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Overview

• Constructing Bézier curves, B-spline 
curves and subdivision curves from 

a control polygon + an algorithmic =
refinement

• Refinement methods for surface
Defined algorithmically
Applicable for complex control mesh 
Simple and easy to implement. 
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What is a Refinement Scheme

A refinement process is a scheme which defines a 
sequence of control polygons

where for any k>0, each   can be written as k
jP
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Any element      can be written as a linear 
combination of the control points                               
from the control polygon generated in the prior 
step

For each fixed j and k the sequence {αi,j,k} is 
frequently called a mask.

The number of control points in each successive 
polygon (e.g. curve cases)

Increase:   Chaikin’s Curves 
Decrease: Geometric Construction of Bézier Curves

k
jP

What is a Refinement Scheme
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Simplification of refinement scheme

• Locality Scheme: Calculate the kst level control 
points from the small number of k-1st level 
control points (most of the αi,j,ks are zero)

• Uniform Scheme (level,k): αs are independent of 
the level of refinement k ( the scheme is 
basically the same at each iteration of the 
refinement process )

• Stationary Scheme (index, j): the mask is the 
same for every point of a control polygon
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Example of Refinement Scheme

• Corner Cutting Scheme: If all points that 
result from a refinement process lie on the 
lines joining the points of a control polygon

Chaikin’s Curve
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A Matrix Method for Refinement

The equation of refinement

can be written in matrix form as
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A Matrix Method for Refinement

For all control points at kth level

where Sk is the refinement matrix
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A Matrix Method for Refinement

The Sk is an (nk +1)×(nk-1+1) matrix

In general the matrix is sparse (i.e. most of the entries 
being zero) with non-zero entries clustered along the 
diagonal
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where 0≤j≤n-k and k=1,2,...,n. Each successive point is 
the midpoint of the two corresponding points in the 
previous control polygon.

Example - A Stationary Uniform 
Refinement Scheme

Given the control polygon {P0,P1,…,Pn}
Define refinement scheme by the following equation 
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Example - A Stationary Uniform 
Refinement Scheme

• The refinement procedure has following 
features

For each step, one fewer points in control 
polygon than those in previous step 
Stop after n steps 
The final control polygon has one point

• Two of the α s are 1/2 and the remainder 
are zero. Thus the refinement matrix Sk is 
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Example - A Stationary Uniform 
Refinement Scheme

the matrix is
k×(k+1)

The complete refinement defines a 
point on the Bézier curve of degree n
with the initial control polygon
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Example - A Non-Stationary 
Uniform Subdivision Scheme

Given the control polygon {P0,P1,…,Pn}
Define the refinement scheme by the following equation 

and

for j=0,1,2,3,....
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Example - A Non-Stationary 
Uniform Subdivision Scheme
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Example - A Non-Stationary 
Uniform Subdivision Scheme
Applying this refinement process to a control polygon 
of “length” n+1 gives a new control polygon of “length”
2n.

length = number of segments in control polygon

This is just Chaikin’s Algorithm for curve generation. 
As the algorithm proceeds the number of control 
points gets arbitrarily large, but converges to a unique 
curve – Uniform Quadratic B-Spline Curve
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Refinement Schemes for Meshes

• Similar methods (with much more notationally complex 
mathematics) exist for control meshes that result in 
surface generation algorithms. 

• In general, the idea is the same - the refinement 
operation generates new control points from the 
control points of the previous mesh. 
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Chaikin's Curves 

• Overview
• The Corner-Cutting Paradigm
• Chaikin's Method 
• Example - How Chaikin's Algorithm Works 
• Example - A Closed Curve 
• Discussions
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Ovweview

In 1974, George Chaikin specified the first corner 
cutting or refinement algorithms to generate a curve 
from a set of control points, or control polygon.
(http://www.cooper.edu/~george/ )

Forgotten: a quadratic uniform B-spline curve. 

His curves were generated by successive refinement 
of a control polygon – is now utilized to generate a 
wide variety of curve and surface types.

http://www.cooper.edu/~george/
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The Corner-Cutting Paradigm

• Researchers since Bézier had been working with 
curves generated by control polygons but had focused 
their analysis on the underlying analytical 
representation, frequently based upon Bernstein 
polynomials.

