# Subdivision Curves and Surfaces (1)

Hongxin Zhang and Jieqing Feng

2006-12-25

State Key Lab of CAD&CG Zhejiang University

#### Contents

- <u>Subdivision/Refinement Process</u>
- <u>Chaikin's Curves</u>
- Quadratic Uniform B-Spline Curve Refinement
- <u>Cubic Uniform B-Spline Curve Refinement</u>
- Vertex and Edge Points
- <u>Developing a Matrix Equation for Refinement</u>
- Eigen-Analysis for Refinement Matrices
- <u>Direct Calculation of Points on Cubic Subdivision</u>
   <u>Curves</u>
- <u>Calculating the Tangent Vectors at a Point</u>

# Refinement

- <u>Overview</u>
- <u>What is a Refinement Scheme</u>
- <u>A Matrix Method for Refinement</u>
- Example A Stationary Uniform <u>Refinement Scheme</u>
- <u>Example A Non-Stationary Uniform</u>
   <u>Subdivision Scheme</u>
- <u>Refinement Schemes for Meshes</u>

## **Overview**

- Constructing Bézier curves, B-spline curves and subdivision curves from
  - a control polygon + an algorithmic = refinement
- Refinement methods for surface
  - Defined algorithmically
  - Applicable for complex control mesh

Simple and easy to implement.

## What is a Refinement Scheme

A *refinement* process is a scheme which defines a sequence of control polygons

$$\mathbf{P}_{0}, \mathbf{P}_{1}, ..., \mathbf{P}_{n}$$
  
 $\mathbf{P}_{0}^{1}, \mathbf{P}_{1}^{1}, ..., \mathbf{P}_{n_{1}}^{1}$   
 $\mathbf{P}_{0}^{2}, \mathbf{P}_{1}^{2}, ..., \mathbf{P}_{n_{2}}^{2}$   
 $\vdots$   
 $\mathbf{P}_{0}^{k}, \mathbf{P}_{1}^{k}, ..., \mathbf{P}_{n_{k}}^{k}$ 

where for any k>0, each  $\mathbf{P}_{i}^{k}$  can be written as

$$\mathbf{P}_{j}^{k} = \sum_{i=0}^{n_{k-1}} \alpha_{i,j,k} \mathbf{P}_{i}^{k-1}$$

# What is a Refinement Scheme

- Any element  $\mathbf{P}_{j}^{k}$  can be written as a linear combination of the control points  $\left\{\mathbf{P}_{0}^{k-1}, \mathbf{P}_{1}^{k-1}, ..., \mathbf{P}_{n_{k-1}}^{k-1}\right\}$  from the control polygon generated in the prior step
- For each fixed *j* and *k* the sequence  $\{\alpha_{i,j,k}\}$  is frequently called a *mask*.
- The number of control points in each successive polygon (e.g. curve cases)
  - Increase: Chaikin's Curves
  - Decrease: Geometric Construction of Bézier Curves

## **Simplification of refinement scheme**

- Locality Scheme: Calculate the kst level control points from the small number of k-1st level control points (most of the α<sub>i,i,k</sub>s are zero)
- Uniform Scheme (level,k): αs are independent of the level of refinement k (the scheme is basically the same at each iteration of the refinement process)
- Stationary Scheme (index, j): the mask is the same for every point of a control polygon

# **Example of Refinement Scheme**

 Corner Cutting Scheme: If all points that result from a refinement process lie on the lines joining the points of a control polygon

Chaikin's Curve





## **A Matrix Method for Refinement**

#### The equation of refinement

$$\mathbf{P}_j^k = \sum_{i=0}^{n_{k-1}} \alpha_{i,j,k} \mathbf{P}_i^{k-1}$$

#### can be written in matrix form as

$$\mathbf{P}_{j}^{k} = \begin{bmatrix} \alpha_{0,j,k} & \alpha_{1,j,k} & \cdots & \alpha_{n_{k-1},j,k} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{0}^{k-1} \\ \mathbf{P}_{1}^{k-1} \\ \vdots \\ \mathbf{P}_{n_{k}}^{k-1} \end{bmatrix}$$

## **A Matrix Method for Refinement**

For all control points at *k*<sup>th</sup> level

$$\begin{bmatrix} \mathbf{P}_0^k \\ \mathbf{P}_1^k \\ \vdots \\ \mathbf{P}_{n_k}^k \end{bmatrix} = S_k \begin{bmatrix} \mathbf{P}_0^{k-1} \\ \mathbf{P}_1^{k-1} \\ \vdots \\ \mathbf{P}_{n_{k-1}}^{k-1} \end{bmatrix}$$

where  $S_k$  is the refinement matrix

$$S_{k} = \begin{vmatrix} \alpha_{0,0,k} & \alpha_{1,0,k} & \cdots & \alpha_{n_{k-1},0,k} \\ \alpha_{0,1,k} & \alpha_{1,1,k} & \cdots & \alpha_{n_{k-1},1,k} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{0,n_{k},k} & \alpha_{1,n_{k},k} & \cdots & \alpha_{n_{k-1},n_{k},k} \end{vmatrix}$$

12/25/2006

State Key Lab of CAD&CG

# **A Matrix Method for Refinement**

- The  $S_k$  is an  $(n_k+1) \times (n_{k-1}+1)$  matrix
- In general the matrix is sparse (i.e. most of the entries being zero) with non-zero entries clustered along the diagonal



# Example - A Stationary Uniform Refinement Scheme

- Given the control polygon  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$
- Define refinement scheme by the following equation

$$\mathbf{P}_{j}^{k} \,=\, rac{1}{2} \left( \mathbf{P}_{j}^{k-1} + \mathbf{P}_{j+1}^{k-1} 
ight)$$

where  $0 \le j \le n-k$  and k=1,2,...,n. Each successive point is the midpoint of the two corresponding points in the previous control polygon.



