# Non-Uniform Rational B-Spline Curves and Surfaces 

Hongxin Zhang and Jieqing Feng

2006-12-18
State Key Lab of CAD\&CG
Zhejiang University

## Contents

- Rational B-Spline Curves
- Non-Rational B-Spline Surfaces
- Rational B-Spline Surfaces
- Catmull-Rom Spline


## Rational B-Spline Curves

- Rational B-spline curves - Overview
- Rational B-spline curves - Definition
- Rational B-spline curves - Control
- Rational B-spline Curves - Conic Sections



## Rational B-spline curves Overview

- Bézier and nonrational B-splines are a subset (special case) of rational B-splines (NURBS)
- Bézier is a subset of nonrational $B$-splines
- Non-Uniform Rational B-Spline



## Rational B-spline curves Overview

- Rational B-splines provide a single precise mathematical form for:
- lines
- planes
- conic sections (circles, ellipses . . .)
- free form curves
- quadric surfaces
- sculptured surfaces


## Rational B-spline curves Overview



First to discuss rational B-splines PhD dissertation at Syracuse University

## Rational B-spline curves Definition

- Defined in 4-D homogeneous coordinate space
- Projected back into 3-D physical space

In 4-D homogeneous coordinate space

$$
P(t)=\sum_{i=1}^{n+1} B_{i}^{h} N_{i, k}(t)
$$

where

- $B_{i}^{h}$ are the 4-D homogeneous control vertices
- $N_{i, k}(t)$ s are the nonrational B-spline basis functions
- $k$ is the order of the basis functions


## Rational B-spline curves Definition

- Projected back into 3-D physical space

Divide through by homogeneous coordinate

$$
P(t)=\frac{\sum_{i=1}^{n+1} B_{i} h_{i} N_{i, k}(t)}{\sum_{i=1}^{n+1} h_{i} N_{i, k}(t)}=\sum_{i=1}^{n+1} B_{i} R_{i, k}(t)
$$

$B_{i}$ are the 3-D control vertices

$$
R_{i, k}(t)=\frac{h_{i} N_{i, k}(t)}{\sum_{i=1}^{n+1} h_{i} N_{i, k}(t)} \quad h_{i} \geq 0
$$

$R_{i, k}(t) \mathrm{S}$ are the rational B-spline basis functions

## Rational B-spline curves Properties

- $\sum_{i=1}^{n+1} R_{i, k}(t) \equiv 1$ for all $t$
- $R_{i, k}(t) \geqslant 0$ for all $t$
- $R_{i, k}(t), k>1$ has precisely one maximum
- Maximum degree $=n, k_{\max }=n+1$
- Exhibits variation diminishing property


## Rational B-spline curves Properties

- Follows shape of the control polygon
- Transforms curve $\leftrightarrows$ transforms control polygon
- Lies within union of convex hulls of $k$ successive control vertices if $h_{i}>0$
- Everywhere $C^{k-2}$ continuous


## Rational B-spline basis functions

Comparisons: $n+1=5, k=3$

$$
[X]=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 2 & 3 & 3 & 3
\end{array}\right],[H]=\left[\begin{array}{lllll}
1 & 1 & h_{3} & 1 & 1
\end{array}\right]
$$



## Rational B-spline curves - Control

Same as nonrational B-splines
plus
Manipulation of the homogeneous weighting factor

## Rational B-spline curves - Control

Homogeneous weighting factor: $n+1=5, k=3$

$$
[X]=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 2 & 3 & 3
\end{array}\right] \quad[H]=\left[\begin{array}{lllll}
1 & 1 & h_{3} & 1 & 1
\end{array}\right]
$$



## Rational B-spline Curves Control

Move single vertex, $n+1=5, k=4$
$[X]=\left[\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 2\end{array}\right],[H]=\left[\begin{array}{lllll}1 & 1 & 1 / 4 & 1 & 1\end{array}\right]$


## Rational B-spline Curves - Control

## Multiple vertices

$$
\begin{aligned}
& \text { [ } \mathrm{H}]=\left[\begin{array}{llll}
1 & 1 & 1 / 4 & 1
\end{array}\right] \\
& \text { [X]=[0000001123llll } \\
& {[H]=\left[\begin{array}{llllll}
1 & 1 & 1 / 4 & 1 / 4 & 1 & 1
\end{array}\right]} \\
& \text { [X]=[000001234444] }
\end{aligned}
$$

