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Rational B-Spline Curves

• Rational B-spline curves – Overview
• Rational B-spline curves – Definition
• Rational B-spline curves – Control
• Rational B-spline Curves – Conic Sections



12/18/2006 State Key Lab of CAD&CG 4

Rational B-spline curves –
Overview

• Bézier and nonrational B-splines are a 
subset (special case) of rational B-splines 
(NURBS)

Bézier is a subset of nonrational B-splines 
Non-Uniform Rational B-Spline

NURBS

Nonrational B-spline

Bézier
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Rational B-spline curves –
Overview

• Rational B-splines provide a single precise 
mathematical form for:

lines
planes
conic sections (circles, ellipses . . .)
free form curves
quadric surfaces
sculptured surfaces
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Rational B-spline curves –
Overview

Ken Versprille

First to discuss rational B-splines
PhD dissertation at Syracuse 
University
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Rational B-spline curves –
Definition

• Defined in 4-D homogeneous coordinate space
• Projected back into 3-D physical space

In 4-D homogeneous coordinate space

where
• are the 4-D homogeneous control vertices
• Ni,k(t)s are the nonrational B-spline basis functions
• k is the order of the basis functions

h
iB
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Rational B-spline curves –
Definition

• Projected back into 3-D physical space
Divide through by homogeneous coordinate

Bis are the 3-D control vertices

Ri,k(t)s are the rational B-spline basis functions
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Rational B-spline curves –
Properties

• for all t

• Ri,k(t) ≥ 0 for all t

• Ri,k(t), k > 1 has precisely one maximum

• Maximum degree = n , kmax= n+1

• Exhibits variation diminishing property

1
,1

( ) 1n
i ki

R t+

=
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Rational B-spline curves –
Properties

• Follows shape of the control polygon

• Transforms curve transforms control 
polygon

• Lies within union of convex hulls of k
successive control vertices if hi>0

• Everywhere Ck-2 continuous
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Rational B-spline basis 
functions

Comparisons: n+1=5, k=3
[X]=[0  0  0  1  2  3  3  3], [H] = [1  1  h3 1  1]
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Rational B-spline curves – Control

Same as nonrational B-splines
plus

Manipulation of the homogeneous weighting 
factor
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Rational B-spline curves – Control

Homogeneous weighting factor : n + 1 = 5, k = 3
[X]=[0  0  0  1  2  3  3  3]    [H] = [1  1  h3 1  1]
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Rational B-spline Curves –
Control

Move single vertex,  n + 1 = 5, k = 4
[X ]=[0  0  0  0  1  2  2  2  2],  [H ] = [1  1  1/4  1  1]
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Rational B-spline Curves – Control

Multiple vertices
[X ]=[0 0 0 0 1 2 2 2 2]   n + 1 = 5, k = 4
[H] = [1 1 1/4 1 1] single vertex

[X]=[0 0 0 0 1 2 3 3 3 3] n + 1 = 6, k = 4
[H] = [1 1 1/4 1/4 1 1] double vertex

[X]=[0 0 0 0 1 2 3 4 4 4 4]  n + 1 = 7, k = 4
[H] = [1 1 1/4 1/4 1/4 1 1] triple vertex
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Rational B-spline Curves – Conic 
Sections

• Conic sections described by quadratic curves
• Consider quadratic rational B-spline

[X]=[0 0 0 1 1 1]; n + 1 = 3, k = 3

• A third-order rational Bézier curve
• Convenient to assume h1 = h3 = 1
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Rational B-spline Curves – Conic 
Sections

• h2 = 0
a straight line

• 0 < h2 < 1
an elliptic curve segment

• h2 = 1
a parabolic curve segment

• h2 > 1
a hyperbolic curve segment
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Rational B-spline Curves –
Circles

Control vertices form isosceles triangle
Multiple internal knot values
Specific value of the homogeneous weight, h2 = ½

n + 1 = 3, k = 3, [X]=[0 0 0 1 1 1], [H] = [1 1/2 1 ]
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Rational B-spline Curves – Circles

Three 120° arcs
[X] = [0 0 0 1 1 2 2 3 3 3];  k = 3;  [H] = [1 1/2 1 1/2 1 1/2 1 ]
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Rational B-spline Curves – Circles

Four 90° arcs    [X]=[0  0  0  1  1  2  2  3  3  4  4  4]; 
k = 3; [H] = [1 √2/2  1 √2/2  1 √2/2  1 √2/2  1 ]
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Non-Rational B-Spline Surfaces

