary: topologically 
equivalent  to either a disk or a half-disk 
locally.
Nonmanifold

NonmanifoldManifold Manifold with boundary
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What is implicit surface?

Manifold or not?  Eule-Poincaré formula

v-e+f=2-2h

v: number of vertices
e: number of edges
f:  number of faces
h: number of holes
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Examples of implicit surfaces

Metaball Skeleton Surface 
and Metaball

Convolution 
Surface
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Examples of implicit surfaces

Quadric Surface Compactly 
Supported Radial 
Basis Functions

A-Patch
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Definition of implicit surface

• Definition
{p=(x,y,z): f(p)=0, p∈R3}

Implicit function f : three classes of 
specification (definition)

Discrete sampling: a set of points on or within an object
Mathematical function: one or more equations are used to 
compute the coordinates of points on or within an object
Procedural methods: an algorithmic process computes 
points on or within an object
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Algebraic Function

• Algebraic surface: when f is algebraic 
function, i.e., polynomial function

The coefficients are not unique
f=ax+by+cz=0

a=b=c=1
a=b=c=1/√3

Algebraic distance: The value of f(p) is the 
approximation of  distance from p to the 
algebraic surface f=0
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Transcendental Function

• Transcendental Function
Trigonometric, exponential, logarithmic, 
hyperbolic functions, etc.
Approximated by convergent power series: 
Taylor series
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Definition of implicit surface

• Regular point p on the surface
∇f (p) =(∂f/∂x, ∂f/∂y, ∂f/∂z) ≠ 0

For cone, 0 is not the regular value for f

The cone f=-x2+y2+z2 is regular with the exception of a 
singularity at the origin (0,0,0).
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Mathematical Foundation

• Implicit Function Theorem:
if 0 a regular value of continuous function f(p), 
the implicit surface f-1(0) is a two-dimensional 
manifold 

• Jordan-Brouwer Separation Theorem
A 2D manifold separates R3 into surface itself 
and two connected open sets: an infinite(finite) 
`outside' and a finite(infinite) ‘inside'.
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Mathematical Foundation

f (x,y,z) = x2+y2+z2f (x,y,z) -1=x2+y2+z2-1

f > 0 outside

f = 0 surfacef < 0 inside
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Implicit v.s. Parametric Surfaces
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Complex Surface Modeling

Complex surface constructed by 
smoothly joined B-spline surface 

patches Complex surface constructed by 
convolution surface method



01/04/2007 State Key Lab of CAD&CG 17

Surfaces Intersection

Parametric Surface Intersection Implicit  Surface Intersection
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Tessellation

Up: tessellation of implicit surface

Bottom: tessellation of NURBS 
surface
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Blending or rounding

Left: Blending by using parametric surface

Right: Blending by using implicit surface
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Texture mapping

Texture mapping for NURBS surface Texture mapping for implicit surface
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Solid Modeling

Solid Modeling via Implicit SurfaceSolid Modeling via NURBS Surface
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Implicit v.s. Parametric Surfaces

• Implicitization: 

• Parameterization

Parametric 
representation

Implicit 
representation

Implicit 
representation

Parametric 
representation  
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About conversions

• Implicitization
Any rational parametric surface can be implictized by 
elimination of parameters in the parametric form
Implicitization is often computational demanding
The degree of implicit form is higher than its 
parametric form, the implicit representation of 

A parametric triangular patch of degree n is degree n2

A tensor product surface of degree m by n is degree 2mn
The number of terms in algebraic surface of degree n is 
(bicubic patch is degree 18, with 1330 terms!)
Approximated implicitization 

23Cn
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About conversions

• Parameterization: not always possible 
Algebraic surfaces of fourth and higher 
degree cannot be parameterized by rational 
functions
Parameterization is always possible for non-
degenerate quadrics and for cubics that have 
a singular point.
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Example:sphere

• Trigonometric: 
f(α,β)=(cosαcosβ, cosαsinβ, sinα)

α∈[0,π], β∈[0,2π]
• Rational:

x=4st, y=2t(1-s2), z=(1-t2)(1+s2), w=(1+t2)(1+s2)

• Implicit:

f(x,y,z)=x2+y2+z2-1
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Example: sphere

• Points on the parametrically defined   
sphere are readily found by substitution of 
α and β into the equations for x, y, and z
(similarly for s and t).