$n+1=5, k=4$
single vertex
$n+1=6, k=4$
double vertex
$n+1=7, k=4$
triple vertex


## Rational B-spline Curves - Conic Sections

- Conic sections described by quadratic curves
- Consider quadratic rational B-spline

$$
\left.\left.\begin{array}{c}
{[X]=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1
\end{array} 1\right.}
\end{array}\right] ; n+1=3, k=3\right]\left[\begin{array}{l}
h_{1} N_{1,3}(t) B_{1}+h_{2} N_{2,3}(t) B_{2}+h_{3} N_{3,3}(t) B_{3} \\
h_{1} N_{1,3}(t)+h_{2} N_{2,3}(t)+h_{3} N_{3,3}(t)
\end{array}\right.
$$

- A third-order rational Bézier curve
- Convenient to assume $h_{1}=h_{3}=1$

$$
P(t)=\frac{N_{1,3}(t) B_{1}+h_{2} N_{2,3}(t) B_{2}+N_{3,3}(t) B_{3}}{N_{1,3}(t)+h_{2} N_{2,3}(t)+N_{3,3}(t)}
$$

## Rational B-spline Curves - Conic Sections



- $h_{2}=0$
a straight line
- $0<h_{2}<1$
an elliptic curve segment
- $h_{2}=1$
a parabolic curve segment
- $h_{2}>1$
a hyperbolic curve segment


## Rational B-spline Curves Circles

Control vertices form isosceles triangle
Multiple internal knot values
Specific value of the homogeneous weight, $h_{2}=1 / 2$

$$
n+1=3, k=3,[X]=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1
\end{array}\right],[H]=\left[\begin{array}{llll}
1 & 1 / 2 & 1
\end{array}\right]
$$



## Rational B-spline Curves - Circles

Three $120^{\circ}$ arcs

$$
\text { [ } X \text { ] = [ } 000011122233 \text { 3]; } k=3 ; \text { [H] = [ } 11 / 211 / 211 / 21 \text { 1/ }
$$



## Rational B-spline Curves - Circles

Four $90^{\circ}$ arcs $[X]=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4\end{array}\right]$; $k=3 ;[H]=\left[\begin{array}{llllllll}1 & \sqrt{ } 2 / 2 & 1 & \sqrt{ } 2 / 2 & 1 & \sqrt{ } 2 / 2 & 1 & \sqrt{ } 2 / 2\end{array} 1\right]$


## Non-Rational B-Spline Surfaces

- Definition
- Properties
- Control
- Additional Topics


## Non-Rational B-Spline Surfaces: Definition

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} N_{i, k}(u) M_{j, \ell}(w)
$$

where

$$
\begin{aligned}
& N_{i, 1}(u)= \begin{cases}1 & \text { if } x_{i} \leq u<x_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& N_{i, k}(u)=\frac{\left(u-x_{i}\right) N_{i, k-1}(u)}{x_{i+k-1}-x_{i}}+\frac{\left(x_{i+k}-u\right) N_{i+1, k-1}(u)}{x_{i+k}-x_{i+1}}
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{j, 1}(w)= \begin{cases}1 & \text { if } y_{j} \leq w<y_{j+1} \\
0 & \text { otherwise }\end{cases} \\
& M_{j, \ell}(w)=\frac{\left(w-y_{j}\right) M_{j, \ell-1}(w)}{y_{j+l-1}-y_{j}}+\frac{\left(y_{j+\ell}-w\right) M_{j+1, \ell-1}(w)}{y_{j+\ell}-y_{j+1}}
\end{aligned}
$$

# Non-Rational B-Spline Surfaces: 

 Properties- Maximum order, $k, l$ is the number of control vertices in each parametric direction
- Continuity $C^{k-2}, C^{l-2}$ in each parametric direction
- Variation diminishing property is not known
- Transform surface - transform control net


# Non-Rational B-Spline Surfaces: 

## Properties

- Influence of single control vertex is $\pm k / 2$, $\pm l / 2$
- If $n+1=k, m+1=l$ a Bézier surface results
- Triangulated, the control net forms a planar approximation to the surface
- Lies within the union of convex hulls of $k, l$ neighboring control vertices


## Non-Rational B-Spline Surfaces: Control

- Order/degree
- Knot vectors (single/multiple)
- Number of Control points
- Control points (single/multiple)


## Non-Rational B-Spline Surfaces: Colinear net lines



- Ruled in the $w$ direction
- Smoothly curved in the $u$ direction


## Non-Rational B-Spline Surfaces: Colinear net lines



- Ruled in the $w$ direction
- Embedded flat area in the $u$ direction


## Non-Rational B-Spline Surfaces: Colinear net lines



Larger embedded flat area in the $u$ direction

## Non-Rational B-Spline Surfaces: Colinear net lines



- Embedded flat area in the center
- Embedded flat area on each side
- Curved corners