State Key Lab of CAD&CG

# Example - A Stationary Uniform Refinement Scheme

- The refinement procedure has following features
  - For each step, one fewer points in control polygon than those in previous step
  - Stop after n steps
  - The final control polygon has one point
- Two of the  $\alpha$  s are 1/2 and the remainder are zero. Thus the refinement matrix  $S_k$  is

# Example - A Stationary Uniform Refinement Scheme

$$S_k = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 & 0 & \cdots & 0 \ 0 & rac{1}{2} & rac{1}{2} & 0 & \cdots & 0 \ 0 & 0 & rac{1}{2} & rac{1}{2} & \cdots & 0 \ dots & dots &$$

the matrix is  $k \times (k+1)$ 

 The complete refinement defines a point on the Bézier curve of degree n with the initial control polygon

# Example - A Non-Stationary Uniform Subdivision Scheme

Given the control polygon  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$ Define the refinement scheme by the following equation

$$\mathbf{P}_{2j}^{k} = \frac{3}{4}\mathbf{P}_{j}^{k} + \frac{1}{4}\mathbf{P}_{j+1}^{k}$$
 and  $\mathbf{P}_{2j+1}^{k} = \frac{1}{4}\mathbf{P}_{j}^{k} + \frac{3}{4}\mathbf{P}_{j+1}^{k}$ 

for *j*=0,1,2,3,....



State Key Lab of CAD&CG

#### Example - A Non-Stationary Uniform Subdivision Scheme

$$\begin{aligned} \mathbf{P}_{0}^{1} &= \frac{3}{4}\mathbf{P}_{0} + \frac{1}{4}\mathbf{P}_{1} \\ \mathbf{P}_{1}^{1} &= \frac{1}{4}\mathbf{P}_{0} + \frac{3}{4}\mathbf{P}_{1} \\ \mathbf{P}_{2}^{1} &= \frac{3}{4}\mathbf{P}_{1} + \frac{1}{4}\mathbf{P}_{2} \\ \mathbf{P}_{3}^{1} &= \frac{1}{4}\mathbf{P}_{1} + \frac{3}{4}\mathbf{P}_{2} \\ \mathbf{P}_{4}^{1} &= \frac{3}{4}\mathbf{P}_{2} + \frac{1}{4}\mathbf{P}_{3} \\ \mathbf{P}_{5}^{1} &= \frac{1}{4}\mathbf{P}_{2} + \frac{3}{4}\mathbf{P}_{3} \end{aligned}$$



#### State Key Lab of CAD&CG

#### Example - A Non-Stationary Uniform Subdivision Scheme

- Applying this refinement process to a control polygon of "length" *n*+1 gives a new control polygon of "length" 2*n*.
  - length = number of segments in control polygon
- This is just Chaikin's Algorithm for curve generation. As the algorithm proceeds the number of control points gets arbitrarily large, but converges to a unique curve – Uniform Quadratic B-Spline Curve

#### **Refinement Schemes for Meshes**

- Similar methods (with much more notationally complex mathematics) exist for control meshes that result in surface generation algorithms.
- In general, the idea is the same the refinement operation generates new control points from the control points of the previous mesh.



# **Chaikin's Curves**

- <u>Overview</u>
- The Corner-Cutting Paradigm
- <u>Chaikin's Method</u>
- Example How Chaikin's Algorithm Works
- Example A Closed Curve
- Discussions



- In 1974, George Chaikin specified the first corner cutting or refinement algorithms to generate a curve from a set of control points, or control polygon. (<u>http://www.cooper.edu/~george/</u>)
- Forgotten: a quadratic uniform B-spline curve.
- His curves were generated by successive refinement of a control polygon – is now utilized to generate a wide variety of curve and surface types.



# **The Corner-Cutting Paradigm**

- Researchers since Bézier had been working with curves generated by control polygons but had focused their analysis on the underlying analytical representation, frequently based upon Bernstein polynomials.
- Chaikin develop algorithms that worked with the control polygon directly -- so-called geometric algorithms.
  - "corner cutting" -- generates a new control polygon by cutting the corners off the original one.

# **The Corner-Cutting Paradigm**



an initial control polygon has been refined into a second polygon (slightly offset) by cutting off the corners of the first sequence

 Clearly we could then take this second control polygon and cut the corners off it, producing a third sequence, etc. In the limit, hopefully we would have a curve. This was Chaikin's idea!



# **Chaikin's Method**

• Chaikin utilized fixed ratios on cutting off his corners, so that they were all cut the same.