• The mapping from parametric space to 
geometric space is convenient.

• There is no obvious mapping for implicit 
form!
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Implicit methods for graphics and 
animation

• Blobby (metaball, soft objects)
• Implicit surface defined by skeletons

Distance surface
Convolution surface

• Variational Implicit Surfaces
• Level-Set Methods
• Procedural Models
• Animation applications
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Blobby (metaball, soft objects)
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Implicit surface defined by 
skeletons



01/04/2007 State Key Lab of CAD&CG 30

Variational Implicit Surfaces
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Level-Set Surface Models
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Procedural Models
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Reconstruction 

The polygonal 
bunny model was 
approximated by 
metaballs.
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Animation applications
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Implicit methods for CAD/CAM 

• Quadric surface 
• Algebraic surface patches

A-patch
Tensor-product algebraic surface patches
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Quadric Surface 
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A-patch: Algebraic Surface Patch
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A-patch: Algebraic Surface Patch
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Tensor-product algebraic surface 
patches
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Tensor-product algebraic surface 
patches
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Other Topics in Implicit 
Modeling

• Functional representation
• Visualizing implicit surfaces
• Animation by using implicit models
• Texture mapping
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Functional Representation (F-
rep)

• F-rep: denfines a whole geometric object 
by a single real continuous function of 
several variables as F(X)≥0

At least C0 continuous
F: a formula or an evaluation procedure
F-rep: combines classic implicits, skeleton 
based implicits, set-theoretic solids, sweeps, 
volumetric objects, parametric and procedural 
models
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Functional Representation (F-
rep)

• Set-theoretic operations
• Blending set-theoretic 

operations
• Offsetting
• Cartesian product
• Bijective mapping
• Metamorphosis

• Relations
• Sweeping by a moving 

solid 
• Deformation with 

algebraic sums
• Three-dimensional 

texture modeling
• Interaction
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F-rep: examples

Moving solid

Artistic shape modeling using real functions 
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F-rep: hairs

Using real functions with application to hair modeling 

http://www.ntu.edu.sg/home/assourin/FRep/hair.htm
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Visualizing implicit surfaces

• Polygonization: Generation of polygons 
from implicit surface or volume data

Uniform
Adaptive

• Ray tracing
Classical
Sphere tracing

• Particle system
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Uniform Polygonization

A sphere approximated from depths 1 through 5.
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Adaptive Polygonization



01/04/2007 State Key Lab of CAD&CG 49

Polygonization of non-manifold 
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Classic Ray Tracing
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Sphere tracing
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Sphere tracing
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Particle system: display and control

http://graphics.cs.uiuc.edu/projects/surface/
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Field Function Defined Implicit 
Surface

• Field Function in 3D
• Simple Control Primitives: point etc.

Blobby Molecules
Metaball
Soft Objects
Discussion and Extensions

• Skeletal Primitives
Distance surface
Convolution surface
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Field Function in 3D

• Consider implicit surface
D(x,y,z)-Iso=0

D is called scalar field function
Distance field is one of good choice

Distance to a Curve: 3 and 9 linear segments
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Example of Distance Field

• Consider function D(r)=1/r2 , control points in 3D space, 
where r is the distance to one control points

• The total field strength at any point in space is the sum 
of the field strengths due to each control point 
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Example of Distance Field

• Changing control points as line segments

Simple summation 
of distance fields 
will result in bulge!
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Blobby Molecules by Blinn

• Second Graphics Fellow at 
Microsoft

• 1983 -- The first Siggraph 
Computer Graphics Achievement
Award for work in lighting and 
surface modeling techniques. 