## Non-Rational B-Spline Surfaces: Colinear net lines



- Three coincident net lines in the $w$ direction generate hard line in the surface
- Still $C^{k-2}, C^{l-2}$ continuous in both parametric directions


## Non-Rational B-Spline Surfaces: Colinear net lines



- Three coincident net lines in the $u$ and $w$ directions generate two hard lines and a point in the surface
- Still $C^{k-2}, C^{l-2}$ continuous in both parametric directions


## Non-Rational B-Spline Surfaces: Local control

$$
k=4, l=4
$$

$$
n+1=9, m+1=9
$$

Local influence is $\pm k / 2, \pm l / 2$

# Non-Rational B-Spline Surfaces: Additional Topics 

- Degree elevation and reduction
- Derivatives
- Knot insertion
- Subdivision
- Reparameterization


## Rational B-Spline Surfaces: NURBS

- Definition
- Properties
- Weight Effects
- Algorithms
- Additional Topics



## NURBS: Definition

In four-dimensional homongeneous coordinate space

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j}^{h} N_{i, k}(u) M_{j, \ell}(w)
$$

And projecting back into three space

$$
Q(u, w)=\frac{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i, j} B_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} S_{i, j}(u, w)
$$

where $B_{i, j} \mathrm{~s}$ are the 3-D control net vertices $S_{i, j}$ s are the bivariate rational B-spline surface basis functions

## NURBS: Definition

## Basis functions

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} S_{i, j}(u, w)
$$

where

$$
S_{i, j}(u, w)=\frac{h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\sum_{i 1=1}^{n+1} \sum_{j 1=1}^{m+1} h_{i 1, j 1} N_{i 1, k}(u) M_{j 1, \ell}(w)}=\frac{h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)}
$$

and

$$
\operatorname{Sum}(u, w)=\sum_{i 1=1}^{n+1} \sum_{j 1=1}^{m+1} h_{i 1, j 1} N_{i 1, k}(u) M_{j 1, \ell}(w)
$$

Convenient, but not necessary, to assume $h_{i, j} \geqslant 0$ for all $i, j$

## NURBS: Definition

## Basis functions

$$
\begin{aligned}
S_{i, j}(u, w) & =\frac{h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)} \\
\operatorname{Sum}(u, w) & =\sum_{i 1=1}^{n+1} \sum_{j 1=1}^{m+1} h_{i 1, j 1} N_{i 1, k}(u) M_{j 1, \ell}(w)
\end{aligned}
$$

$S_{i, j}(u, w)$ s are not the product of $R_{i, k}(u)$ and $R_{j, l}(w)$ Similar shapes and characteristics to $N_{i, k}(u) M_{j, l}(w)$

## NURBS: Properties

- $\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} S_{i, j}(u, w) \equiv 1$
- $S_{i, j}(u, w) \geqslant 0$
- Maximum order is the number of control vertices in each parametric direction
- Continuity $C^{k-2}, C^{l-2}$ in each parametric direction
- Transform surface - transform control net
- The variation-diminishing property not known


## NURBS: Properties

- Influence of single control vertex is $\pm k / 2, \pm l / 2$
- If $n+1=k, m+1=l$, a rational Bézier surface results
- If $n+1=k, m+1=l$ and $h_{i j}=1$, a nonrational Bézier surface results
- Triangulated, the control net forms a planar approximation to the surface
- If $h_{i, j} \geqslant 0$, surface lies within union of convex hulls of $k, l$ neighboring control vertices


## NURBS: Weight Effects

$h_{i, j} \geqslant 0$ effect of zero weights


$$
n+1=5, m+1=4, k=l=4, h_{1,3}=h_{2,3}=0,
$$

Notice the straight edge and flat surface indicated by the red arrow

## NURBS: Weight Effects

$h_{i, j} \geqslant 0$ effect of homogeneous weights

$n+1=5, m+1=4, k=l=4, h_{1,3}=h_{2,3}=1$
Notice the curved edge and surface indicated by the red arrow

## NURBS: Weight Effects

$h_{i, j} \geqslant 0$ effect of homogeneous weights


Notice the curved edge and surface indicated by the red arrow

## NURBS: Weight Effects

$h_{i, j} \geqslant 0$ effect of homogeneous weights

$n+1=5, m+1=4, k=l=4$, All interior $h_{i, j}=0$
Notice the curved edge and surface indicated by the red arrow

## NURBS: Weight Effects

## $h_{i, j} \geqslant 0$ effect of homogeneous weights


$n+1=5, m+1=4, k=l=4$, All interior $h_{i, j}=500$
Notice the curved edge and surface indicated by the red arrow