• Chaikin develop algorithms that worked with the 
control polygon directly  -- so-called geometric 
algorithms. 

• “corner cutting” -- generates a new control polygon by cutting the 
corners off the original one. 
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The Corner-Cutting Paradigm

an initial control polygon has 
been refined into a second 
polygon (slightly offset) by 
cutting off the corners of the 
first sequence 

• Clearly we could then take this second control 
polygon and cut the corners off it, producing a third 
sequence, etc. In the limit, hopefully we would have 
a curve. This was Chaikin's idea! 
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Given a control polygon {P0,P1,…,Pn}. we refine this control polygon 
by generating a new sequence of control points

{Q0,R0,Q1,R1,…,Qn-1,Rn-1}. 

where each new pair of points Qi, Ri are to be taken to be at a ratio 
of ¼ and ¾ between the endpoints of line segment PiPi+1.

• Chaikin utilized fixed ratios on cutting off his corners, 
so that they were all cut the same.

Chaikin's Method 
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Chaikin's Method 

• These 2n new points can be considered a new control 
polygon – a refinement of the original control polygon.

The refinement formulae
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Example - How Chaikin's Algorithm 
Works 

(1)

(3)

(2)

(4)
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Example - A Closed Curve 

(1) (2)

(3) (4)
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Discussions

• For different type of control polygons
• Open control polygon: (n+1) vertices 2n vertices
• Close control polygon:  n vertices 2n vertices

• For graphics purposes, we will stop after a number 
of refinements and approximate the curve by 
connecting the points of the resulting control polygon 
by straight lines. 

• The idea is unique in that the underlying 
mathematical description (uniform quadratic B-spline 
curve) is ignored in favor of a geometric algorithm 
that just selects new control points along the line 
segments of the original control polygon. 
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Quadratic Uniform B-Spline Curve
Refinement

• Overview

• The Matrix Equation for the Quadratic 
Uniform B-Spline Curve 

• Splitting and Refinement 

• The General Refinement Procedure 
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Overview

• Subdivision Curves: the refinement 
methods are based upon the binary 
subdivision of uniform B-spline curves

• The refinement method for a quadratic 
uniform B-spline curve ≡ Chaikin's 
Algorithm
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The Matrix Equation for the 
Quadratic Uniform B-Spline Curve 

Given a set of control points {P0,P1,…,Pn}, the quadratic uniform B-
spline curve P(t) defined by these control points can be defined in  
n-1 segments by the n-1 equations 

for k=0,1,…,n-2, and 0≤t≤1, and where

The matrix M, when multiplied by [1  t t2] defines the quadratic 
uniform B-spline blending functions
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Splitting and Refinement 

Studying the binary subdivision of a quadratic uniform B-spline curve 
P(t) defined by the control polygon {P0,P1,P2}
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Splitting and Refinement 

We can perform a binary subdivision of the curve, by applying one of 
two splitting matrices 

to the control polygon. (When applied to the control polygon SL gives 
the first half of the curve, and SR gives the second half.) 

Several of the control points for the two subdivided components are 
the same. Thus, we can combine these matrices, creating a  4×3
matrix as below
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Splitting and Refinement 

apply it to a control polygon as follows
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Splitting and Refinement 

Subdivision at 1/4 and 3/4 along each of the lines of the control 
polygon. These are the same points as are developed in Chaikin's 
method
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The General Refinement Procedure

The general procedure is 

1. Given a control polygon, 

2. Constructing new points along each edge of the original 
polygon at a distance of 1/4 and 3/4 between the endpoints of 
the edge. 