• 1989 -- IEEE Outstanding 
Contribution Award for Jim Blinn's
cornerJim Blinn

http://research.microsoft.com/users/blinn/



01/04/2007 State Key Lab of CAD&CG 59

Blobby Molecules 

• Hydrogen atoms electron density fields 
(Gaussian Distribution)

"b" : standard deviation of Gaussian curve  
"a" : height of Gaussian Curve
“r” : the distance to atom center, r≥0

2

( ) brD r ae−=

2D Gaussian Function 1D Gaussian Function
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Multiple Blobby Molecules 

• The overall density at a given point for multiple 
atoms is summation of individual ones:

The “blobbiness” of a model can be controlled by 
adjusting the parameters ai and bi. 

ai is weight/strength of ith blobby molecule
bi is influence radius of ith blobby molecule

The implicit surface is defined as all points where the 
density is equal to some threshold value Iso.

2

( ) ib r
i

i

D p a e Iso−= =∑
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Examples of Blobby Models
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Blobby Molecules 

• Disadvantages of Blobby Molecules 
Exponential distribution of density is Global

Computationally expensive!
Blinn: Cut off after r >R

R
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Metaball by Nishimura

• Nishimura at Osaka University in 
Japan proposed Metaball in 1983 
(Almost same with Blinn)
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Metaball by Nishimura

• Piecewise quadrics to approximate the Gaussian 
function

"b" : Influence radius of metaball 
"a" : weight of metaball 
“r” : the distance to metaball center, r≥0

2

2

2

31            0 / 3

3( ) 1           / 3
2

0                         

ra r b
b

a rD r b r b
b

r b

⎧ ⎛ ⎞
− ≤ ≤⎪ ⎜ ⎟

⎝ ⎠⎪
⎪⎪ ⎛ ⎞= − ≤ ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ≥
⎪
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Metaball Systems

• The system is composed of several 
metaball

Each metaball has its own parameters (ai, bi)
Fusion effects

( ) ( )i
i

D p D p Iso= =∑
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Examples of Metaballs
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Metaball

• Advantages
Field function is locally defined in [0,b]
Fast ray and metaball intersection 
computation!

• Disadvantage
Distance r: square root , expensive
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Soft Object by Wyvill Brothers  

• Soft objects is proposed by Wyvills in Canada 
and New Zealand: truncated Taylor expansion 
series of exponential function

Geoff WyvillBrian Wyvill

http://www.cs.otago.ac.nz/gpxpriv/public_html/Geoff/NoisePages/Nature.html
http://pages.cpsc.ucalgary.ca/~blob/brianwyvill.html


01/04/2007 State Key Lab of CAD&CG 69

Field Function for Soft Object

• Definition

The function has following properties
D(0)=1, D(b)=0, D(b/2)=0.5, C′(0)=C′(b)=0

The volume bounded by D(r)<m is one half of that 
bounded by D(r)<m/2

6 4 2

6 4 2

4 17 221           
( ) 9 9 9

0                                                  

r r ra r b
D r b b b

r b

⎧ ⎛ ⎞
− + − ≤⎪ ⎜ ⎟=⎨ ⎝ ⎠

⎪ >⎩
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Examples of Soft Objects
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Examples of Soft Objects

Two blend soft objects with different threshold: 84,  44,  24, 11

25 balls, threshold is 0.5 Trains modeled by soft objects
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Soft Object 

• Advantages
Only square term of the distance r, square 
root computation is removed!
Finite extent of each ball
Computational costs:

Blobby >> Metaball > Soft object 
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Discussions

• The functions described here guarantee a continuously 
and smoothly changing surface 

• Comparison of four field functions

• The blending function can be designed freely!

rt

t

rmax
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Extensions

• Minus primitives: set weight negative
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Applications of Metaball

Shape approximation and representation by metaballs



01/04/2007 State Key Lab of CAD&CG 76

Skeletal Primitives

• Disadvantage of point primitives: flat 
surfaces can only be approximated.