## NURBS: Weight Effects

$h_{i, j} \geqslant 0$, effect of homogeneous weights


Control net


Surface $h_{4,3}=1$

## NURBS: Weight Effects

## $h_{i, j} \geqslant 0$, effect of homogeneous weights



Control net


Surface $h_{4,3}=5$

## NURBS: Weight Effects

## $h_{i, j} \geqslant 0$, effect of homogeneous weights



## NURBS: Weight Effects

$h_{i, j} \geqslant 0$, effect of homogeneous weights - comparison


## NURBS Surfaces: Algorithms

Nonrational B-spline surface $-h_{i, j}=1$ for all $i, j$
Hence

$$
\operatorname{Sum}(u, w)=\sum_{i 1=1}^{n+1} \sum_{j 1=1}^{m+1} h_{i 1, j 1} N_{i 1, k}(u) M_{j 1, \ell}(w)=1 \text { for all } u, w
$$

and $S_{i, j}(u, w)$ reduces to

$$
S_{i, j}(u, w)=\frac{h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)}=N_{i, k}(u) M_{j, \ell}(w)
$$

which yields

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} S_{i, j}(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} N_{i, k}(u) M_{j, \ell}(w)
$$

which suggests that the core algorithm is two nested loops

## NURBS Surfaces: Algorithms -Example

Writing out for $n+1=4, m+1=4, k=l=4$ yields

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} N_{i, k}(u) M_{j, \ell}(w)=\sum_{i=1}^{4} \sum_{j=1}^{4} B_{i, j} N_{i, 4}(u) M_{j, 4}(w)
$$

or

$$
\begin{aligned}
Q(u, w)= & N_{1,4}\left(B_{1,1} M_{1,4}+B_{1,2} M_{2,4}+B_{1,3} M_{3,4}+B_{1,4} M_{4,4}\right) \\
& +N_{2,4}\left(B_{2,1} M_{1,4}+B_{2,2} M_{2,4}+B_{2,3} M_{3,4}+B_{2,4} M_{4,4}\right) \\
& +N_{3,4}\left(B_{3,1} M_{1,4}+B_{3,2} M_{2,4}+B_{3,3} M_{3,4}+B_{3,4} M_{4,4}\right) \\
& +N_{4,4}\left(B_{4,1} M_{1,4}+B_{4,2} M_{2,4}+B_{4,3} M_{3,4}+B_{4,4} M_{4,4}\right)
\end{aligned}
$$

The inner loop is within the ()
The outer loop is the multiplier $N_{i, j}()$
The knot vectors and basis functions are also needed

## NURBS Surfaces: Algorithms

## Naive nonrational B-spline surface algorithm

Specify number of control vertices in the $u, w$ directions Specify order in each of the $u, w$ directions
Specify number of isoparametric lines in each of the $u, w$ direction Specify the control net, store in an array

Calculate the knot vector in the $u$ direction, store in an array Calculate the knot vector in the $w$ direction, store in an array
For each parametric value, $u$
Calculate the basis functions, $N_{i, k}(u)$, store in an array
For each parametric value, $w$
Calculate the basis functions, $M_{j, l}(w)$, store in an array
For each control vertex in the $u$ direction
For each control vertex in the $w$ direction
Calculate the surface point, $Q(u, w)$, store in an array
end loop
end loop
end loop
end loop

## NURBS Surfaces: Algorithms

Rational B-spline (NURBS) surface

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} \frac{h_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)}
$$

and

$$
\boldsymbol{\operatorname { S u m }}(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i, j} N_{i, k}(u) M_{j, \ell}(w)
$$

Two differences from the nonrational B-spline surface:
Calculate and divide by the $\operatorname{Sum}(u, w)$ function
Multiply by $h_{i j}$
Let's look at calculating the $\operatorname{Sum}(u, w)$ function

## NURBS Surfaces: Algorithms

Calculating the $\operatorname{Sum}(u, w)$ function
$\operatorname{Sum}(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i, j} N_{i, k}(u) M_{j, \ell}(w)$
Writing this out for $n+1=m+1=4, k=l=4$ yields

$$
\begin{aligned}
\operatorname{Sum}(u, w)= & \sum_{i=1}^{4} \sum_{j=1}^{4} h_{i, j} N_{i, 4}(u) M_{j, 4}(w) \\
= & N_{1,4}\left(h_{1,1} M_{1,4}+h_{1,2} M_{2,4}+h_{1,3} M_{3,4}+h_{1,4} M_{4,4}\right) \\
& +N_{2,4}\left(h_{2,1} M_{1,4}+h_{2,2} M_{2,4}+h_{2,3} M_{3,4}+h_{2,4} M_{4,4}\right) \\
& +N_{3,4}\left(h_{3,1} M_{1,4}+h_{3,2} M_{2,4}+h_{3,3} M_{3,4}+h_{3,4} M_{4,4}\right) \\
& +N_{4,4}\left(h_{4,1} M_{1,4}+h_{4,2} M_{2,4}+h_{4,3} M_{3,4}+h_{4,4} M_{4,4}\right)
\end{aligned}
$$