• Definition
• Properties
• Control
• Additional Topics
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Non-Rational B-Spline Surfaces: 
Definition
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Non-Rational B-Spline Surfaces: 
Properties

• Maximum order, k, l is the number of 
control vertices in each parametric 
direction

• Continuity Ck-2, Cl-2 in each parametric 
direction

• Variation diminishing property is not 
known

• Transform surface – transform control net
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Non-Rational B-Spline Surfaces: 
Properties

• Influence of single control vertex is ±k/2, 
±l/2

• If n+1=k, m+1=l a Bézier surface results
• Triangulated, the control net forms a 

planar approximation to the surface
• Lies within the union of convex hulls of k, l

neighboring control vertices
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Non-Rational B-Spline Surfaces: 
Control

• Order/degree
• Knot vectors (single/multiple)
• Number of Control points 
• Control points (single/multiple)
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Non-Rational B-Spline Surfaces: 
Colinear net lines

• Ruled in the w direction
• Smoothly curved in the u direction
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Non-Rational B-Spline Surfaces: 
Colinear net lines

• Ruled in the w direction
• Embedded flat area in the u direction
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Non-Rational B-Spline Surfaces: 
Colinear net lines

Larger embedded flat area in the u direction
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Non-Rational B-Spline Surfaces: 
Colinear net lines

• Embedded flat area in the center
• Embedded flat area on each side
• Curved corners
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Non-Rational B-Spline Surfaces: 
Colinear net lines

• Three coincident net lines in the w direction generate 
hard line in the surface

• Still Ck-2, Cl-2 continuous in both parametric directions
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Non-Rational B-Spline Surfaces: 
Colinear net lines

• Three coincident net lines in the u and w directions 
generate two hard lines and a point in the surface

• Still Ck-2, Cl-2 continuous in both parametric directions
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Non-Rational B-Spline Surfaces: 
Local control

Local influence is ±k/2, ±l/2
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Non-Rational B-Spline Surfaces: 
Additional Topics

• Degree elevation and reduction
• Derivatives
• Knot insertion
• Subdivision
• Reparameterization
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Rational B-Spline Surfaces: NURBS

• Definition
• Properties
• Weight Effects
• Algorithms
• Additional Topics
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NURBS:  Definition

In four-dimensional homongeneous coordinate space

And projecting back into three space

where   Bi,js are the 3-D control net vertices
Si,js are the bivariate rational B-spline surface basis functions
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NURBS:  Definition

Basis functions

where

and

Convenient, but not necessary, to assume hi,j≥0 for all i, j
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NURBS:  Definition

Basis functions

Si,j(u,w)s are not the product of Ri,k(u) and Rj,l(w)
Similar shapes and characteristics to Ni,k(u)Mj,l(w)
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•

• Si,j(u,w)≥0
• Maximum order is the number of control vertices in 

each parametric direction
• Continuity Ck-2, Cl-2 in each parametric direction
• Transform surface – transform control net
• The variation-diminishing property not known

NURBS: Properties
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NURBS: Properties

• Influence of single control vertex is ±k/2, ±l/2

• If n+1=k, m+1=l, a rational Bézier surface results

• If n+1=k, m+1=l and hij=1, a nonrational Bézier surface 
results

• Triangulated, the control net forms a planar 
approximation to the surface

• If hi,j≥0, surface lies within union of convex hulls of k,l
neighboring control vertices
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NURBS: Weight Effects

hi,j≥0 effect of zero weights

n + 1 = 5, m + 1 = 4 , k = l = 4, h1,3 = h2,3 = 0 ,
Notice the straight edge and flat surface indicated by the 
red arrow
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NURBS: Weight Effects

hi,j≥ 0 effect of homogeneous weights

n+1=5, m+1=4 , k=l=4, h1,3=h2,3=1 
Notice the curved edge and surface indicated by the red 
arrow
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NURBS: Weight Effects

hi,j≥ 0 effect of homogeneous weights

Notice the curved edge and surface indicated by the red arrow
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NURBS: Weight Effects

hi,j≥ 0 effect of homogeneous weights

n+1=5, m+1=4 , k=l=4, All interior hi,j=0 
Notice the curved edge and surface indicated by the red 
arrow

B5,1
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NURBS: Weight Effects

hi,j≥ 0 effect of homogeneous weights

n+1=5, m+1=4 , k=l=4, All interior hi,j=500 
Notice the curved edge and surface indicated by the red 
arrow
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NURBS: Weight Effects

hi,j≥0, effect of homogeneous weights
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NURBS: Weight Effects

hi,j≥0, effect of homogeneous weights
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NURBS: Weight Effects

hi,j≥0, effect of homogeneous weights
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NURBS: Weight Effects

hi,j≥0, effect of homogeneous weights - comparison
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NURBS Surfaces:  Algorithms