Evenly spaced grid of metaballs(16): threshold is 1.66 or 0.5
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Skeletal Primitives

• The use of complex skeletons is one possible 
solution to this problem.

Point can be replace as lines, polygons, curves, 
surfaces , volumes and any other complex geometric 
skeletons
The shape of a primitive follows the shape of its 
skeletons

• Two Approaches
Distance surfaces
Convolution Surfaces
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Examples of Skeletal Primitives

skeletons

contour line drawing

skeletons

ray traced image
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Examples of Skeletal Primitives

Complex skeletons: ellipsoid, sphere, line segments, points
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Distance surface

• A distance surface is a surface that is 
defined by distance to some set of base 
skeleton elements

Union of skeletons: Distance surface to the union of 
skeletons
Union of primitive surfaces: Boolean operation 
Blending of primitive surfaces: Algebraic blending
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Union of Skeletons

• Definition

S is the skeleton set
s is the point on one of the skeleton
max: maximum field value, nearest point on 
the skeleton
Field function can be specified as before, 
not restricted as exponential function

2

( , ) max exp
2s S

s p
f S p ∈

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
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About Union of Skeletons

• Distance surface is rounded when skeleton is convex.
• Distance surface is tangent discontinuous and exhibits a 

crease when the skeleton is concave 

Left: curve shown as dashed and distance shown as greyscale intensity
middle and right: curve approximated by three and nine segments
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Union of Distance Surfaces

• Union of distance surface is defined as 
weighted union of each primitive surface

• Definition

ci: weight, positive or negative
Fi: field function as before
ri: the distance from p to the nearest point on 
the i-th skeleton.

( ) ( )total i i ii
F p c F r=∑
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About Union of Distance Surfaces

• Simple union of distance surfaces will  
produce bulges and creases may area 
where the skeletons meet.
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Algebraic Blends of Primitives

• To eliminate creases or bulge , the primitive 
volumes (“metaball ”) must form a blend, rather 
than a union.

• What is blending: smooth transition along 
common boundary among several primitives



01/04/2007 State Key Lab of CAD&CG 86

Blending Functions (1)

• Super-elliptical Blending

P1, P2 are algebraic distances to skeletal 
elements 1 and 2, usually C1 continuous
r1 and r2 are the ranges of influence for 
primitives P1 and P2

[x]+ is max (0, x), and t is the ‘thumbweight.’
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Example of Blending 
Functions (1)

Super-elliptical Blending of sphere and cylinder primitives (t=3)
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Example of Blending 
Functions (1)

Super-Elliptic Blend of Two Cylinders

There is a bulge where the cylinders intersect.
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Blending Functions (2)

• Improved Super-elliptical Blending

θ: the angle between the gradients of the two 
primitives at a point p:
The influence range is diminished according 
to θ
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Blending Functions (2)

θ = 0 the range is fully diminished and the simple 
union of the primitives results
θ = 90°(concave condition), the range is undiminished, 
and a blend occurs. 
To avoid enlarging the primitive ranges, cos(θ) must 
be nonnegative

simple union      bulging blend       use of cos use of nonnegative cos
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Blending Functions (3)

• Super-elliptical blend is extended to k 
primitives:
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Convolution Surface

• A bulge-free implicit blend technique

• The convolution surface treats a skeleton 
S as a set of points, each of which 
contributes to the implicit surface function 
according to its distance to p. 
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Convolution Surface

• Blobby systems by Blinn

where si is a point on the skeleton, c is threshold 
(constant)
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Convolution Surface

• If S = {si} is a set of infinitesimally spaced 
points, f can be expressed as an integral:

where u ranges over all points on the 
skeleton. It defines a convolution surface
Gaussian function is a 3D filter/kernel

• S = {si} can be any skeletons: point, line, 
curve, surface, volumes etc.
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About Convolution Surface

• The convolution has been applied 
extensively in the processing of 1D audio 
signal, 2D image, 3D volume image.