3. Assembling these points into a new control polygon,  

4. Useing it as input to another refinement operation, generating a 
new control polygon (repeating step 2 and 3)

5. Continue this process until a refinement is reached that 
accurately represents the curve to a desired resolution. 
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The General Refinement Procedure

The limit of the sequence of control polygons generated 
by the refinement procedure converges to a quadratic 
uniform B-spline curve

• The general refinement procedure is developed from the binary 
subdivision of a uniform B-spline curve

• The control points of the refined polygon are unions of those of
the subdivided curves

Chaikin's curve is a quadratic uniform B-spline curve!
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Cubic Uniform B-Spline Curve
Refinement

• Overview
• The Matrix Equation for the Cubic Uniform 

B-Spline Curve
• Splitting and Refinement 
• The General Refinement Procedure 
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Overview

• Developing the refinement method for a 
cubic uniform B-spline curve

• The refinement algorithm can be specified 
in a different manner which eventually 
allows us to use eigenanalysis and directly 
calculate points on the curve. 
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The Matrix Equation for the Cubic 
Uniform B-Spline Curve

Given a set of control points {P0,P1,…,Pn}, the cubic uniform B-
spline curve P(t) defined by these control points can be defined in  
n-2 segments by the n-2 equations 

for k=0,1,…,n-3, and 0≤t≤1, and where
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The Matrix Equation for the Cubic 
Uniform B-Spline Curve

The matrix M, when multiplied by [1  t t2  t3] defines the cubic 
uniform B-spline blending functions
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Splitting and Refinement 

Studying the binary subdivision of a cubic uniform B-spline curve P(t)
defined by the control polygon {P0,P1,P2, P3}
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Splitting and Refinement 

We can perform a binary subdivision of the curve, by applying one of 
two splitting matrices 

to the control polygon. (When applied to the control polygon SL gives 
the first half of the curve, and SR gives the second half.) 

Several of the control points for the two subdivided components are 
the same. Thus, we can combine these matrices, creating a  5×4
matrix as below
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Splitting and Refinement 

apply it to a control polygon as follows
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Splitting and Refinement 

generating a new control polygon which serves as the refinement of the 
original. The five control points of this new control polygon specify the two 
subdivided halves of the curve - and therefore specify the curve itself
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The General Refinement Procedure

• If examining the rows of 5×4 matrix used in the 
refinement, we see that they have two distinct forms. 

• Classifying the points of the refinement as vertex and 
edge points. This classification makes the description 
of the refinement process quite straightforward.

Vertex point

Edge point
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Vertex and Edge Points

• Overview
• Classifying the Refinement Points
• An Example of the Refinement Algorithm



12/25/2006 State Key Lab of CAD&CG 47

Overview

• The refinement process defined by the cubic uniform 
B-spline curve generates a sequence of control 
polygons that converges to the curve. 

• Each of refinement points can be classified as either 
a “vertex point” or an “edge point” and methods can 
be specified to calculate each point. 

• This procedure allows us to directly calculate points
on the limit curve without going through the 
refinement
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Classifying the Refinement Points

Suppose we are given a control polygon {P0,P1,P2, P3}

Initial Control Points Refinement Control Points 
{E0, V0, E1, V1, E2}

Edge points {E0, E1, E2} : three points on the edges
Vertex points {V0, V1}:  two points close to original points
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Classifying the Refinement Points

Combining and applying the splitting matrices that generate the binary 
subdivision of the curve

So the edge points are calculated by 
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Classifying the Refinement Points

The edge points are the midpoints of the line segments connecting 
the original control points.
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Classifying the Refinement Points

The vertex points V0 and V1 are calculated by 
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Classifying the Refinement Points

The vertex points are the midpoint of the line segment that joins the 
respective midpoints of the two line segments from the vertex point to 
the respective edge points.
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An Example of the Refinement 
Algorithm
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Developing a Matrix Equation for 
Refinement

• Overview
• Refinement at a Vertex Point 
• So How Do You Do Refinement In 

General ? 
• Summary
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Overview

Refinement of the cubic uniform B-spline curve can be 
written as

where {P0,P1,P2,P3} is the original control polygon and   

is the result of the refinement.
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Overview

• We can classify points of the refinement as vertex 
points and edge points

• Here we examine what happens to a particular 
control point (vertex point) under this refinement 
procedure. Examining this closely, we can develop 
an alternate matrix equation that can also be used to 
represent the refinement procedure
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Refinement at a Vertex Point

Focusing on a single vertex point (V) of the control 
polygon and the two points (E0, E1) adjacent to V

Original vertex points (V) and 
two neighbor points (E0, E1)

After refinement
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Refinement at a Vertex Point

• In the refinement procedure, we can use these three 
points to create a new vertex point V1 and two new 
edge points E0

1 and E1
1

• We can write this in vector form (we note that the 
matrices are applied to vectors of points, and 
therefore the operations must be affine). 
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Refinement at a Vertex Point

where matrix A

is called refinement matrix
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So How Do You Do Refinement In 
General ?