Given a control polygon  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$ . we refine this control polygon by generating a new sequence of control points

 $\{\mathbf{Q}_{0},\mathbf{R}_{0},\mathbf{Q}_{1},\mathbf{R}_{1},\ldots,\mathbf{Q}_{n-1},\mathbf{R}_{n-1}\}.$ 

where each new pair of points  $Q_i$ ,  $R_i$  are to be taken to be at a ratio of  $\frac{1}{4}$  and  $\frac{3}{4}$  between the endpoints of line segment  $P_iP_{i+1}$ .



#### **Chaikin's Method**

The refinement formulae

$$\mathbf{Q}_{i} = \frac{3}{4}\mathbf{P}_{i} + \frac{1}{4}\mathbf{P}_{i+1}$$
$$\mathbf{R}_{i} = \frac{1}{4}\mathbf{P}_{i} + \frac{3}{4}\mathbf{P}_{i+1}$$

These 2n new points can be considered a new control polygon – a refinement of the original control polygon.



#### Example - How Chaikin's Algorithm Works



## **Example - A Closed Curve**



#### **Discussions**

- For different type of control polygons
  - Open control polygon: (n+1) vertices  $\rightarrow 2n$  vertices
  - Close control polygon: *n* vertices  $\rightarrow 2n$  vertices
- For graphics purposes, we will stop after a number of refinements and approximate the curve by connecting the points of the resulting control polygon by straight lines.
- The idea is unique in that the underlying mathematical description (uniform quadratic B-spline curve) is ignored in favor of a geometric algorithm that just selects new control points along the line segments of the original control polygon.

#### Quadratic Uniform B-Spline Curve Refinement

- Overview
- <u>The Matrix Equation for the Quadratic</u> <u>Uniform B-Spline Curve</u>
- Splitting and Refinement
- <u>The General Refinement Procedure</u>

#### **Overview**

- Subdivision Curves: the refinement methods are based upon the binary subdivision of uniform B-spline curves
- The refinement method for a quadratic uniform B-spline curve = Chaikin's Algorithm



#### The Matrix Equation for the Quadratic Uniform B-Spline Curve

Given a set of control points  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$ , the quadratic uniform B-spline curve  $\mathbf{P}(t)$  defined by these control points can be defined in *n*-1 segments by the *n*-1 equations

$$\mathbf{P}(t) = \begin{bmatrix} 1 & t & t^2 \end{bmatrix} M \begin{bmatrix} \mathbf{P}_k \\ \mathbf{P}_{k+1} \\ \mathbf{P}_{k+2} \end{bmatrix}$$

for  $k=0,1,\ldots,n-2$ , and  $0 \le t \le 1$ , and where

$$M = \begin{bmatrix} 1 & 1 & 0 \\ -2 & 2 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$

The matrix M, when multiplied by  $\begin{bmatrix} 1 & t & t^2 \end{bmatrix}$  defines the quadratic uniform B-spline blending functions

Studying the binary subdivision of a quadratic uniform B-spline curve P(t) defined by the control polygon  $\{P_0, P_1, P_2\}$ 



We can perform a binary subdivision of the curve, by applying one of two splitting matrices

$$S^{L} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 3 & 1 \end{bmatrix} \qquad S^{R} = \frac{1}{4} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

to the control polygon. (When applied to the control polygon  $S^{L}$  gives the first half of the curve, and  $S^{R}$  gives the second half.)

Several of the control points for the two subdivided components are the same. Thus, we can combine these matrices, creating a  $4\times3$  matrix as below

$$R = \frac{1}{4} \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

apply it to a control polygon as follows

$$\begin{bmatrix} \mathbf{P}_{0}^{1} \\ \mathbf{P}_{1}^{1} \\ \mathbf{P}_{2}^{1} \\ \mathbf{P}_{3}^{1} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{0} \\ \mathbf{P}_{1} \\ \mathbf{P}_{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{4}\mathbf{P}_{0} + \frac{1}{4}\mathbf{P}_{1} \\ \frac{1}{4}\mathbf{P}_{0} + \frac{3}{4}\mathbf{P}_{1} \\ \frac{3}{4}\mathbf{P}_{1} + \frac{1}{4}\mathbf{P}_{2} \\ \frac{1}{4}\mathbf{P}_{1} + \frac{3}{4}\mathbf{P}_{2} \end{bmatrix}$$



Subdivision at 1/4 and 3/4 along each of the lines of the control polygon. These are the same points as are developed in Chaikin's method



#### **The General Refinement Procedure**

The general procedure is

- 1. Given a control polygon,
- Constructing new points along each edge of the original polygon at a distance of 1/4 and 3/4 between the endpoints of the edge.
- 3. Assembling these points into a new control polygon,
- 4. Useing it as input to another refinement operation, generating a new control polygon (repeating step 2 and 3)
- 5. Continue this process until a refinement is reached that accurately represents the curve to a desired resolution.

#### **The General Refinement Procedure**

The limit of the sequence of control polygons generated by the refinement procedure converges to a quadratic uniform B-spline curve

- The general refinement procedure is developed from the binary subdivision of a uniform B-spline curve
- The control points of the refined polygon are unions of those of the subdivided curves

Chaikin's curve is a quadratic uniform B-spline curve!
## Cubic Uniform B-Spline Curve Refinement

- <u>Overview</u>
- <u>The Matrix Equation for the Cubic Uniform</u> <u>B-Spline Curve</u>
- Splitting and Refinement
- <u>The General Refinement Procedure</u>

## **Overview**

- Developing the refinement method for a cubic uniform B-spline curve
- The refinement algorithm can be specified in a different manner which eventually allows us to use eigenanalysis and directly calculate points on the curve.