• The convolution scaled the frequency 
components of the signal via filter(kernel)

Low-pass filter: smoothing effect, e.g., 
Gaussian kernel 
High-pass filter: enhance detail effect
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Gaussian Kernels

Gaussian Kernels:    left: one-dimensional, right: two-dimensional

Infinite Sum is a Convolution
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About Convolution Surface

• The convolution is a linear operator: 

It is property of superposition
The sum of the convolutions of any division of 
a skeleton is identically equal to the single 
convolution of the entire skeleton

• The convolution surface is a smooth 
shape without introducing bulges. 

1 2 1 2( )h s s h s h s⊗ + = ⊗ + ⊗
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Illustration of Superposition

The superposition Property: The two line segment are brought 
together (left); sum of convolutions of the two segments (right), 
convolution of single segment (bottom)

Two Segments Convolved with the Gaussian Kernel
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About Convolution Surface

• Along convex portions of the skeleton the surface 
mimics the union operator

• Along concave portions, the surface yields a blend.
• For isolated convex skeletons, such as triangles or 

segments, convolution produces surfaces of similar 
shape to distance surfaces. 

• For complex skeletons, however, convolution yields 
crease-free surfaces with adjacent primitives blending 
without seam or bulge.
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Gaussian kernel

• For standard Gaussian kernel:

A signal modified by such a kernel will 
maintain its original energy!

2

21 1
2

x

e dx
π

∞ −

−∞
=∫

Convolution of a box with unit-integral kernel

1

1/2
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Energy Discussion in Convolution

• Because the Gaussian is symmetric, the 
convolution equals ½ where the box function 
undergoes transitions

For an iso-surface contour level of ½, the convolution 
surface will pass through the endpoints of skeletal 
segments and through the edges of skeletal polygons.

• A kernel with integral less (greater) than one 
would attenuate (amplify) a signal 
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Gaussian kernel

• Advatnages of Gaussian Kernel
C∞ Smooth
Unit integral 
Separable 

• Disadvantages of Gaussian Kernel
Globally Defined on the R1,2,3

Cannot be analytical integrated, only numerically 
approximated
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Examples of Convolution Surfaces

Two Segments Convolved with the Gaussian Kernel
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Examples of Convolution Surfaces

Threshold=1.0, 0.75, 0.5, 0.35

Line segment and arc skeletons
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Examples of Convolution Surfaces

Convolution Surface: Hand Crafted by Jules Bloomenthal

Convolution Surface
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Other kernels: Sinc Kernel

• Sinc kernel is :  sin(πx)/πx.

The sinc is the ideal low-pass filter: its Fourier 
transform is the box function.
Cutoff frequency effect

The Sinc Kernel
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Other kernels: Sinc Kernel

Problem with sinc kernel: none monotonically

• Monotonicity of the kernel is a necessary 
property for a satisfactory convolution surface

Ringing of the filter may introduce a spurious contour

Convolution with Gaussian (left) and Sinc (right)
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Other kernels: B-spline Kernels

• B-spline kernel has similar shape with 
Gaussian

hB-spline(0)=2/3,  hB-spline(0.72235)≈1/2
The support of kernel is 2
The integral of B-Spline kernel is 1, not separable
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Other kernels: Wyvill Kernels

• Wyvill kernel also has similar shape with 
Gaussian

hWyvill(x) = (9-4x6+17x4-22x2)/9.
After scale: hWyvill(0)=1,  hWyvill(1)=1/2
The integral of Wyvill kernel is 1
The support of kernel is 1
Not separable

Wyvill kernel (red) 
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Other kernels: Modified Wyvill
Kernels