Given a set of control points {P0,P1,…,Pn}, we the vectors 

apply the refinement matrix to each vector, giving new vertex and edge points

These new points are then assembled into new control polygon 
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Summary

• It is possible to write the refinement process for cubic 
subdivision curves in a matrix form which focuses on 
the action of the refinement on a single control point. 
In this case, we can calculate new vertex points and 
edges points just by applying the refinement matrix to 
the vertex-edge-point vector. 

• We note that this procedure does take more 
processor time than the refinement based upon 
binary subdivision. However, it will enable us to 
analyze the refinement operation further and generate 
a procedure to directly calculate a point on the curve 
without resulting to refinement. 
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Eigen-Analysis for Refinement 
Matrices

• Overview
• The Eigenvalues of the Refinement Matrix 
• Diagonalization of the Matrix 
• The Inverse of the Refinement Matrix 
• Summary
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Overview

In the cubic case, the refinement procedure can be 
specified by a matrix operation

• The eigenvalues and eigenvectors of the refinement matrix play 
an important role in the analysis of subdivision curves. 

• This matrix is  diagonalizable and we use the eigenvalues and 
eigenvectors to calculate this diagonal decomposition. 

• The diagonal decomposition allows an easy calculation of the 
inverse of the matrix.
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The Eigenvalues of the Refinement 
Matrix 

Definition of Eigenvalue:  

AV=λV (right) V—column vector

VA=λV (left) V—row vector

λ=1 is a eigenvalue,  λ= ½, ¼, 
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The Eigenvalues of the Refinement 
Matrix 

Three right eigenvalues

Three left eigenvalues
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Diagonalization of the Matrix 

Let L be the 3×3 matrix whose rows are the left 
eigenvectors of A

Let R be the 3×3 matrix whose columns are the right 
eigenvectors of A
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Diagonalization of the Matrix 

Noting that  R=L-1

The matrix A is diagonalizable and can be written as 

A = RΛL

where Λ is the diagonal matrix whose diagonal elements 
are the eigenvalues of A.
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The Inverse of the Refinement 
Matrix 

Since  A = RΛL , it is easy to generate the inverse of A

A-1 = L-1Λ-1R-1

= RΛ-1L
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Summary

• The eigenvalues and eigenvectors of the 
refinement matrix are straightforward to 
calculate. 

• Since this matrix is well conditioned it can 
be diagonalized and written in form RΛL
which will be very useful when analyzing 
subdivision curves. 
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Direct Calculation of Points on 
Cubic Subdivision Curves

• Overview
• Direct Calculation of Points on the Curve 
• Calculating the Limit Point 
• Examples
• Summary
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Overview

• Given an initial control polygon we can define a 
refinement process that generates a sequence 
of control polygons from the original.

• In the limit, this sequence converges to the 
uniform B-spline curve specified by the original 
control polygon. 

• By examining this refinement process from a 
different angle, we can specify a procedure that 
allows us to directly calculate points on the curve. 
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Direct Calculation of Points on the 
Curve 

In the cubic case, the refinement process related to a 
control point and its two adjacent control points can be 
written in a matrix form as follows 

where the refinement matrix A is 
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Direct Calculation of Points on the 
Curve 

The procedure creates two new edge points and a vertex
point which are part of a new control polygon that 
represents the curve. 

Refining the three control points again

where A2=AA. kth refinement means Ak. k→∞
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Direct Calculation of Points on the 
Curve 

kth refinement means Ak. k→∞, obtain a point on the curve.