Nonrational B-spline surface – hi, j=1 for all i,j

Hence

and Si,j(u,w) reduces to

which yields

which suggests that the core algorithm is two nested loops
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NURBS Surfaces:  Algorithms --
Example

Writing out for n+1=4, m+1=4, k=l=4 yields

or

The inner loop is within the ( )
The outer loop is the multiplier Ni,j( )
The knot vectors and basis functions are also needed
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NURBS Surfaces:  Algorithms
Naive nonrational B-spline surface algorithm
Specify number of control vertices in the u, w directions
Specify order in each of the u, w directions
Specify number of isoparametric lines in each of the u, w direction
Specify the control net, store in an array

Calculate the knot vector in the u direction, store in an array
Calculate the knot vector in the w direction, store in an array
For each parametric value, u
Calculate the basis functions, Ni,k(u), store in an array

For each parametric value, w
Calculate the basis functions, Mj,l(w), store in an array

For each control vertex in the u direction
For each control vertex in the w direction

Calculate the surface point, Q(u,w), store in an array
end loop

end loop
end loop

end loop
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NURBS Surfaces:  Algorithms

Rational B-spline (NURBS) surface

and

Two differences from the nonrational B-spline surface:
Calculate and divide by the Sum(u,w) function
Multiply by hij

Let’s look at calculating the Sum(u,w) function
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NURBS Surfaces:  Algorithms

Calculating the Sum(u,w) function

Writing this out for n+1=m+1=4, k=l=4 yields

Same form as the nonrational B-spline surface
except hij instead of Bij – use the same algorithm
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NURBS Surfaces:  Algorithms

Algorithm for the Sum(u,w) function

Assume the Ni,k and Mj,l basis functions are available
Assume the homogeneous weights, hi,j, are available
For each control vertex in the u direction

For each control vertex in the w direction
Calculate and store the Sum(u,w) function

end loop
end loop
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NURBS Surfaces:  Algorithms
Naive rational B-spline (NURBS) surface algorithm

The inner loop now becomes

For each parametric value, u
Calculate the basis functions, Ni,k(u), store in an array
For each parametric value, w

Calculate the basis functions, Mj,l(w), store in an array
Calculate the Sum(u,w) function

For each control vertex in the u direction
For each control vertex in the w direction

Calculate and store the surface point, Q(u,w)
end loop

end loop
end loop

end loop
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NURBS Surfaces:  Algorithms

Nonrational B-spline surface

Rational B-spline (NURBS) surface

Comparing shows the NURBS algorithm requires
an additional multiply
a division
calculation of the Sum(u,w) function

Results in approximately 1/3 more computational effort
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NURBS Surfaces:  Algorithms

These naive algorithms are very memory efficient

However, they are computationally inefficient

Computational efficiency improved by 

avoiding the division by the Sum(u,w) function by 
converting it to a multiply using the reciprocal

avoiding entire computations
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NURBS Surfaces:  Algorithms

More efficient NURBS algorithm

Recall for n + 1 = m + 1 = 3, k = l = 3 the NURBS surface is

Recall that in many cases the basis functions are zero
If Ni,j(u,w) = 0, then we can avoid the entire calculation in ( ) and the 

division (multiply) by Sum(u,w) (the reciprocal)
If Mi,j(u,w) = 0, then we can avoid three multiplies in ( )

Storing the reciprocal of Sum(u,w) saves a divide at the expense 
of a multiply
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NURBS Surfaces:  Algorithms
More efficient rational B-spline (NURBS) surface algorithm
The inner loop now becomes

For each parametric value, u
Calculate the basis functions, Ni,k(u), store in an array
For each parametric value, w

Calculate the basis functions, Mj,l(w), store in an array
Calculate and save the reciprocal of Sum(u,w)

For i = 1 to n + 1 //For each control vertex in the u direction
If Ni,k(u) ≠ 0 then

For j = 1 to m + 1 //For each control vertex in the w direction

If Mj,l(w) ≠0 then
Calculate Q(u,w) = Q(u,w) + hi,jNi,k(u)Mj,l(w)*Sum(u,w)

end if
end loop

end if
end loop

Store Q(u,w); Reinitalize Q(u,w) = 0
end loop

end loop
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NURBS Surfaces:  Algorithms