• Modified Wyvill kernel also has similar 
shape with Gaussian

hNewWyvill(x) = (1-x2)3.
After scale: hWyvill(0)=1
The integral of Modified Wyvill kernel is 1
The support of kernel is 1
Not separable

Modified Wyvill kernel (blue) 
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Compare the different kernels

Comparison of Filter Kernels after scale
upper (in black): the Gaussian kernel, e-0.69314715x2

middle (in red): the B-spline kernel, (1.5)hBspline(0.72235x)
lower (in blue): the Wyvill kernel, hWyvill(0.5x)
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Computation of Convolution

• The Gaussian is separable and spherically 
symmetric

Integration by part!
• B-spline and Wyvill kernel is not separable 

summation of point source terms
the product of integration and distance filters.
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Computation of Convolution

Approximations to B-
Spline Convolution
left: summation of point 
sources
right: product of filters

Approximations to 
Wyvill Convolution
left: summation of point 
sources
right: product of filters
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Computation of Convolution

Gaussian Convolution 
approximation for 3, 7, 
and 15 Segments (left) or 
Points (right)
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Ramification Modeling

A Two-Ramiform with 
Constant Radii

A Trifurcated Ramiform
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Please Enjoy More Examples of 
Convolution Surface
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Snowflake 

Please Enjoy More Examples of 
Convolution Surface
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Potted plant 
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Maple tree 
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A gourd shape

Please Enjoy More Examples of 
Convolution Surface
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A dinosaur

Please Enjoy More Examples of 
Convolution Surface
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An cartoon enforcer

Please Enjoy More Examples of 
Convolution Surface
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Quadric Surfaces

• Basics of Quadric Surfaces
• Properties of Quadric Surfaces
• Representation of Quadric Surfaces
• Applications of Quadric Surfaces
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Basics of Quadric Surfaces

• A general quadric surface is
Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +2Gx + 

2Hy + 2Jz + K = 0
• Its matrix representation 

{x | F(x) = xTQx = 0}
where
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Basics of Quadric Surfaces

• There are nine types of general quadrics according  
coefficients of this algebraic equation 

Ellipsoid
Elliptic cone
Cylinder (elliptic, parabolic, hyperbolic)
Hyperboloid (of 1 sheet, of 2 sheets)
Paraboloid (elliptic, hyperbolic)

• Degenerated cases 
point, plane, parallel planes,

• Invalid shapes 
imaginary quadric, intersecting imaginary planes, imaginary 
parallel planes
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Sketches of General Quadric 
Surfaces
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Natural Quadrics

• Natural Quadrics: subset of general 
sphere (special case of ellipsoid) 
right circular cone (special case of elliptic 
cone)
right circular cylinder (special case of elliptic 
cylinder)
Planes
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Natural Quadrics 

• Natural quadrics are by far the most popular set 
of quadric: Prismatic Solid

Mechanical CAD domains



01/04/2007 State Key Lab of CAD&CG 129

Quadric Surface Patches

• Pieced together with tangent plane (G1) 
continuity to create free-form shapes

Some complex free-form solids modeled with quadric algebraic patches: (a) a 
genus five solid with 2,400 quadratic algebraic patches, (b) a bone head, the 
entire bone was modeled with 5,696 quadratic algebraic patches, and (c) a 
knot modeled with 6,912 quadratic  algebraic patches.
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Quadric Surface Patches

(a) A vase modeled with 336 quadratic algebraic patches, rendered 
with transparency to show some of its trunctets. (b) The same vase in 
an environment with multiple light sources and participating media.
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Properties of Quadric Surfaces

• Let QA (QB) denotes the matrix representation of 
quadric surface in frame A(B),  M denotes an 
affine transformation from frame A to from B

Then the transformation of quadrics is

QB=MTQAM



01/04/2007 State Key Lab of CAD&CG 132

Properties of Quadric Surfaces

• Let Qu denotes upper-left 3×3 sub-matrix of Q

The rank of both Q and Qu are invariant under affine 
transformation

The type of quadric surface is invariant under affine 
transformations

The quadric surfaces are invariant under rigid 
motions
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Characteristic Function 

