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Reparameterizing Bézier Curves

« Bézier Curve P(t):

a set of control points {P,,P,,...,P.} with
Bernstein polynomials {B; ,(t)} t€[0,1]

P(t) =3 PuBin(t)
1=0

* Purpose

General B-spline curves: piecewise Bézier
curves over an arbitrary parametric interval
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Defining the Reparameterized
Curve

* Given a Bézier curve P(t), a new
parameterization of the curve where
t<[a,b] can be developed as

t—a

P[a,b] (t) — P(b — a)

Pr.p(t) and P(t) are exactly the same curve,
but traversed through different ranges of t.
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Impaction of Parameterization on
Bezier Curve Properties

° P[O,l](t):P(t)
* Using the chain rule, the derivative of the
curve Pr, ;(t) at a value tis equal to

1
b—a )

t—a

P/
(b—a

» Subdividing the curve P, (t) at the point
c€E[a,b], Is equivalent to subdividing the
curve P(t) at the point 7—, L]
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Bézier Control Polygons for a Cubic
l Curve l
—
e A Matrix Equation for a Cubic Curve
 Reparameterization using the Matrix Form
* A Specific Example
 An Expanded Example
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A Matrix Equation for a Cubic Curve

* A cubic polynomial curve P(t) can be
written as a cubic Bézier curve

» Let P,, P,, P,, P; be the control points of the
curve P(t) P P

3
P
P(t) = Z P;B; 3(t) 3
1=0 Qo
Po
itS matrix form iS Cubic Bézier curve and

its control polygon
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A Matrix Equation for a Cubic Curve

3
P(t) =) PiBi(t)

1=0

= (1 —t)*Po + 3t(1 — t)’Py + 3t°(1 — t)P2 + t°P;

Py
| | P
= [ (1—1)3 3t(1—1)2 362(1—1t) 3 :
P,
P3
b
P
= [ 1t 2 p } M|
Py
P3
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A Matrix Equation for a Cubic Curve

Where 1 0 0

0
-3 3 0O O
M:
3 —6 3 0
-1 3 =3 1_
Notes:

¢+ The matrix M defines the blending functions for the
curve P(t) - I.e. the cubic Bernstein polynomials.

¢ There are three equations here, one for each of the x,
- and z components of P(t).
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Reparameterization using the
Matrix Form

» Let P, P,, P,, P; be the control points of the
curve P(t)
* In general, the used parametric interval is [0,1]
* Py=P(0), P,=P(1)
« Given an Iinterval [a,b], there exists a

unique control polygon {Q,, Q, Q, Qs }
defining a Bézier curve Q(t), such that

Q(0)=Q,=P(a) and Q(1)=Q,=P(b)
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Reparameterization using the
Matrix Form

* Purpose: finding the Bezier polygon for the
portion of the curve P(t) where t&[a,b]

« Solution: by reparameterization and by
manipulating the matrix representation

above
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Reparameterization using the
Matrix Form

* Defining the new curve as Q(t), then

Q()=P((b-a)t+a)
* Both Q(t) and P(t) are cubic curves, and
represent the same curve.

* The difference of Q(t) and P(t) is their
parametric domain

= P(1): t€[0,1]
" Qoy()=Pa(D): t<[a,0]
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Reparameterization using the
Matrix Form
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=[1tf,2 t:‘} C

-1 3 -3 1 P;
where the matrix [C] has columns whose entries are the
coefficients of 1, t, t? and t3 respectively in the polynomials
1, (b-a)t+a,((b-a)t+a)?, and ((b-a)t+a)3, respectively
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Reparameterization using the
Matrix Form

* Q(t) can be written as

Q(t):_l t 2 | cMP

— 1 ¢t 8 M (Sio.0P)
where Sp,,j is equalto s, = M~'CM

* The new control points for the portion of
the curve where t ranges from a to b can
now be written as (S, ;P )
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A Specific Example

* P(t): parameter ranges from 1 to 2
* |t Is natural extension of P(t) from [0,1] to [1,2]

+ |t Is useful to learn how to piece together two
Bézier curves: The general B-spline curves
are piecewise Bézier curves which are
smoothly joined.
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Matrix Representation of on [1,2]

Q(t) = P(t + 1)

1 0 o o]/l P,
3 3 0 ol m®
=1 @+1) @+ (¢+1)?
3 -6 3 0]/ P,
1 3 -3 11|]|Ps
1 123l 2 @ @ &l e
0123|!-3 3 o0 oflpP
=[1 t 2 t3] :
00 1 3 3 -6 3 0]| P,
000 1 1 3 -3 1| Py
:[1 § 1= t3]M(S[12]P)
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on [1,2]
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Matrix Representation of on [1,2]

