B-Spline Curves and Surfaces (1)

Hongxin Zhang and Jieqing Feng

2006-12-11
State Key Lab of CAD\&CG
Zhejiang University

Contents

- The Analytic and Geometric Definition of a B-Spline Curve
- The Uniform B-Spline Blending Functions
- The DeBoor-Cox Calculation

The Analytic and Geometric Definition of a B-Spline Curve

- Why B-Spline Curve?
- The B-Spline Curve - Analytical Definition
- The B-Spline Curve - Geometric Definition

Why B-Spline Curve?

- Composite Bézier Curves - Continuity
$-B_{3}, B_{4^{2}} / C_{1}, C_{2}$ must lie in straight line

Geometric Continuity

- G^{0} continuity: Two curve segments joined at ends
- G^{1} continuity: Two curve segments joined at ends and tangent vectors point in same direction
- The tangent vector magnitudes do not have to be the same
- Less restrictive than parametric continuity

Parametric Continuity

- C^{0} continuity: Two curve segments joined at ends
- C^{1} continuity: Two curve segments joined at ends and tangent vectors in same direction and tangent vectors magnitudes the same
- More restrictive than geometric continuity

Bézier curves - Continuity comparison

Bézier curves - Parametric (red) and Geometric (black) Continuity comparison

Bézier curve difficulties

- Bernstein basis is global
- No local control
- Order (degree) fixed
- Equal to number of control vertices
- High order (degree) required for flexibility Wiggles
- Difficult to maintain continuity

The B-Spline Curve - Analytical Definition

A Cubic B-Spline Curve with 7 Control Points (4 Segements)

The B-Spline Curve - Analytical Definition (1)

A B-spline curve $\mathbf{P}(t)$, is defined by
where

$$
\mathbf{P}(t)=\sum_{i=0}^{n} \mathbf{P}_{i} N_{i, k}(t)
$$

- the $\left\{\mathbf{P}_{i}: i=0,1, \ldots, n\right\}$ are the control points,
- k is the order of the polynomial segments of the B-spline curve. Order means that the curve is made up of piecewise (k pieces) polynomial segments of degree $k-1$

The B-Spline Curve - Analytical Definition (2)

- Normalized B-spline blending functions (Bspline base functions) $\left\{N_{i, k}(t)\right\}$:
- The order k
- A non-decreasing sequence of real numbers

$$
\left\{t_{i}: i=0, \ldots, n+k\right\}
$$

normally called the "knot sequence"

The B-Spline Curve - Analytical Definition (3)

- The $N_{i . k}(t)$ functions are described as follows

$$
N_{i, 1}(t)= \begin{cases}1 & \text { if } u \in\left[t_{i}, t_{i+1}\right) \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

and if $k>1$

$$
\begin{equation*}
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t) \tag{2}
\end{equation*}
$$

- $t \in\left[t_{k-1}, t_{n+1}\right)$

The B-Spline Curve - Analytical Definition

- Notes

1. In equation (2), If

- the denominator terms on the right hand side of the equation are zero
- the subscripts are out of the range of the summation limits,
then the associated fraction is not evaluated and the term becomes zero. (Avoiding 0/0).

2. In the equation (1), "closed-open" interval.

The B-Spline Curve - Analytical Definition

Notes
3. The order k is independent of the number of control points $(n+1)$.

- The Bezier Curve: number of control points = degree+1
- The B-Spline curve, number of control points and degree are free

The B-Spline Curve - Geometric Definition

Given a set of Control Points $\left\{\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}\right\}$, an order k, and a set of knots $\left\{t_{0}, t_{1}, \ldots, t_{n+k}\right\}$, the B-Spline curve of order k is defined to be

$$
\mathbf{P}(t)=\mathbf{P}_{l}^{(k-1)}(t) \text { if } u \in\left[t_{l}, t_{l+1}\right)
$$

where

$$
\begin{aligned}
\mathbf{P}_{i}^{(j)}(t) & = \begin{cases}\left(1-\tau_{i}^{j}\right) \mathbf{P}_{i-1}^{(j-1)}(t)+\tau_{i}^{j} \mathbf{P}_{i}^{(j-1)}(t) & \text { if } j>0 \\
\mathbf{P}_{i} & \text { if } j=0 .\end{cases} \\
\tau_{i}^{j} & =\frac{t-t_{i}}{t_{i+k-j}-t_{i}}
\end{aligned}
$$