Same form as the nonrational B-spline surface
except $h_{i j}$ instead of $B_{i j}$ - use the same algorithm

## NURBS Surfaces: Algorithms

## Algorithm for the $\operatorname{Sum}(u, w)$ function

Assume the $N_{i, k}$ and $M_{j, l}$ basis functions are available Assume the homogeneous weights, $h_{i, j}$, are available For each control vertex in the $u$ direction

For each control vertex in the $w$ direction
Calculate and store the $\operatorname{Sum}(u, w)$ function end loop
end loop

## NURBS Surfaces: Algorithms

## Naive rational B-spline (NURBS) surface algorithm

The inner loop now becomes
For each parametric value, $u$
Calculate the basis functions, $N_{i, k}(u)$, store in an array For each parametric value, $w$

Calculate the basis functions, $M_{j, l}(w)$, store in an array
$\Rightarrow$ Calculate the $\operatorname{Sum}(u, w)$ function
For each control vertex in the $u$ direction
For each control vertex in the $w$ direction
Calculate and store the surface point, $Q(u, w)$ end loop
end loop
end loop
end loop

## NURBS Surfaces: Algorithms

Nonrational B-spline surface

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i, j} N_{i, k}(u) M_{j, \ell}(w)
$$

Rational B-spline (NURBS) surface

$$
Q(u, w)=\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i, j} \frac{B_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)}
$$

Comparing shows the NURBS algorithm requires
an additional multiply
a division
calculation of the $\operatorname{Sum}(u, w)$ function
Results in approximately 1/3 more computational effort

## NURBS Surfaces: Algorithms

These naive algorithms are very memory efficient
However, they are computationally inefficient
Computational efficiency improved by
avoiding the division by the $\operatorname{Sum}(u, w)$ function by converting it to a multiply using the reciprocal avoiding entire computations

## NURBS Surfaces: Algorithms

## More efficient NURBS algorithm

Recall for $n+1=m+1=3, k=l=3$ the NURBS surface is

$$
\begin{aligned}
Q(u, w)= & \frac{N_{1,3}}{\operatorname{Sum}}\left(h_{1,1} B_{1,1} M_{1,3}+h_{1,2} B_{1,2} M_{2,3}+h_{1,3} B_{1,3} M_{3,3}\right) \\
& +\frac{N_{2,3}}{\operatorname{Sum}}\left(h_{2,1} B_{2,1} M_{1,3}+h_{2,2} B_{2,2} M_{2,3}+h_{2,3} B_{2,3} M_{3,3}\right) \\
& +\frac{N_{3,3}}{\operatorname{Sum}}\left(h_{3,1} B_{3,1} M_{1,3}+h_{3,2} B_{3,2} M_{2,3}+h_{3,3} B_{3,3} M_{3,3}\right)
\end{aligned}
$$

Recall that in many cases the basis functions are zero
If $N_{i, j}(u, w)=0$, then we can avoid the entire calculation in () and the division (multiply) by $\operatorname{Sum}(u, w)$ (the reciprocal)
If $M_{i, j}(u, w)=0$, then we can avoid three multiplies in ()
Storing the reciprocal of $\operatorname{Sum}(u, w)$ saves a divide at the expense of a multiply

## NURBS Surfaces: Algorithms

## More efficient rational B-spline (NURBS) surface algorithm

## The inner loop now becomes

For each parametric value, $u$
Calculate the basis functions, $N_{i, k}(u)$, store in an array
For each parametric value, $w$
Calculate the basis functions, $M_{j, 1}(w)$, store in an array
$\rightarrow$ Calculate and save the reciprocal of $\operatorname{Sum}(u, w)$
For $i=1$ to $n+1$ //For each control vertex in the $u$ direction
$\Rightarrow$ If $N_{i, k}(u) \neq 0$ then
For $j=1$ to $m+1$ I/For each control vertex in the $w$ direction
$\Rightarrow$ If $M_{j, l}(w) \neq 0$ then
Calculate $Q(u, w)=Q(u, w)+h_{i, j} N_{i, k}(u) M_{j, l}(w) * \operatorname{Sum}(u, w)$
end if
end loop
end if
end loop
Store $Q(u, w)$; Reinitalize $Q(u, w)=0$
end loop
end loop

## NURBS Surfaces: Algorithms

- The improved naive algorithms are still very memory efficient
- The simple changes, based on the underlying mathematics, increase the computational efficiency by $25 \%$ or more
- In the late 1970s this algorithm provided the basis for a real time interactive nonrational B-spline surface design system based on directly manipulating the control net SIGGRAPH '80 paper
- The machine was a 16 bit minicomputer with 64 Kbytes of memory driving an Evans \& Sutherland Picture System I
- Can we do better - Yes!