* The control polygon for that portion of P(t)
curve where t ranges from 1 to 2 Is:

(s ] [ o o0 g 1]/[2s
Q| |00 -1 2|]|P
Q| | 0o 1 -4 4]0P
Q| | -16 -12 8| P
- o
3 Py - 9P,
- P, — 4P, + 4P;
~Pg + 6P, — 12P; + 8P3
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Geometric Interpretation of the New
Control Points

Defining new
temporary points
R, R, R,

{QO! Qli Q21 Q3}

can be calculated
by a simple
geometric
process using
only the initial
control polygon

{PO’ Pl’ I:)2’ P3}

12/07/2006

Qo =P3

Q. =P3+ (P3 — Py)
R, =Py + (P, — Py)
Ry =Py + (P, — Py)

R; =Ry + (R2 — Ry)
=Po+ (Py—P1)+ P2+ (P2 —P;) —P1 + (P1 — Py))
= Py —4P; + 4P>

Q: = Q1+ (Q1 —Ry)
=P3+ (P3 —P3) + (P3+ (Ps — P3) — P2+ (P2 — Py))
=Py — 4Py +4P3

Qs = Q2+ (Q2 — Ra)
=Py — 4Py +4P3 + (Py — 4Py + 4P3 — Py — 4P + 4P»)
— Py + 6P — 12P, + 8P

State Key Lab of CAD&CG
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Geometric Interpretation of the Q,

o QO:PO
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Geometric Interpretation of the Q,

* Qi =P3+(P3—P3) lies on the line P,P;,
where the distance between P, and P, Is

equal to that between Q, and Q.
P, P

Qo
o

PO Ql
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Geometric Interpretation of the Q,

Ry =Py + (P2 — Py)

Q2 = Q1+ (Q1 — Ry)
=P3+ (P3—P3) + (P3+ (P3— Py) — Py + (Py — Py))
— P, — 4P, + 4P;

P, Py R; =Py + (P2 — Py)

L Ps; + (P3s —Py)

Q,*
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Geometric Interpretation of the Q,

R, =P; + (P — Py)

Ry =Py + (P2 — Py)

R3s =Ry + (R2 — Ry)
=Py + (P2 —P1)+ (P2 + (P2 —P1) =Py + (P1 — Py))
= Py — 4P, + 4P»

Q3 = Q2+ (Q2 — R3)
=P —4P5 +4P35 + (P — 4Py + 4P3 — Py — 4P + 4P»)
= Py + 6P — 12Py + 8P3
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Geometric Interpretation of the Q,

Ri =Pi1+ (P1—-Py)
=

P]_ ."'.,- P2 "‘u“‘.“‘ Rz = P2 + (P2 _— Pl)

. Ra=4Py— 4Py + Pg
*Q e

: 4:"“‘
L 4P3 —4P> + Py

Q;
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A Specific Example: Results

* The above geometric construction is the
Inverse process of the de Casteljau
geometric construction.

* These two functions represent the same
curve.

* EXxercise: constructing the control points of
Q(1)=P(t), t€[0,2].
&aT1ps: the result control points {Py, Ry, Ry, Q3 }
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An Expanded Example

* The example above

]

t

lustrated there are many Bézier polygons
nat can represent a cubic curve

¢ 0

Id not quite illustrate the necessary

characteristics of the algorithm
« Considering the cubic curve P(t) when

[fS=

[1,b]

+ Q (t)=P(at+1) where a=b-1

12/07/2006
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Matrix Representation of

on [1, b]

Q(t) = P(at + 1)

:[1 (at+1) (at+1)* (at+1)

=[1 t t° t3}

1
0
0
0
(

1
a
0
0

= [ I & 12 & ]M Sy P)

12/07/2006
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0o o[ Py
o o || Py
3 0| P,
3 1| |Ps
o ol P, ]
0O O P,
3 0| P,
3 1||Ps|
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Matrix Representation of on [1, b]

where - - - -
1 0 0 0 11 1 1 1 0 0 0
-3 3 O 0 0 a 2a 3a -3 3 O 0
ST = 2 o 2
3 -6 3 0 0 0 a® 3a 3 —6 0
| -1 3 -3 1] |0 0 o || -1 3 =3 1]
(1 o021 2 1|[1 @ B O
|1 300 0 a 2a 3a -3 3 0 0
|12 ia||a 0 o 2P 3 6 3 0
111 1[[00 0 a’ | =1 3 =3 1
I 0 0 L |
B 0 0 —a (a+1)
oo a? —2a(a+1) (a+1)?
—a® 3a*(a+1) —3a(a+1)? (a+1)*
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Matrix Representation of on [1, b]

| |ie contro| po|ygon Ol tlie curve mt; Wliere tE[I, [;l

12/07/2006

]