We call this point V∞ and note that it is equal to limk→∞Vk. 
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Calculating the Limit Point 

The limit calculation utilizes the fact that the refinement 
matrix A can be diagonalized

A = RΛL

where 

right eigenvectors of A left eigenvectors of Aeigenvalues of A
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Calculating the Limit Point 

Since R = L-1, this allows us to write

A2 = (RΛL)2 = RΛLRΛL = RΛ2L

Ak=RΛkL
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Calculating the Limit Point 

To calculate the limit, first consider applying A k-times
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Calculating the Limit Point 

Now as k→∞, this approaches
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Calculating the Limit Point 

by substituting for L and R
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Calculating the Limit Point 

The vertex and edge points all converge to the same
value, 

(4V + E0 + E1)/6
which is just the dot product of the left eigenvector of A 
that corresponds to the eigenvalue 1, and the original 
vertex-edge vector of the refinement.



12/25/2006 State Key Lab of CAD&CG 81

Examples

Consider a cubic uniform B-spline curve with control polygon {P0, P1, 
P2, P3}, the curve can be written as

Consider the first step of the refinement using P1 as the vertex with P0
and P2 as the two respective edge points. The limit point on curve is

which is exactly the point P(0) on the curve
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Examples

Consider a point on the curve using vertex P2 as the vertex with P1
and P3 as the two respective edge points. The limit point on curve is 
exactly the point P(1).
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Examples

Perform one step refinement, generate new vertex and edge points

we consider E1 as the vertex point, with V1 and V2 as the respective 
edge points, we obtain the point on the curve
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Examples

which is exactly P(1/2)
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Summary

• It is possible, using eigenanalysis, to formulate simple 
procedures that calculate directly a point on the limit 
curve. This, in many cases, can be used to replace 
the overall refinement process

• The tangent vector on the curve at this limit point can 
also be directly calculated, by much the same 
procedure.
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Calculating the Tangent Vectors 
at a Point

• Overview
• Direct Calculation of Points on the Curve
• Tangent Vectors to the Curve
• Summary
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Overview

• Based upon eigenanalysis of the 
refinement matrix, we can exactly 
calculate a point on the limit curve. 

• By applying the eigenanalysis further we 
can also calculate directly the tangent 
vectors on the limit curve. 

The eigenvector corresponding to the 
eigenvalue ½ that plays the primary role 
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Direct Calculation of Points on the 
Curve

Select a control point Vi and let Ei and Ei+1 be the adjacent control 
points (thought of as edge points of the refinement). Given the 
refinement matrix

we can show that repeatedly applying A to the vector
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Direct Calculation of Points on the 
Curve

Gives us a point V∞ on the curve. This point can be 
directly calculated as the dot product of the left 
eigenvector of A that corresponds to the eigenvalue one, 
and the original vertex-edge vector of the refinement -
obtaining the point

(4V + E0 + E1)/6
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Tangent Vectors to the Curve

Given a vertex point V
and the two adjacent 
edge points E0 and E1
respectively 

the limit above should 
converge to the unit 
tangent vector at the point
V∞

1
0E
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Now, let                be the left eigenvectors of the 
refinement matrix A, and                 be the row vectors of 
the matrix of right eigenvalues of the refinement matrix A. 
Then to calculate        we have

Tangent Vectors to the Curve

To calculate this quantity, we will use the diagonalization
of the matrix A which states that 

0
kE
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Tangent Vectors to the Curve

where we have used                   , since 2 (1,1,2)r =
r
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Tangent Vectors to the Curve

We have
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Therefore, given any vertex V with corresponding edge 
points E0 and E1, we can directly calculate the tangent 
vector at the limit point V∞ dotting the left eigenvector 
that corresponds to the eigenvalue ½ by the vertex-edge 
vector

Tangent Vectors to the Curve

i.e. by substracting Ei+1-Ei
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Summary

It is possible, using eigenanalysis, to 
formulate simple procedures that calculate 
directly a point on the limit curve, and the 
tangent vector on the curve at this point. 
This makes this refinement procedure quite 
simple to use. 
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