## The Matrix Equation for the Cubic Uniform B-Spline Curve

Given a set of control points  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$ , the cubic uniform B-spline curve  $\mathbf{P}(t)$  defined by these control points can be defined in n-2 segments by the n-2 equations

$$\mathbf{P}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} M \begin{bmatrix} \mathbf{P}_k \\ \mathbf{P}_{k+1} \\ \mathbf{P}_{k+2} \\ \mathbf{P}_{k+2} \\ \mathbf{P}_{k+3} \end{bmatrix}$$
for *k*=0,1,...,*n*-3, and 0≤*t*≤1, and where

## The Matrix Equation for the Cubic Uniform B-Spline Curve

$$M = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

The matrix *M*, when multiplied by  $\begin{bmatrix} 1 & t^2 & t^3 \end{bmatrix}$  defines the cubic uniform B-spline blending functions



Studying the binary subdivision of a cubic uniform B-spline curve P(t) defined by the control polygon { $P_0, P_1, P_2, P_3$ }



We can perform a binary subdivision of the curve, by applying one of two splitting matrices

$$S^{L} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \end{bmatrix} \qquad S^{R} = \frac{1}{8} \begin{bmatrix} 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix}$$

to the control polygon. (When applied to the control polygon  $S^{L}$  gives the first half of the curve, and  $S^{R}$  gives the second half.)

Several of the control points for the two subdivided components are the same. Thus, we can combine these matrices, creating a  $5\times4$  matrix as below

| $\frac{1}{8}$ | 4 | 4 | 0 | 0 |
|---------------|---|---|---|---|
|               | 1 | 6 | 1 | 0 |
|               | 0 | 4 | 4 | 0 |
|               | 0 | 1 | 6 | 1 |
|               | 0 | 0 | 4 | 4 |

apply it to a control polygon as follows

$$\begin{bmatrix} \mathbf{P}_{0}^{1} \\ \mathbf{P}_{1}^{1} \\ \mathbf{P}_{2}^{1} \\ \mathbf{P}_{3}^{1} \\ \mathbf{P}_{4}^{1} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{0} \\ \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \end{bmatrix}$$



generating a new control polygon which serves as the refinement of the original. The five control points of this new control polygon specify the two subdivided halves of the curve - and therefore specify the curve itself

12/25/2006

#### **The General Refinement Procedure**

 If examining the rows of 5×4 matrix used in the refinement, we see that they have two distinct forms.

$$\begin{bmatrix} \mathbf{P}_{0}^{1} \\ \mathbf{P}_{1}^{1} \\ \mathbf{P}_{2}^{1} \\ \mathbf{P}_{2}^{1} \\ \mathbf{P}_{3}^{1} \\ \mathbf{P}_{4}^{1} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{0} \\ \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \end{bmatrix}$$

Edge point Vertex point

 Classifying the points of the refinement as vertex and edge points. This classification makes the description of the refinement process quite straightforward.

# **Vertex and Edge Points**

- <u>Overview</u>
- <u>Classifying the Refinement Points</u>
- An Example of the Refinement Algorithm

## **Overview**

- The refinement process defined by the cubic uniform B-spline curve generates a sequence of control polygons that converges to the curve.
- Each of refinement points can be classified as either a "vertex point" or an "edge point" and methods can be specified to calculate each point.
- This procedure allows us to directly calculate points on the limit curve without going through the refinement



Edge points  $\{\mathbf{E}_0, \mathbf{E}_1, \mathbf{E}_2\}$ : three points on the edges Vertex points  $\{\mathbf{V}_0, \mathbf{V}_1\}$ : two points close to original points

Combining and applying the splitting matrices that generate the binary subdivision of the curve

$$\begin{bmatrix} \mathbf{E}_0 \\ \mathbf{V}_0 \\ \mathbf{E}_1 \\ \mathbf{V}_1 \\ \mathbf{E}_2 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$$

So the edge points are calculated by

$$\mathbf{E}_{0} = \frac{1}{8}(4\mathbf{P}_{0} + 4\mathbf{P}_{1}) \qquad \mathbf{E}_{1} = \frac{1}{8}(4\mathbf{P}_{1} + 4\mathbf{P}_{2}) \qquad \mathbf{E}_{2} = \frac{1}{8}(4\mathbf{P}_{2} + 4\mathbf{P}_{3}) \\ = \frac{\mathbf{P}_{0} + \mathbf{P}_{1}}{2} \qquad \qquad = \frac{\mathbf{P}_{1} + \mathbf{P}_{2}}{2} \qquad \qquad = \frac{\mathbf{P}_{2} + \mathbf{P}_{3}}{2}$$

The edge points are the midpoints of the line segments connecting the original control points.