The B-Spline Curve - Geometric Definition: Pyramid Description

The B-Spline Curve - Geometric Definition

- Any \mathbf{P} in above pyramid is calculated as a convex combination of the two \mathbf{P} functions immediately to it's left

The Uniform B-Spline Blending Functions

- Calculating the Blending Functions using a Uniform Knot Sequence
- Blending Functions for $k=1$
- Blending Functions for $k=2$
- Blending Functions for $k=3$
- Blending Functions of Higher Orders
\uparrow

Calculating the Blending Functions using a Uniform Knot Sequence

The normalized B -spline blending functions are defined recursively by

$$
N_{i, 1}(t)= \begin{cases}1 & \text { if } u \in\left[t_{i}, t_{i+1}\right) \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

and if $k>1$
$N_{i, k}(t)=\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t)+\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t)$
where $\left\{t_{0}, t_{1}, \ldots, t_{n+k}\right\}$ is a non-decreasing sequence of knots, and k is the order of the curve

Calculating the Blending Functions using a Uniform Knot Sequence

- These blending functions are difficult to calculate directly for a general knot sequence.
- If the knot sequence is uniform, it is quite straightforward to calculate these functions
- $\left\{t_{0}, t_{1}, \ldots, t_{n+k}\right\}=\{0,1, \ldots, n+k\}$ i.e. $t_{i}=i$
- They have some surprising properties

Blending Functions for $\boldsymbol{k}=\mathbf{1}$

If $k=1$, from (1), the normalized blending functions are

$$
N_{i, 1}(t)= \begin{cases}1 & \text { if } u \in\left[t_{i}, t_{i+1}\right) \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

- These are shown together in the following figure, where we have plotted $N_{0,1}, N_{1,1}, N_{2,1}$ and $N_{3,1}$ respectively, over five of the knots.
- The white circle at the end of the line where the functions value is 0 . This represents the affect of the "open-closed" interval found in equation (1).

Blending Functions for $\boldsymbol{k}=1$

Blending Functions for $\boldsymbol{k}=1$

Blending Functions for $k=1$

- Notes
- The white circle at the end of the line where the functions value is 0 . This represents the affect of the "open-closed" interval found in equation (1).
- These functions have support (the region where the curve is nonzero) in an interval, with $N_{i, 1}$ having support on $[i, i+1)$.
- They are also clearly shifted versions of each other e.g., $N_{i+1,1}$ is just $N_{i, 1}$ shifted one unit to the right. In fact, we can write $N_{i, 1}(t)=N_{0,1}(t-i)$

Blending Functions for $\boldsymbol{k}=2$

If $k=2$ then $N_{0,2}$ can be written as a weighted sum of $N_{0,1}$ and $N_{1,1}$ by equation (2).

$$
\begin{aligned}
N_{0,2}(t) & =\frac{t-t_{0}}{t_{1}-t_{0}} N_{0,1}(t)+\frac{t_{2}-t}{t_{2}-t_{1}} N_{1,1}(t) \\
& =t N_{0,1}(t)+(2-t) N_{1,1}(t) \\
& = \begin{cases}t & \text { if } 0 \leq t<1 \\
2-t & \text { if } 1 \leq t<2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Blending Functions for $\boldsymbol{k}=2$

- The curve is piecewise linear, with support in the interval $[0,2]$.
- These functions are commonly referred to as "hat" functions and are used as blending functions in many linear interpolation problems.