• Characteristic functions are
Det(Q-λI) Det(Qu-λI)

Invariant under rigid motion
Used for classifying the type of quadrics 
according to its eignvalues
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Characteristic Function (1)  
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Characteristic Function (2)  
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Types of Quadric Surfaces 
• Types are decided by using a decision tree
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Ruled Quadric Surfaces

• Ruled Quadric Surfaces
A family of straight lines can be found which 
lie entirely on the quadric surface
cylinders, cones, hyperbolic paraboloid, 
hyperboloid of one sheet
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Pencils of two Quadric Surfaces

• F1(x,y,z) and F2(x,y,z) are two quadric surfaces, 
then the pencil of them is 

F1(x,y,z)+αF2(x,y,z)
where α is real scalar 

Every quadric surface in the pencil of F1(x,y,z) and 
F2(x,y,z) pass the intersection curves of F1(x,y,z) and 
F2(x,y,z)

F1(x,y,z)=0  and  F2(x,y,z)=0
Thus

F1(x,y,z)+αF2(x,y,z)=0
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Pencils of two Quadric Surface

At least one ruled quadric in the pencil of any 
two general quadrics

Ruled quadrics are easily parameterized 
The quadric surface intersection curves can be 
expressed parametrically using the 
parameterization scheme for the ruled quadric in 
the pencil
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Representation of Quadric Surfaces

• Two representation techniques:
Algebraic
Geometric
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Algebraic Representation of 
Quadric Surfaces

• Represented by ten coefficients of quadric 
implicit polynomial equation F(x,y,z): 

Advantage: a common set of routines can be 
written for handling all types of general 
quadric surfaces
Disadvantage: lack of computational 
robustness

Floating point data of imperfect accuracy
Internal inconsistency
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Geometric  Representation of 
Quadric Surfaces

• Represented by 
{1 point, 2 orthogonal unit vectors, 3 scalars}

The point fixes the position of the surface
The vectors define its orientation or axes
The scalars determine its dimensions

• Example: Ellipsoid
Its center (a point)
Two of its three orthogonal axes (two orthogonal unit 
vectors)
Three lengths (radii) along its three axes (three scalars)



01/04/2007 State Key Lab of CAD&CG 143

Geometric  Representation of 
Quadric Surfaces

• Advantages:  its robustness and internal 
consistency

• Disadvantage: a large number of routines 
are needed to handle all the special cases 
that arise as a result of each type of 
surface being treated as a separate entity 
(e.g. a problem of combinatorial explosion 
in the number of intersection routines)
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Applications of Quadric 
Surfaces

• A surface/surface or curve/surface intersection: 
computationally and topologically tractable as compared 
to parametric patches.

For example, 
a quadric surface F(x,y,z)=0
a line L:(x(t),y(t),z(t)), 
line and surface intersection F(x(t),y(t),z(t))=0 is a uni-variate
quadratic function.

• Quadratic algebraic patches with smooth continuity for 
modeling complex free-form shapes