The vertex points  $V_0$  and  $V_1$  are calculated by

$$\begin{aligned} \mathbf{V}_{0} &= \frac{1}{8} (\mathbf{P}_{0} + 6\mathbf{P}_{1} + \mathbf{P}_{2}) & \mathbf{V}_{1} &= \frac{1}{8} (\mathbf{P}_{1} + 6\mathbf{P}_{2} + \mathbf{P}_{3}) \\ &= \frac{1}{8} ((\mathbf{P}_{0} + \mathbf{P}_{1}) + 4\mathbf{P}_{1} + (\mathbf{P}_{1} + \mathbf{P}_{2})) & = \frac{1}{8} ((\mathbf{P}_{1} + \mathbf{P}_{2}) + 4\mathbf{P}_{2} + (\mathbf{P}_{2} + \mathbf{P}_{3})) \\ &= \frac{1}{4} (\frac{\mathbf{P}_{0} + \mathbf{P}_{1}}{2} + 2\mathbf{P}_{1} + \frac{\mathbf{P}_{1} + \mathbf{P}_{2}}{2}) & = \frac{1}{4} (\frac{\mathbf{P}_{1} + \mathbf{P}_{2}}{2} + 2\mathbf{P}_{2} + \frac{\mathbf{P}_{2} + \mathbf{P}_{3}}{2}) \\ &= \frac{1}{4} (\mathbf{E}_{0} + 2\mathbf{P}_{1} + \mathbf{E}_{1}) & = \frac{1}{4} (\mathbf{E}_{1} + 2\mathbf{P}_{2} + \mathbf{E}_{2}) \\ &= \frac{\mathbf{E}_{0} + \mathbf{P}_{1}}{2} + \frac{\mathbf{P}_{1} + \mathbf{E}_{1}}{2} & = \frac{\mathbf{E}_{1} + \mathbf{P}_{2}}{2} + \frac{\mathbf{P}_{2} + \mathbf{E}_{2}}{2} \end{aligned}$$



the respective edge points.

## An Example of the Refinement Algorithm



## Developing a Matrix Equation for Refinement

- Overview
- <u>Refinement at a Vertex Point</u>
- <u>So How Do You Do Refinement In</u> <u>General ?</u>
- <u>Summary</u>

#### **Overview**

Refinement of the cubic uniform B-spline curve can be written as

$$\begin{bmatrix} \mathbf{P}_0^1 \\ \mathbf{P}_1^1 \\ \mathbf{P}_2^1 \\ \mathbf{P}_2^1 \\ \mathbf{P}_3^1 \\ \mathbf{P}_4^1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \\ 0 & 0 & 4 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$$

where  $\{\mathbf{P}_0, \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3\}$  is the original control polygon and  $\{\mathbf{P}_0^1, \mathbf{P}_1^1, \mathbf{P}_2^1, \mathbf{P}_3^1, \mathbf{P}_4^1\}$  is the result of the refinement.

#### **Overview**

- We can classify points of the refinement as vertex points and edge points
- Here we examine what happens to a particular control point (vertex point) under this refinement procedure. Examining this closely, we can develop an alternate matrix equation that can also be used to represent the refinement procedure



## **Refinement at a Vertex Point**

Focusing on a single vertex point (V) of the control polygon and the two points ( $\mathbf{E}_0, \mathbf{E}_1$ ) adjacent to V



# **Refinement at a Vertex Point**

- In the refinement procedure, we can use these three points to create a new vertex point V<sup>1</sup> and two new edge points E<sub>0</sub><sup>1</sup> and E<sub>1</sub><sup>1</sup>
- We can write this in vector form (we note that the matrices are applied to vectors of points, and therefore the operations must be affine).

$$\begin{bmatrix} \mathbf{V} \\ \mathbf{E}_0 \\ \mathbf{E}_1 \end{bmatrix}$$
 is refined into 
$$\begin{bmatrix} \mathbf{V}^1 \\ \mathbf{E}_0^1 \\ \mathbf{E}_1^1 \end{bmatrix}$$

## **Refinement at a Vertex Point**

$$\begin{bmatrix} \mathbf{V}^{1} \\ \mathbf{E}_{0}^{1} \\ \mathbf{E}_{1}^{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \left( \frac{\mathbf{V} + \mathbf{E}_{0}}{2} + 2\mathbf{V} + \frac{\mathbf{V} + \mathbf{E}_{1}}{2} \right) \\ \frac{\mathbf{V} + \mathbf{E}_{0}}{2} \\ \frac{\mathbf{V} + \mathbf{E}_{1}}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{8} \left( \mathbf{E}_{0} + 6\mathbf{V} + \mathbf{E}_{1} \right) \\ \frac{\mathbf{V} + \mathbf{E}_{0}}{2} \\ \frac{\mathbf{V} + \mathbf{E}_{1}}{2} \end{bmatrix}$$
$$= \frac{1}{8} \begin{bmatrix} 6 & 1 & 1 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$

where matrix A

$$A = \frac{1}{8} \begin{bmatrix} 6 & 1 & 1 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$

is called *refinement matrix* 



### So How Do You Do Refinement In General ?

Given a set of control points  $\{\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n\}$ , we the vectors

$$\begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_0 \\ \mathbf{P}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{P}_2 \\ \mathbf{P}_1 \\ \mathbf{P}_3 \end{bmatrix}, ..., \begin{bmatrix} \mathbf{P}_{n-1} \\ \mathbf{P}_{n-2} \\ \mathbf{P}_n \end{bmatrix}$$

apply the *refinement matrix* to each vector, giving new vertex and edge points

$$\begin{bmatrix} \mathbf{V}_0 \\ \mathbf{E}_0 \\ \mathbf{E}_1 \end{bmatrix}, \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix}, ..., \begin{bmatrix} \mathbf{V}_{n-2} \\ \mathbf{E}_{n-2} \\ \mathbf{E}_{n-1} \end{bmatrix}$$