Blending Functions for $\boldsymbol{k}=2$

Calculate $N_{1,2}$ to be

$$
\begin{aligned}
N_{1,2}(t) & =\frac{t-t_{1}}{t_{2}-t_{1}} N_{1,1}(t)+\frac{t_{3}-t}{t_{3}-t_{2}} N_{2,1}(t) \\
& =(t-1) N_{1,1}(t)+(3-t) N_{2,1}(t) \\
& = \begin{cases}t-1 & \text { if } 1 \leq t<2 \\
3-t & \text { if } 2 \leq t<3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Blending Functions for $\boldsymbol{k}=2$

- It is a shifted version of $N_{0,2}$

Blending Functions for $\boldsymbol{k}=2$

Notes

- Each nonzero portion of these curves covers the intervals spanned by three knots - e.g., $N_{1,2}$ spans the interval [1,3].
- The curves are piecewise linear, made up of two linear segments joined continuously.
- Since the curves are shifted versions of each other, we can write

$$
\hookleftarrow \quad N_{i, 2}(t)=N_{0,2}(t-i)
$$

Blending Functions for $\boldsymbol{k}=\mathbf{3}$

For the case $k=3$, we again use equation (2) to obtain

$$
\begin{aligned}
N_{0,3}(t) & =\frac{t-t_{0}}{t_{2}-t_{0}} N_{0,2}(t)+\frac{t_{3}-t}{t_{3}-t_{1}} N_{1,2}(t) \\
& =\frac{t}{2} N_{0,2}(t)+\frac{3-t}{2} N_{1,2}(t) \\
& =\left\{\begin{array}{ll}
\frac{t^{2}}{2} & \text { if } 0 \leq t<1 \\
\frac{t^{2}}{2}(2-t)+\frac{3-t}{2}(t-1) & \text { if } 1 \leq t<2 \\
\frac{(3-t)^{2}}{2} & \text { if } 2 \leq t<3 \\
0 & \text { otherwise }
\end{array}= \begin{cases}\frac{t^{2}}{2} & \text { if } 0 \leq t<1 \\
\frac{-3+6 t-2 t^{2}}{2} & \text { if } 1 \leq t<2 \\
\frac{(3-t)^{2}}{2} & \text { if } 2 \leq t<3 \\
0 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Blending Functions for $k=3$

$$
\begin{aligned}
N_{1,3}(t) & =\frac{t-t_{1}}{t_{3}-t_{1}} N_{1,2}(t)+\frac{t_{4}-t}{t_{4}-t_{2}} N_{2,2}(t) \\
& =\frac{t-1}{2} N_{1,2}(t)+\frac{4-t}{2} N_{2,2}(t) \\
& = \begin{cases}\frac{(t-1)^{2}}{2} & \text { if } 1 \leq t<2 \\
\frac{-11+10 t-2 t^{2}}{2} & \text { if } 2 \leq t<3 \\
\frac{(4-t)^{2}}{2} & \text { if } 3 \leq t<4 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Blending Functions for $\boldsymbol{k}=\mathbf{3}$

State Key Lab of CAD\&CG

Blending Functions for $\boldsymbol{k}=\mathbf{3}$

Notes

- The figures are piecewise quadratic curves, each made up of three parabolic segments that are joined at the knot values (tick marks on the joints).
- The nonzero portion of these two curves each span the interval between four consecutive knots - e.g., the nonzero portion of $N_{1,3}$ spans the interval [1,4]
- Again, $N_{1,3}$ can be seen visually to be a shifted version of $N_{0,3}$. Generally,

$$
N_{i, 3}(t)=N_{0,3}(t-i)
$$

Blending Functions of Higher Orders

- When $k=4$
- The $N_{i, 4}(t)$ blending functions will be piecewise (4 pieces) cubic functions
- The support of $N_{i, 4}(t)$ will be the interval $[i, i+4]$
- Each of the blending functions will be shifted versions of each other