## NURBS Surfaces: Algorithms

- When modifying a B-spline surface, a designer typically works with a control net:
of constant control net size, $n+1, m+1$, in each direction
of constant order, $k, l$, in each parametric direction
with a constant number, $p_{1}, p_{2}$, of isoparametric lines in each parametric direction
Hence, $n+1, m+1, k, l, p_{1}$ and $p_{2}$ do not change
- If these values do not change, neither do the basis functions, $N_{i, k}(u)$ and $M_{j, l}(w)$, nor the $\operatorname{Sum}(u, w)$ function
- Thus, precalculating and storing the product $N_{i, k}(u) M_{j, l}(w) / \operatorname{Sum}(u, w)$ further increases the efficiency
- However, we leave this specific efficiency increase as an exercise


## NURBS Surfaces: Algorithms

When modifying a NURBS surface control net, a designer typically manipulates:
a single control net vertex, $B_{i j}$
or
the value of a single homongeneous weight, $h_{i j}$
Also, assume $n+1, m+1, k, l, p_{1}$ and $p_{2}$ do not change
Writing the NURBS surface equation for both the new and old surfaces and subtracting yields

$$
\begin{gathered}
\operatorname{Sum}_{\text {new }}(u, w) Q_{\text {new }}(u, w)=\operatorname{Sum}_{\text {old }}(u, w) Q_{\text {old }}(u, w) \\
\quad+\left(h_{i, j n e w} B_{i, j n e w}-h_{i, j o l d} B_{i, j o l d}\right) N_{i, k}(u) M_{j, l}(w)
\end{gathered}
$$

which represents an incremental calculation for the new surface

## NURBS Surfaces: Algorithms

## Only a single control vertex changes

If $h_{i, j}$ does not change, then $\operatorname{Sum}(u, w)$ does not change and

$$
\begin{gathered}
\operatorname{Sum}_{\text {new }}(u, w) Q_{\text {new }}(u, w)=\operatorname{Sum}_{\text {old }}(u, w) Q_{\text {old }}(u, w) \\
+\left(h_{i, j \text { new }} B_{i, j \text { new }}-h_{i, j o l d} B_{i, j o l d}\right) N_{i, k}(u) M_{j, l}(w)
\end{gathered}
$$

becomes

$$
Q_{\text {new }}(u, w)=Q_{\text {old }}(u, w)+\left(B_{i, j_{\text {new }}}-B_{i, j_{\text {old }}}\right) \frac{h_{i, j}(u) N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}(u, w)}
$$

Thus, incremental calculation of the new surface requires four multiplies, one subtract, one add for each $u, w$

## NURBS Surfaces: Algorithms

Only a single homogeneous weight changes
If $h_{i, j}$ changes, then $\operatorname{Sum}(u, w)$ does not change and

$$
\begin{gathered}
\operatorname{Sum}_{\text {new }}(u, w) Q_{\text {new }}(u, w)=\operatorname{Sum}_{\text {old }}(u, w) Q_{\text {old }}(u, w) \\
\quad+\left(h_{i, j \text { new }} B_{i, j n e w}-h_{i, j o l d} B_{i, j o l d}\right) N_{i, k}(u) M_{j, l}(w)
\end{gathered}
$$

becomes

$$
\begin{aligned}
Q_{\text {new }}(u, w)= & \frac{\operatorname{Sum}_{\text {old }}(u, w)}{\operatorname{Sum}_{\text {new }}(u, w)} Q_{\text {old }}(u, w) \\
& \quad+\left(h_{i, j_{\text {new }}}-h_{i, j_{\text {old }}}\right) \frac{B_{i, j} N_{i, k}(u) M_{j, \ell}(w)}{\operatorname{Sum}_{\text {new }}(u, w)}
\end{aligned}
$$

Thus, incremental calculation of the new surface requires six multiplies, one subtract, one add, calculation of the new Sum $(u, w)$ function for each $u, w$