These new points are then assembled into new control polygon

$$\{\mathbf{E}_0, \mathbf{V}_0, \mathbf{E}_1, \mathbf{V}_1, ..., \mathbf{V}_{n-3}, \mathbf{E}_{n-2}, \mathbf{V}_{n-2}, \mathbf{E}_{n-1}\}$$

State Key Lab of CAD&CG

# Summary

- It is possible to write the refinement process for cubic subdivision curves in a matrix form which focuses on the action of the refinement on a single control point. In this case, we can calculate new vertex points and edges points just by applying the refinement matrix to the vertex-edge-point vector.
- We note that this procedure does take more processor time than the refinement based upon binary subdivision. However, it will enable us to analyze the refinement operation further and generate a procedure to directly calculate a point on the curve without resulting to refinement.

# Eigen-Analysis for Refinement Matrices

- <u>Overview</u>
- The Eigenvalues of the Refinement Matrix
- Diagonalization of the Matrix
- <u>The Inverse of the Refinement Matrix</u>
- <u>Summary</u>

#### **Overview**

In the cubic case, the refinement procedure can be specified by a matrix operation

$$A = \frac{1}{8} \begin{bmatrix} 6 & 1 & 1 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$

- The eigenvalues and eigenvectors of the refinement matrix play an important role in the analysis of subdivision curves.
- This matrix is diagonalizable and we use the eigenvalues and eigenvectors to calculate this diagonal decomposition.
- The diagonal decomposition allows an easy calculation of the inverse of the matrix.

#### The Eigenvalues of the Refinement Matrix

Definition of Eigenvalue:

 $A\mathbf{V} = \lambda \mathbf{V}$  (right)  $\mathbf{V}A = \lambda \mathbf{V}$  (left)

V—column vector

V—row vector

 $\lambda = 1$  is a eigenvalue,  $\lambda = \frac{1}{2}, \frac{1}{4}$ ,

$$A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}1\\1\\1\end{bmatrix}$$

#### The Eigenvalues of the Refinement Matrix

Three right eigenvalues

$$\vec{r}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \vec{r}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \ \vec{r}_3 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

#### Three left eigenvalues

$$\vec{l}_{1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$
$$\vec{l}_{2} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\vec{l}_{3} = \begin{bmatrix} -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$



# **Diagonalization of the Matrix**

Let *L* be the  $3 \times 3$  matrix whose rows are the left eigenvectors of *A* 

$$L = \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

Let *R* be the  $3 \times 3$  matrix whose columns are the right eigenvectors of *A* 

$$R = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix}$$

# **Diagonalization of the Matrix**

Noting that  $R=L^{-1}$ 

The matrix *A* is diagonalizable and can be written as

A = RAL

where A is the diagonal matrix whose diagonal elements are the eigenvalues of A.

$$\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$$



#### The Inverse of the Refinement Matrix

Since A = RAL, it is easy to generate the inverse of A

 $A^{-1} = L^{-1} \Lambda^{-1} R^{-1}$  $= R \Lambda^{-1} L$ 



# Summary

- The eigenvalues and eigenvectors of the refinement matrix are straightforward to calculate.
- Since this matrix is well conditioned it can be diagonalized and written in form *R*/*IL* which will be very useful when analyzing subdivision curves.



# Direct Calculation of Points on Cubic Subdivision Curves

- <u>Overview</u>
- Direct Calculation of Points on the Curve
- <u>Calculating the Limit Point</u>
- Examples
- <u>Summary</u>

## **Overview**

- Given an initial control polygon we can define a refinement process that generates a sequence of control polygons from the original.
- In the limit, this sequence converges to the uniform B-spline curve specified by the original control polygon.
- By examining this refinement process from a different angle, we can specify a procedure that allows us to directly calculate points on the curve.



#### Direct Calculation of Points on the Curve

In the cubic case, the refinement process related to a control point and its two adjacent control points can be written in a matrix form as follows

$$\begin{bmatrix} \mathbf{V}^1 \\ \mathbf{E}_0^1 \\ \mathbf{E}_1^1 \end{bmatrix} = A \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_0 \\ \mathbf{E}_1 \end{bmatrix}$$

where the refinement matrix A is

$$A = \frac{1}{8} \begin{bmatrix} 6 & 1 & 1 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$
#### Direct Calculation of Points on the Curve

The procedure creates two new edge points and a vertex point which are part of a new control polygon that represents the curve.

Refining the three control points again

$$\begin{bmatrix} \mathbf{V}^2 \\ \mathbf{E}_0^2 \\ \mathbf{E}_1^2 \end{bmatrix} = A \begin{bmatrix} \mathbf{V}^1 \\ \mathbf{E}_0^1 \\ \mathbf{E}_1^1 \end{bmatrix} = A^2 \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_0 \\ \mathbf{E}_1 \end{bmatrix}$$

where  $A^2 = AA$ .  $k^{\text{th}}$  refinement means  $A^k$ .  $k \rightarrow \infty$ 

#### Direct Calculation of Points on the Curve

 $k^{\text{th}}$  refinement means  $A^k$ .  $k \rightarrow \infty$ , obtain a point on the curve.