$$
N_{i, 4}(t)=N_{0,4}(t-i)
$$

Blending Functions of Higher Orders

- In general
- The uniform blending functions $N_{i, k}$ will be piecewise (k pieces) ($k-1$)st degree functions
- $N_{i, k}$ has support in the interval $[i, i+k)$.
- They will be shifted versions of each other and each can be written in terms of a "basic" function

$$
N_{i, k}(t)=N_{0, k}(t-i)
$$

Blending Functions of Higher Orders

Linear B-Spline $n=3, k=2$

Cubic B-Spline $n=3, k=4$

Quadratic B-Spline $n=3, k=3$

Cubic B-Spline $n=5, k=2$

Interactive demo

The DeBoor-Cox Calculation

- In 1972, Carl DeBoor and M.G. Cox independently discovered the relationship between the analytic and geometric definitions of B-splines.
- Starting with the definition of the normalized B-spline blending functions, these two researchers were able to develop the geometric definition of the Bspline.

VIP for B-Spline

J. Schoenberg

de Door

The DeBoor-Cox Calculation

- Definition of the B-Spline Curve
- The DeBoor-Cox Calculation
- Geometric Definition of the B-Spline Curve
\uparrow

Definition of the B-Spline Curve

A B-spline curve $\mathbf{P}(t)$, is defined by

$$
\begin{equation*}
\mathbf{P}(t)=\sum_{i=0}^{n} \mathbf{P}_{i} N_{i, k}(t) \tag{1}
\end{equation*}
$$

where:

- The $\left\{\mathbf{P}_{i}: i=0,1, \ldots, n\right\}$ are the control points,
- k is the order of the polynomial segments of the B-spline curve. Order k means that the curve is made up of piecewise (k pieces) polynomial segments of degree $k-1$,

Definition of the B-Spline Curve

- $N_{i, k}(t)$ (normalized B-spline blending functions)
- The order k;
- Knot sequence: a non-decreasing sequence of real numbers

$$
\left\{t_{i}: i=0, \ldots, n+k\right\}
$$

- The $N_{i, k}(t)$ functions are described as

$$
N_{i, 1}(t)= \begin{cases}1 & \text { if } t \in\left[t_{i}, t_{i+1}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

when $k>1$

$$
\begin{equation*}
N_{i, k}(t)=\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t)+\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t) \tag{3}
\end{equation*}
$$

Definition of the B-Spline Curve

- The parameter t ranges throughout interval $\left[t_{k-1}, t_{n+1}\right)$.
- Notse on definition of the B-Spline curve
- In equation (3), if either of the denominator terms on the right hand side of the equation are zero, or the subscripts are out of the range of the summation limits, then the associated fraction is not evaluated and the term becomes zero. This is to avoid a zero-over-zero evaluation problem.
- The order k is independent of the number of control points $(n+1)$. In the B-Spline curve, unlike the Bézier Curve, we have the flexibility of using many control points, and restricting the degree of the polynomial segments

The DeBoor-Cox Calculation

General idea: By substituting the recursively definition of $N_{i, k}(t)$ in equation (3), find the point on the curve in terms of recursively definition of control points \mathbf{P}_{i}

The DeBoor-Cox Calculation

By substituting

$$
\begin{equation*}
N_{i, k}(t)=\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t)+\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t) \tag{3}
\end{equation*}
$$

into B-spline curve

$$
\begin{equation*}
\mathbf{P}(t)=\sum_{i=0}^{n} \mathbf{P}_{i} N_{i, k}(t) \tag{1}
\end{equation*}
$$

where $t \in\left[t_{k-1}, t_{n+1}\right]$

This will give us the definition of $\mathbf{P}(t)$ in terms of $N_{i, k-1}$, which is of lower degree. And continue this process until the sum is written with $N_{i, 1}$, functions, which we can evaluate easily.