• The improved naive algorithms are still very memory 
efficient

• The simple changes, based on the underlying 
mathematics, increase the computational efficiency by 
25% or more

• In the late 1970s this algorithm provided the basis for a 
real time interactive nonrational B-spline surface design 
system based on directly manipulating the control net –
SIGGRAPH ’80 paper

• The machine was a 16 bit minicomputer with 64 Kbytes of 
memory driving an Evans & Sutherland Picture System I

• Can we do better – Yes!
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NURBS Surfaces:  Algorithms

• When modifying a B-spline surface, a designer typically works 
with a control net:

of constant control net size, n + 1, m+ 1, in each direction
of constant order, k, l, in each parametric direction
with a constant number, p1, p2, of isoparametric lines in each 

parametric direction
Hence, n + 1, m + 1, k, l, p1 and p2 do not change

• If these values do not change, neither do the basis functions, 
Ni,k(u) and Mj,l(w), nor the Sum(u,w) function

• Thus, precalculating and storing the product 
Ni,k(u)Mj,l(w)/Sum(u,w) further increases the efficiency

• However, we leave this specific efficiency increase as an 
exercise
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NURBS Surfaces:  Algorithms

When modifying a NURBS surface control net, a designer 
typically manipulates:

a single control net vertex, Bij
or
the value of a single homongeneous weight, hij

Also, assume n+1, m+1, k, l, p1 and p2 do not change

Writing the NURBS surface equation for both the new and 
old surfaces and subtracting yields

Sumnew(u,w)Qnew(u,w) = Sumold(u,w) Qold(u,w)
+ (hi,jnewBi,jnew - hi,joldBi,jold) Ni,k(u) Mj,l(w)

which represents an incremental calculation for the new surface
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NURBS Surfaces:  Algorithms

Only a single control vertex changes

If hi,j does not change, then Sum(u,w) does not change 
and

Sumnew(u,w)Qnew(u,w) = Sumold(u,w) Qold(u,w)
+ (hi,jnewBi,jnew - hi,joldBi,jold) Ni,k(u) Mj,l(w)

becomes

Thus, incremental calculation of the new surface 
requires four multiplies, one subtract, one add for each 
u,w
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NURBS Surfaces:  Algorithms

Only a single homogeneous weight changes

If hi,j changes, then Sum(u,w) does not change and

Sumnew(u,w)Qnew(u,w) = Sumold(u,w) Qold(u,w)

+ (hi,jnewBi,jnew - hi,joldBi,jold) Ni,k(u) Mj,l(w)

becomes

Thus, incremental calculation of the new surface requires six 
multiplies, one subtract, one add , calculation of the new Sum (u,w)
function for each u,w
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NURBS Surfaces:  Algorithms

Incremental Sum(u,w) calculation

Writing the Sum(u,w) expression for both
the new and old surfaces and subtracting yields

Sumnew(u,w) = Sumold(u,w)+(hi,jnew-hi,jold)Ni,k(u)Mj,l(w)

which represents an incremental calculation for
the new Sum(u,w) function

Thus, calculating the new Sum(u,w) requires
two multiplies, a subtract and an add

If either Ni,k(u) or Mj,l(w) are zero, the Sum(u,w) function
does not change
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NURBS Surfaces:  Algorithms

Nonrational B-spline surface incremental calculation

Recall

Sumnew(u,w)Qnew(u,w) = Sumold(u,w)Qold(u,w)
+ (hi,jnewBi,jnew-hi,joldBi,jold)Ni,k(u)Mj,l(w)

If Sum(u,w)=1 and all hi,j=1, a nonrational B-spline surface  is 
generated. The result is

Qnew(u,w) = Qold(u,w)+(Bi,jnew-Bi,jold)Ni,k(u)Mj,l(w)

Thus, calculating the new surface requires two multiplies, a 
subtract and an add for each u,w

If either Ni,k(u) or Mj,l(w) are zero, the surface point at u,w does 
not change
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NURBS Surfaces:  Algorithms

Implemented in 1981 and published in 1982

The algorithms provide
dynamic real time interactive manipulation of

spatial position control net vertex
homogeneous weight

on modest computer systems
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Fast NURBS Surface Algorithm