We call this point  $\mathbf{V}^{\infty}$  and note that it is equal to  $\lim_{k \to \infty} \mathbf{V}^k$ .

The limit calculation utilizes the fact that the refinement matrix A can be diagonalized

A = RAL

#### where

$$R = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \qquad \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \qquad L = \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

right eigenvectors of A

eigenvalues of A

left eigenvectors of A

Since  $R = L^{-1}$ , this allows us to write  $A^2 = (RAL)^2 = RALRAL = RA^2L$  $A^k = RA^kL$ 

To calculate the limit, first consider applying A k-times

$$\begin{bmatrix} \mathbf{V}^{k} \\ \mathbf{E}_{0}^{k} \\ \mathbf{E}_{1}^{k} \end{bmatrix} = A^{k} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= (R\Lambda L)^{k} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= R\Lambda^{k} L \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= R \begin{bmatrix} (1)^{k} & 0 & 0 \\ 0 & (\frac{1}{2})^{k} & 0 \\ 0 & 0 & (\frac{1}{4})^{k} \end{bmatrix} L \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$

Now as  $k \rightarrow \infty$ , this approaches

$$R \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} L \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_0 \\ \mathbf{E}_1 \end{bmatrix}$$

#### by substituting for *L* and *R*

$$R\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} L\begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$
$$= \frac{1}{6} \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$

12/25/2006

#### State Key Lab of CAD&CG

The vertex and edge points all converge to the same value,

#### $(4\mathbf{V} + \mathbf{E}_0 + \mathbf{E}_1)/6$

which is just the dot product of the left eigenvector of A that corresponds to the eigenvalue 1, and the original vertex-edge vector of the refinement.

$$\frac{1}{6} \begin{bmatrix} 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_i \\ \mathbf{E}_i \\ \mathbf{E}_{i+1} \end{bmatrix}$$



Consider a cubic uniform B-spline curve with control polygon  $\{\mathbf{P}_0, \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3\}$ , the curve can be written as

$$\mathbf{P}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{P}_0 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{bmatrix}$$

Consider the first step of the refinement using  $P_1$  as the vertex with  $P_0$  and  $P_2$  as the two respective edge points. The limit point on curve is

$$\frac{1}{6} \begin{bmatrix} 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_0 \\ \mathbf{P}_2 \end{bmatrix} = \frac{1}{6} \left( \mathbf{P}_0 + 4\mathbf{P}_1 + \mathbf{P}_2 \right)$$

which is exactly the point P(0) on the curve

12/25/2006

State Key Lab of CAD&CG

Consider a point on the curve using vertex  $P_2$  as the vertex with  $P_1$  and  $P_3$  as the two respective edge points. The limit point on curve is exactly the point P(1).

Perform one step refinement, generate new vertex and edge points



we consider  $\mathbf{E}_1$  as the vertex point, with  $\mathbf{V}_1$  and  $\mathbf{V}_2$  as the respective edge points, we obtain the point on the curve

12/25/2006

State Key Lab of CAD&CG

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \mathbf{E}_{1} \\ \mathbf{V}_{1} \\ \mathbf{V}_{2} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{2} (\mathbf{P}_{1} + \mathbf{P}_{2}) \\ \frac{1}{8} (\mathbf{P}_{0} + 6\mathbf{P}_{1} + \mathbf{P}_{2}) \\ \frac{1}{8} (\mathbf{P}_{1} + 6\mathbf{P}_{2} + \mathbf{P}_{3}) \end{bmatrix}$$
$$= \frac{1}{48} (\mathbf{P}_{0} + 23\mathbf{P}_{1} + 23\mathbf{P}_{2} + \mathbf{P}_{3})$$

which is exactly P(1/2)



# Summary

- It is possible, using eigenanalysis, to formulate simple procedures that calculate directly a point on the limit curve. This, in many cases, can be used to replace the overall refinement process
- The tangent vector on the curve at this limit point can also be directly calculated, by much the same procedure.



# Calculating the Tangent Vectors at a Point

- Overview
- Direct Calculation of Points on the Curve
- <u>Tangent Vectors to the Curve</u>
- <u>Summary</u>

#### **Overview**

- Based upon eigenanalysis of the refinement matrix, we can exactly calculate a point on the limit curve.
- By applying the eigenanalysis further we can also calculate directly the tangent vectors on the limit curve.