The DeBoor-Cox Calculation

$$
\begin{aligned}
\mathbf{P}(t) & =\sum_{i=0}^{n} \mathbf{P}_{i} N_{i, k}(t) \\
& =\sum_{i=0}^{n} \mathbf{P}_{i}\left[\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t)+\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t)\right] \\
& =\sum_{i=0}^{n} \mathbf{P}_{i}\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t)+\sum_{i=0}^{n} \mathbf{P}_{i}\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t)
\end{aligned}
$$

Separating out those unique terms of each sum, $N_{0, k-1}$ and $N_{n+1, k-1}$, giving

$$
\begin{aligned}
= & \mathbf{P}_{0} \frac{t-t_{0}}{t_{k-1}-t_{0}} N_{0, k-1}(t)+\sum_{i=1}^{n} \mathbf{P}_{i}\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) N_{i, k-1}(t) \\
& +\sum_{i=0}^{n-1} \mathbf{P}_{i}\left(\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right) N_{i+1, k-1}(t)+\mathbf{P}_{n}\left(\frac{t_{n+k}-t}{t_{n+k}-t_{n+1}}\right) N_{n+1, k-1}(t)
\end{aligned}
$$

The DeBoor-Cox Calculation

Because

- The support of a B-spline blending function $N_{i, k}(t)$ is the interval $\left[t_{i}, t_{i+k}\right]$
- The suport of the $N_{0, k-1}$ is $\left[t_{0}, t_{k-1}\right)$,
- The defined interval of $\mathbf{P}(t)$ is $\left[t_{k-1}, t_{n+1}\right)$

Thus

$$
N_{0, k-1}(t) \equiv 0
$$

Similarly

- The support of the $N_{n+1, k-1}$ is $\left[t_{n+1}, t_{n+k}\right)$, thus

$$
N_{n+1, k-1}(t) \equiv 0
$$

The DeBoor-Cox Calculation

$$
\begin{aligned}
\mathbf{P}(t) & =\sum_{i=1}^{n} \mathbf{P}_{i}\left[\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right] N_{i, k-1}(t)+\sum_{i=0}^{n-1} \mathbf{P}_{i}\left[\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}\right] N_{i+1, k-1}(t) \\
& =\sum_{i=1}^{n} \mathbf{P}_{i}\left[\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right] N_{i, k-1}(t)+\sum_{i=1}^{n} \mathbf{P}_{i-1}\left[\frac{t_{i+k-1}-t}{t_{i+k-1}-t_{i}}\right] N_{i, k-1}(t) \\
& =\sum_{i=1}^{n}\left[\left(\frac{t_{i+k-1}-t}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i-1}+\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i}\right] N_{i, k-1}(t)
\end{aligned}
$$

if we denote

$$
\mathbf{P}_{i}^{(1)}(t)=\left(\frac{t_{i+k-1}-t}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i-1}+\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i}
$$

The DeBoor-Cox Calculation

Thus the result is

$$
\mathbf{P}(t)=\sum_{i=1}^{n} \mathbf{P}_{i}^{(1)}(t) N_{i, k-1}(t)
$$

where

$$
\mathbf{P}_{i}^{(1)}(t)=\left(\frac{t_{i+k-1}-t}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i-1}+\left(\frac{t-t_{i}}{t_{i+k-1}-t_{i}}\right) \mathbf{P}_{i}
$$

- The summation terms of equation (1) is written in terms of blending functions of lower degree.
- We have transferred some of the complexity to the $\mathbf{P}_{i}^{(1)}$ s, but we retain a similar form with control points $\mathbf{P}_{i}{ }^{(1)}$ s weighted by blending functions.
- We can repeat this calculation again.