Use itest = (n + 1) + (m + 1)k + l + p1 + p2 to 
determine if a complete new surface is required

if (itest ≠ (n + 1) + (m + 1)k + l + p1 + p2) then 
calculate complete new surface (see previous)

else
calculate incremental change to the surface

end if
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Fast NURBS Surface Algorithm

if (itest == (n + 1) + (m + 1)k + l + p1 + p2) then
calculate incremental change, if any,
in the spatial coordinate or homogeneous
weight of the vertex being manipulated
if (any coordinate or weight changed) then

if (homogeneous weight changed) then
save the old Sum(u,w) function
calculate the new Sum(u,w) function
if (no change in homogeneous weight) then

control net vertex changed
calculate change in surface for each u,w

else
homogeneous weight changed
calculate change in surface for each u,w

end if
end if
save current vertex coordinates as old
save current homogeneous weight as old

end if
end if
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Fast NURBS Surface Algorithm

Efficiency improvement

only spatial coordinate changes – factor of 38

only homogeneous weight changes – factor of 15

over the naive algorithms
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Additional Topics

• Effiect of multiple coincident knot values
• Effiect of internal nonuniform knot values
• Effiect of negative weights
• Reparameterization
• Derivatives – Curvature
• Bilinear surfaces
• Ruled/Developable surfaces
• Sweep surfaces
• Surfaces of revolution
• Conic volumes
• Subdivision
• Trim surfaces
• Surface fitting
• Constrained surface fitting
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Catmull-Rom Spline

• The Catmull-Rom Spline is a local 
interpolating spline developed for 
computer graphics and CAGD

Data points
Tangents at data points

• Development of the matrix form of 
Catmull-Rom Spline 
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Ferguson's Parametric Cubic 
Curves 

Given 
the two control points P0 and P1, 
the slopes of the tangents P0′ and P1′ at each point, 

Define a parametric cubic curve that 
passes through P0 and P1 , 
with the respective slopes P0′ and P1′ at  P0 and P1

By equating the coefficients of the following polynomial function 

P(t)=a0+a1t+a2t2+a3t3

with the values above, namely

P(0)=a0 P(1)=a1

P′(0)=a1 P′(1)=a1+2a2+2a3
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Ferguson's Parametric Cubic 
Curves 

Solving these equations simultaneously for  a0, a1, a2 and a3, we 
obtain 

a0=P(0) a1=P′(0)
a2=3[P(1)-P(0)]-2P′(0)-P′(1) a3=3[P(1)-P(0)]-2P′(0)-P′(1)

Substituting these into the original polynomial equation and 
simplifying to isolate the terms with  P(0) and P(1), P′(0) and P′(1) we 
have

P(t)=(1-3t2+2t3)P(0)

+(3t2-2t3)P(1)

+(t-2t2+t3)P′(0)

+(-t2+t3)P′(1)



12/18/2006 State Key Lab of CAD&CG 75

Ferguson's Parametric Cubic 
Curves 

It is clearly in a cubic polynomial form. Alternatively, this can be 
written in the following matrix form 

2 3

1 0 0 0 (0)
0 0 1 0 (1)

( ) 1
3 3 2 1 (0)

2 2 1 1 (1)

u t t t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⎣ ⎦ ′− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′−⎣ ⎦ ⎣ ⎦

P
P

P
P
P

This method can be used to obtain a curve through a more 
general set of control points {P0, P1, …,Pn} by considering pairs of 
control points and using the Ferguson method for two points as 
developed above. It is necessary, however, to have the slopes of
the tangents at each control point. 
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Given n+1 control points {P0, P1, …,Pn} , find a curve that 
interpolates these control points (i.e. passes through them all)
is local in nature (i.e. if one of the control points is moved, it only 
affects the curve locally)

For the curve on the segment PiPi+1, using Pi and Pi+1 as two control 
points, specifying the tangents to the curve at the ends to be 

and 

Catmull-Rom Spline

1 1

2
i i+ −−P P 2

2
i i+ −P P

Substituting these tangents into Ferguson's method, we obtain the 
matrix equation 
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Catmull-Rom Spline

1

2 3 1 1

2

1 0 0 0
0 0 1 0

( ) 1
3 3 2 1 2

2 2 1 1
2

i

i

i i

i i

u t t t

+

+ −

+

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

−⎢ ⎥⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥− − −⎢ ⎥
⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

P
P

P PP

P P

1

2 3

1

2

1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0

( ) 1
3 3 2 1 1/ 2 0 1/ 2 0

2 2 1 1 0 1/ 2 0 1/ 2
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Catmull-Rom Spline
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Multiplying the two inner matrices, we obtain 

where

0 2 0 0
1 0 1 01

2 5 4 12
1 3 3 1

M

⎡ ⎤
⎢ ⎥−⎢ ⎥=

− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

For the first and last segments in which P0′ and Pn′ must be defined by a 
different method. 
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Catmull-Rom Spline:  Example
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