## NURBS Surfaces: Algorithms

Incremental $\operatorname{Sum}(u, w)$ calculation
Writing the $\operatorname{Sum}(u, w)$ expression for both the new and old surfaces and subtracting yields

$$
\operatorname{Sum}_{\text {new }}(u, w)=\operatorname{Sum}_{\text {old }}(u, w)+\left(h_{i, j \mathrm{new}}-h_{i, j \mathrm{jold}}\right) N_{i, k}(u) M_{j, l}(w)
$$

which represents an incremental calculation for the new $\operatorname{Sum}(u, w)$ function

Thus, calculating the new $\operatorname{Sum}(u, w)$ requires two multiplies, a subtract and an add

If either $N_{i, k}(u)$ or $M_{j, l}(w)$ are zero, the $\operatorname{Sum}(u, w)$ function does not change

## NURBS Surfaces: Algorithms

Nonrational B-spline surface incremental calculation
Recall

$$
\begin{aligned}
& \operatorname{Sum}_{\text {new }}(u, w) Q_{\text {new }}(u, w)=\operatorname{Sum}_{\text {old }}(u, w) Q_{\text {old }}(u, w) \\
& \quad+\left(h_{i, j n e w} B_{i, j \text { jnew }}-h_{i, j \text { old }} B_{i, j \text { old }}\right) N_{i, k}(u) M_{j, l}(w)
\end{aligned}
$$

If $\operatorname{Sum}(u, w)=1$ and all $h_{i, j}=1$, a nonrational B-spline surface is generated. The result is

$$
Q_{\text {new }}(u, w)=Q_{\text {old }}(u, w)+\left(B_{i, \text { new }}-B_{i, j \text { old }}\right) N_{i, k}(u) M_{j, l}(w)
$$

Thus, calculating the new surface requires two multiplies, a subtract and an add for each $u, w$
If either $N_{i, k}(u)$ or $M_{j, l}(w)$ are zero, the surface point at $u, w$ does not change

## NURBS Surfaces: Algorithms

Implemented in 1981 and published in 1982
The algorithms provide dynamic real time interactive manipulation of spatial position control net vertex homogeneous weight on modest computer systems

## Fast NURBS Surface Algorithm

Use itest $=(n+1)+(m+1) k+l+p_{1}+p_{2}$ to determine if a complete new surface is required
if $\left(\right.$ itest $\left.\neq(n+1)+(m+1) k+l+p_{1}+p_{2}\right)$ then calculate complete new surface (see previous) else
calculate incremental change to the surface end if

## Fast NURBS Surface Algorithm

```
if (itest == (n+1)+(m+1)k+l+\mp@subsup{p}{1}{}+\mp@subsup{p}{2}{})\mathrm{ then}
    calculate incremental change, if any,
    in the spatial coordinate or homogeneous
    weight of the vertex being manipulated
    if (any coordinate or weight changed) then
            if (homogeneous weight changed) then
                        save the old Sum(u,w) function
                        calculate the new Sum(u,w) function
            if (no change in homogeneous weight) then
                    control net vertex changed
                    calculate change in surface for each u,w
                else
                    homogeneous weight changed
                    calculate change in surface for each }u,
                end if
            end if
            save current vertex coordinates as old
            save current homogeneous weight as old
    end if
end if
```


## Fast NURBS Surface Algorithm

Efficiency improvement
only spatial coordinate changes - factor of 38 only homogeneous weight changes - factor of 15 over the naive algorithms

## Additional Topics

- Effiect of multiple coincident knot values
- Effiect of internal nonuniform knot values
- Effiect of negative weights
- Reparameterization
- Derivatives - Curvature
- Bilinear surfaces
- Ruled/Developable surfaces
- Sweep surfaces
- Surfaces of revolution
- Conic volumes
- Subdivision
- Trim surfaces
- Surface fitting
- Constrained surface fitting


## Catmull-Rom Spline

- The Catmull-Rom Spline is a local interpolating spline developed for computer graphics and CAGD
- Data points
- Tangents at data points
- Development of the matrix form of Catmull-Rom Spline


## Ferguson's Parametric Cubic

## Curves

## Given

the two control points $\mathbf{P}_{0}$ and $\mathbf{P}_{1}$,
the slopes of the tangents $\mathbf{P}_{0}{ }^{\prime}$ and $\mathbf{P}_{1}{ }^{\prime}$ at each point,
Define a parametric cubic curve that
passes through $\mathbf{P}_{0}$ and $\mathbf{P}_{1}$,
with the respective slopes $\mathbf{P}_{0}{ }^{\prime}$ and $\mathbf{P}_{1}{ }^{\prime}$ at $\mathbf{P}_{0}$ and $\mathbf{P}_{1}$
By equating the coefficients of the following polynomial function

$$
\mathbf{P}(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

with the values above, namely

$$
\begin{array}{ll}
\mathbf{P}(0)=a_{0} & \mathbf{P}(1)=a_{1} \\
\mathbf{P}^{\prime}(0)=a_{1} & \mathbf{P}^{\prime}(1)=a_{1}+2 a_{2}+2 a_{3}
\end{array}
$$