The DeBoor-Cox Calculation

Repeating the calculation and manipulating the sums

$$
\mathbf{P}(t)=\sum_{i=2}^{n} \mathbf{P}_{i}^{(2)}(t) N_{i, k-2}(t)
$$

where

$$
\mathbf{P}_{i}^{(2)}(t)=\left(\frac{t_{i+k-2}-t}{t_{i+k-2}-t_{i}}\right) \mathbf{P}_{i-1}^{(1)}(t)+\left(\frac{t-t_{i}}{t_{i+k-2}-t_{i}}\right) \mathbf{P}_{i}^{(1)}(t)
$$

The DeBoor-Cox Calculation

If we continue with this process repeatedly, eventually we will obtain blending functions of order 1 . We are led to the following result: If we define

$$
\mathbf{P}_{i}^{(j)}(t)= \begin{cases}\left(1-\tau_{i}^{j}\right) \mathbf{P}_{i-1}^{(j-1)}(t)+\tau_{i}^{j} \mathbf{P}_{i}^{(j-1)}(t) & \text { if } j>0 \tag{4}\\ \mathbf{P}_{i} & \text { if } j=0\end{cases}
$$

where

$$
\tau_{i}^{j}=\frac{t-t_{i}}{t_{i+k-j}-t_{i}}
$$

if t is in the interval $\left[t_{l}, t_{l+1}\right)$, we have

$$
\mathbf{P}(t)=\mathbf{P}_{l}^{(k-1)}(t)
$$

The DeBoor-Cox Calculation

By continuing the DeBoor-Cox calculation $k-1$ times, we arrive at the formula

$$
\mathbf{P}(t)=\sum_{i=k-1}^{n} \mathbf{P}_{i}^{(k-1)}(t) N_{i, 1}(t)
$$

where

$$
\mathbf{P}_{i}^{(j)}(t)= \begin{cases}\left(1-\tau_{i}^{j}\right) \mathbf{P}_{i-1}^{(j-1)}(t)+\tau_{i}^{j} \mathbf{P}_{i}^{(j-1)}(t) & \text { if } j>0 \tag{4}\\ \mathbf{P}_{i} & \text { if } j=0\end{cases}
$$

Geometric Definition of the B-Spline Curve

Given

- order of B-spline curve: k
- a set of Control Points: $\mathbf{P}_{0}, \mathbf{P}_{1}, \ldots, \mathbf{P}_{n}$
- a set of knots: $t_{0}, t_{1}, \ldots, t_{n+k}$

The corresponding B-spline curve is
where

$$
\begin{aligned}
\mathbf{P}(t) & =\mathbf{P}_{l}^{(k-1)}(t) \text { if } t \in\left[t_{l}, t_{l+1}\right) \\
\mathbf{P}_{i}^{(j)}(t) & = \begin{cases}\left(1-\tau_{i}^{j}\right) \mathbf{P}_{i-1}^{(j-1)}(t)+\tau_{i}^{j} \mathbf{P}_{i}^{(j-1)}(t) & \text { if } j>0 \\
\mathbf{P}_{i} & \text { if } j=0\end{cases}
\end{aligned}
$$

$$
\tau_{i}^{j}=\frac{t-t_{i}}{t_{i+k-j}-t_{i}}
$$

Geometric Definition of the B-Spline Curve : Pyramid Description

\mathbf{P}_{l-k+1}		
	$\mathbf{P}_{l-k+2}^{(1)}$	
\mathbf{P}_{l-k+2}		$\mathbf{P}_{l-k+3}^{(2)}$
	$\mathbf{P}_{l-k+3}^{(1)}$	
\mathbf{P}_{l-k+3}		\cdot
\mathbf{P}_{l-k+4}		
\cdot		
\mathbf{P}_{l-2}		$\mathbf{P}_{l-1}^{(2)}$
\mathbf{P}_{l-1}	$\mathbf{P}_{l-1}^{(1)}$	$\mathbf{P}_{l}^{(2)}$
\mathbf{P}_{l}	$\mathbf{P}_{l}^{(1)}$	

$$
\begin{gathered}
\mathbf{P}_{l-2} \\
\mathbf{P}_{l-1} \\
\mathbf{P}_{l}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{P}_{l-1}^{(k-2)} \\
& \mathbf{P}_{l}^{(k-2)}
\end{aligned}
$$