01/04/2007 State Key Lab of CAD&CG 145

Download Course 

http://www.cad.zju.edu.cn/home/jqfeng/GM/GM07.zip


	Implicit Surface Modeling
	Contents
	Introduction of Implicit Surface Modeling
	What is implicit surface?
	What is implicit surface?
	What is implicit surface?
	Examples of implicit surfaces
	Examples of implicit surfaces
	Definition of implicit surface
	Algebraic Function
	Transcendental Function
	Definition of implicit surface
	Mathematical Foundation
	Mathematical Foundation
	Implicit v.s. Parametric Surfaces
	Complex Surface Modeling
	Surfaces Intersection
	Tessellation 
	Blending or rounding
	Texture mapping
	Solid Modeling
	Implicit v.s. Parametric Surfaces
	About conversions
	About conversions
	Example:sphere
	Example: sphere
	Implicit methods for graphics and animation
	Blobby (metaball, soft objects)
	Implicit surface defined by skeletons
	Variational Implicit Surfaces
	Level-Set Surface Models
	Procedural Models
	Reconstruction 
	Animation applications
	Implicit methods for CAD/CAM 
	Quadric Surface 
	A-patch: Algebraic Surface Patch
	A-patch: Algebraic Surface Patch
	Tensor-product algebraic surface patches
	Tensor-product algebraic surface patches
	Other Topics in Implicit Modeling
	Functional Representation (F-rep)
	Functional Representation (F-rep)
	F-rep: examples
	F-rep: hairs
	Visualizing implicit surfaces
	Uniform Polygonization
	Adaptive Polygonization
	 Polygonization of non-manifold 
	Classic Ray Tracing
	Sphere tracing
	Sphere tracing
	Particle system: display and control
	Field Function Defined Implicit Surface
	Field Function in 3D
	Example of Distance Field
	Example of Distance Field
	Blobby Molecules by Blinn
	Blobby Molecules 
	Multiple Blobby Molecules 
	Examples of Blobby Models
	Blobby Molecules 
	Metaball by Nishimura
	Metaball by Nishimura
	Metaball Systems
	Examples of Metaballs 
	Metaball
	Soft Object by Wyvill Brothers  
	Field Function for Soft Object
	Examples of Soft Objects
	Examples of Soft Objects
	Soft Object 
	Discussions
	Extensions
	Applications of Metaball
	Skeletal Primitives
	Skeletal Primitives
	Examples of Skeletal Primitives
	Examples of Skeletal Primitives
	Distance surface
	Union of Skeletons
	About Union of Skeletons
	Union of Distance Surfaces
	About Union of Distance Surfaces
	Algebraic Blends of Primitives
	Blending Functions (1)
	Example of Blending Functions (1)
	Example of Blending Functions (1)
	Blending Functions (2)
	Blending Functions (2)
	Blending Functions (3)
	Convolution Surface
	Convolution Surface
	Convolution Surface
	About Convolution Surface
	Gaussian Kernels
	About Convolution Surface
	Illustration of Superposition
	About Convolution Surface
	Gaussian kernel
	Energy Discussion in Convolution
	Gaussian kernel
	Examples of Convolution Surfaces
	Examples of Convolution Surfaces
	Examples of Convolution Surfaces
	Other kernels: Sinc Kernel
	Other kernels: Sinc Kernel
	Other kernels: B-spline Kernels
	Other kernels: Wyvill Kernels
	Other kernels: Modified Wyvill Kernels
	Compare the different kernels
	Computation of Convolution
	Computation of Convolution
	Computation of Convolution
	Ramification Modeling
	Please Enjoy More Examples of Convolution Surface
	Please Enjoy More Examples of Convolution Surface
	Please Enjoy More Examples of Convolution Surface
	Please Enjoy More Examples of Convolution Surface
	Please Enjoy More Examples of Convolution Surface
	Quadric Surfaces
	Basics of Quadric Surfaces
	Basics of Quadric Surfaces
	Sketches of General Quadric Surfaces
	Natural Quadrics
	Natural Quadrics 
	Quadric Surface Patches
	Quadric Surface Patches
	Properties of Quadric Surfaces
	Properties of Quadric Surfaces
	Characteristic Function 
	Characteristic Function (1)  
	Characteristic Function (2)  
	Types of Quadric Surfaces 
	Ruled Quadric Surfaces
	Pencils of two Quadric Surfaces
	Pencils of two Quadric Surface
	Representation of Quadric Surfaces
	Algebraic Representation of Quadric Surfaces
	Geometric  Representation of Quadric Surfaces
	Geometric  Representation of Quadric Surfaces
	Applications of Quadric Surfaces
	Download Course 