## Ferguson's Parametric Cubic Curves

Solving these equations simultaneously for $a_{0}, a_{1}, a_{2}$ and $a_{3}$, we obtain

$$
\begin{array}{ll}
a_{0}=\mathbf{P}(0) & a_{1}=\mathbf{P}^{\prime}(0) \\
a_{2}=3[\mathbf{P}(1)-\mathbf{P}(0)]-2 \mathbf{P}^{\prime}(0)-\mathbf{P}^{\prime}(1) & a_{3}=3[\mathbf{P}(1)-\mathbf{P}(0)]-2 \mathbf{P}^{\prime}(0)-\mathbf{P}^{\prime}(1)
\end{array}
$$

Substituting these into the original polynomial equation and simplifying to isolate the terms with $\mathbf{P}(0)$ and $\mathbf{P}(1), \mathbf{P}^{\prime}(0)$ and $\mathbf{P}^{\prime}(1)$ we have

$$
\begin{aligned}
\mathbf{P}(t)= & \left(1-3 t^{2}+2 t^{3}\right) \mathbf{P}(0) \\
& +\left(3 t^{2}-2 t^{3}\right) \mathbf{P}(1) \\
& +\left(t-2 t^{2}+t^{3}\right) \mathbf{P}^{\prime}(0) \\
& +\left(-t^{2}+t^{3}\right) \mathbf{P}^{\prime}(1)
\end{aligned}
$$

## Ferguson's Parametric Cubic

## Curves

It is clearly in a cubic polynomial form. Alternatively, this can be written in the following matrix form

$$
\mathbf{P}(u)=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{P}(0) \\
\mathbf{P}(1) \\
\mathbf{P}^{\prime}(0) \\
\mathbf{P}^{\prime}(1)
\end{array}\right]
$$

This method can be used to obtain a curve through a more general set of control points $\left\{\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right\}$ by considering pairs of control points and using the Ferguson method for two points as developed above. It is necessary, however, to have the slopes of the tangents at each control point.

## Catmull-Rom Spline

Given $n+1$ control points $\left\{\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right\}$, find a curve that interpolates these control points (i.e. passes through them all) is local in nature (i.e. if one of the control points is moved, it only affects the curve locally)

For the curve on the segment $\mathbf{P}_{i} \mathbf{P}_{i+1}$, using $\mathbf{P}_{i}$ and $\mathbf{P}_{i+1}$ as two control points, specifying the tangents to the curve at the ends to be

$$
\frac{\mathbf{P}_{i+1}-\mathbf{P}_{i-1}}{2} \text { and } \frac{\mathbf{P}_{i+2}-\mathbf{P}_{i}}{2}
$$

Substituting these tangents into Ferguson's method, we obtain the matrix equation

## Catmull-Rom Spline

$$
\mathbf{P}(u)=\left[\begin{array}{lll}
1 & t & t^{2}
\end{array} t^{3}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{P}_{i} \\
\mathbf{P}_{i+1} \\
\frac{\mathbf{P}_{i+1}-\mathbf{P}_{i-1}}{2} \\
\frac{\mathbf{P}_{i+2}-\mathbf{P}_{i}}{2}
\end{array}\right]
$$

$$
\mathbf{P}(u)=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 / 2 & 0 & 1 / 2 & 0 \\
0 & -1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
\mathbf{P}_{i-1} \\
\mathbf{P}_{i} \\
\mathbf{P}_{i+1} \\
\mathbf{P}_{i+2}
\end{array}\right]
$$

## Catmull-Rom Spline

Multiplying the two inner matrices, we obtain
where

$$
\mathbf{P}(u)=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right] M\left[\begin{array}{c}
\mathbf{P}_{i-1} \\
\mathbf{P}_{i} \\
\mathbf{P}_{i+1} \\
\mathbf{P}_{i+2}
\end{array}\right]
$$

$$
M=\frac{1}{2}\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
2 & -5 & 4 & -1 \\
-1 & 3 & -3 & 1
\end{array}\right]
$$

For the first and last segments in which $\mathbf{P}_{0}{ }^{\prime}$ and $\mathbf{P}_{n}{ }^{\prime}$ must be defined by a different method.

## Catmull-Rom Spline: Example