 The eigenvector corresponding to the eigenvalue ½ that plays the primary role

#### Direct Calculation of Points on the Curve

Select a control point  $V_i$  and let  $E_i$  and  $E_{i+1}$  be the adjacent control points (thought of as edge points of the refinement). Given the refinement matrix

$$A = \frac{1}{8} \begin{bmatrix} 6 & 1 & 1 \\ 4 & 4 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$

we can show that repeatedly applying A to the vector

$$\left[egin{array}{c} \mathbf{V}_i \ \mathbf{E}_i \ \mathbf{E}_{i+1} \end{array}
ight]$$

#### Direct Calculation of Points on the Curve

Gives us a point  $V^{\infty}$  on the curve. This point can be directly calculated as the dot product of the left eigenvector of *A* that corresponds to the eigenvalue one, and the original vertex-edge vector of the refinement obtaining the point

 $(4\mathbf{V} + \mathbf{E}_0 + \mathbf{E}_1)/6$ 



Given a vertex point V and the two adjacent edge points  $\mathbf{E}_0$  and  $\mathbf{E}_1$ respectively

$$\lim_{k \leftarrow \infty} \frac{\mathbf{E}_0^k - \mathbf{V}^\infty}{||\mathbf{E}_0^k - \mathbf{V}^\infty||}$$

the limit above should converge to the unit tangent vector at the point  $V^{\infty}$ 



To calculate this quantity, we will use the diagonalization of the matrix A which states that

$$\begin{bmatrix} \mathbf{V}^{k} \\ \mathbf{E}_{0}^{k} \\ \mathbf{E}_{1}^{k} \end{bmatrix} = A^{k} \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix} = R\Lambda^{k}L \begin{bmatrix} \mathbf{V} \\ \mathbf{E}_{0} \\ \mathbf{E}_{1} \end{bmatrix}$$

Now, let  $\vec{l_1}$ ,  $\vec{l_2}$  and  $\vec{l_3}$  be the left eigenvectors of the refinement matrix A, and  $\vec{r_1}$ ,  $\vec{r_2}$  and  $\vec{r_3}$  be the row vectors of the matrix of right eigenvalues of the refinement matrix A. Then to calculate  $\mathbf{E}_0^k$  we have

$$\begin{aligned} \mathbf{E}_{0}^{k} &= \vec{r}_{2} \cdot \left[ \Lambda^{k} L \vec{\mathbf{P}} \right] \\ &= \vec{r}_{2} \cdot \left( \Lambda^{k} \begin{bmatrix} \vec{l}_{1} \cdot \vec{\mathbf{P}} \\ \vec{l}_{2} \cdot \vec{\mathbf{P}} \\ \vec{l}_{3} \cdot \vec{\mathbf{P}} \end{bmatrix} \right) \\ &= \vec{r}_{2} \cdot \begin{bmatrix} \vec{l}_{1} \cdot \vec{\mathbf{P}} \\ \left(\frac{1}{2}\right)^{k} \vec{l}_{2} \cdot \vec{\mathbf{P}} \\ \left(\frac{1}{2}\right)^{k} \vec{l}_{3} \cdot \vec{\mathbf{P}} \end{bmatrix} \\ &= \vec{l}_{1} \cdot \vec{\mathbf{P}} + \left(\frac{1}{2}\right)^{k} \vec{l}_{2} \cdot \vec{\mathbf{P}} + 2\left(\frac{1}{4}\right)^{k} \vec{l}_{3} \cdot \vec{\mathbf{P}} \end{aligned}$$

where we have used  $\vec{r}_2 = (1,1,2)$ , since  $\mathbf{V}^{\infty} = \vec{l}_1 \cdot \vec{\mathbf{P}}$ 

#### We have

$$\lim_{k \to \infty} \frac{\mathbf{E}_0^k - \mathbf{V}^\infty}{||\mathbf{E}_0^k - \mathbf{V}^\infty||} = \lim_{k \to \infty} \left( \frac{\left(\frac{1}{2}\right)^k \vec{l}_2 \cdot \vec{\mathbf{P}} + 2\left(\frac{1}{4}\right)^k \vec{l}_3 \cdot \vec{\mathbf{P}}}{||\left(\frac{1}{2}\right)^k \vec{l}_2 \cdot \vec{\mathbf{P}} + 2\left(\frac{1}{4}\right)^k \vec{l}_3 \cdot \vec{\mathbf{P}}||} \right) \\ = \lim_{k \to \infty} \left( \frac{\vec{l}_2 \cdot \vec{\mathbf{P}} + 2\left(\frac{1}{2}\right)^k \vec{l}_3 \cdot \vec{\mathbf{P}}}{||\vec{l}_2 \cdot \vec{\mathbf{P}} + 2\left(\frac{1}{2}\right)^k \vec{l}_3 \cdot \vec{\mathbf{P}}||} \right) \\ = \frac{\vec{l}_2 \cdot \vec{\mathbf{P}}}{||\vec{l}_2 \cdot \vec{\mathbf{P}}||} \\ = \frac{\mathbf{E}_0 - \mathbf{E}_1}{||\mathbf{E}_0 - \mathbf{E}_1||}$$

Therefore, given any vertex V with corresponding edge points  $\mathbf{E}_0$  and  $\mathbf{E}_1$ , we can directly calculate the tangent vector at the limit point V<sup>∞</sup> dotting the left eigenvector that corresponds to the eigenvalue  $\frac{1}{2}$  by the vertex-edge vector

$$\frac{1}{2} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{V}_i \\ \mathbf{E}_i \\ \mathbf{E}_{i+1} \end{bmatrix}$$

i.e. by substracting  $\mathbf{E}_{i+1}$ - $\mathbf{E}_i$ 



# Summary

It is possible, using eigenanalysis, to formulate simple procedures that calculate directly a point on the limit curve, and the tangent vector on the curve at this point. This makes this refinement procedure quite simple to use.