Q
Q>

_Q3_

0 0 0 I N -
0 0 —a (a+1) P
0 a* —2a(a+1) (a+ 1) P

| —a® 3a?(a+1) —3ale+1)? (a+1)? || Ps |

—a’Pg + 3a%(a + 1)P; — 3a(a + 1)2Py + (a + 1)3P3

P
—aPs + (a4 1)P3
a’P) —2a(a + 1)Py + (a + 1)?Py

State Key Lab of CAD&CG 29



Geometric Interpretation of the New
Control Points

Defining new
temporary points
Ry, Ry Rs

{Q01 Q]_l Q21 Q3}

can be calculated
by a simple
geometric
process using
only the initial
control polygon

{P,, Py, P,, P2}

12/07/2006

Qo =P3

Q1 =P3 +a(P3 — P2)
Ri = P; + a(P1 — Py)
Ry =Py + a(P2 — Py)

R; =Ry + Q(RQ = Rl)
=Ps+a(P2—P1)+a(P2+a(Py—P1) —P1+a(P; —Py))
= (12P0 — 2(1((! F 1)P1 4 ((1 + 1)2P2

Q2 = Q1 +a(Q1 — Ry)
=P3+ a(P3 — Pg) + G,(Pg -} a(P3 — Pg) — Py + a(P2 — Pl))
= a’P; —2a(a+ 1)P3 + (a + 1)*P3

Q3 = Q2 +a(Q2 — R3)
= —a’Py + 3a*(a+ 1)P; — 3a(a + 1)°Py + (a + 1)°P3
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Geometric Interpretation of the New
Control Points
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Geometric Interpretation of the New
Control Points

* Results
* The important factor here Is the a term

* Each of these points is on an extension of a
line of the original control polygon, or the
extension of a constructed line

+ The factor a determines how much to extend.

&=

12/07/2006 State Key Lab of CAD&CG 32



The Equations for a Bézier Curve of
Arbitrary Degree

 Qverview

+ The Bézier curve representation is one that is utilized
most frequently in computer graphics and geometric
modeling.

¢ The curve Is defined geometrically, which means that
the parameters have geometric meaning - they are
just points in three-dimensional space.

¢+ |t was developed by two competing European
engineers in the late 1960s to attempt to draw
automotive components.
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The Equations for a Bézier Curve of
Arbitrary Degree

» Specification of the Bézier Curve of
Arbitrary Degree

+ Generalizing the development for the
guadratic and cubic Bézier curves

* Given the set of control points, {P,,P,,...,P, },
defining a Bézier curve of degree n by either
Analytic Definition or Geometric
Construction.
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The Analytic Definition

where

B;n(t) = (T_l)t"i(l — )"

are the Bernstein polynomials of degree n, and
t ranges between zero and one 0<t<1 .

(;

12/07/2006 State Key Lab of CAD&CG 35



Geometric Definition

(1-PY V@) + tPYV() ifj >0,

P; otherwise

\

where t ranges between zero and one 0<t<l1l
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Properties of the Bézier Curve

12/07/2006

P, and P, are on the curve.

The curve Is continuous and has continuous
derivatives of all orders.

The tangent line to the curve at the point P, Is the line
P,P;. The tangent to the curve at the point P, Is the
line PP, .

The curve lies within the convex hull of its control

points. This Is because each successive pU) IS a
convex combination of the points pli~—Y and pU-1.

1

P..Py....,.P,are all on the curve only if the curve is linear.

State Key Lab of CAD&CG
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Summary of the Bézier Curve

« Given a sequence of n+1 control points, one can
specify a Bézier curve of degree n defined by
these points.

* Two definitions of the curve can be given:

+ An analytic definition specifying the blending of the
control points with Bernstein polynomials

+ A geometric definition specifying a recursive
generation procedure that calculates successive
points on line segments developed from the control
point sequence. 1
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Bezier Patches

 Overview

* Pierre Bézier in Renault and Paul de
Casteljau in Citroén, initially developed a
Bézier curve representation and extended it to
a surface patch methodology

= The extension of Bézier curves to surfaces is called
the Bézier patch

* The Bézier patch is the most commonly used
surface representation in computer graphics
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Bezier Patches

» Bézier curve and patch

* The Bézier curve is a function of one variable
and takes a sequence of control points.

* The Bézier patch is a function of two variables
with an array of control points.

* Most of the methods for the patch are direct
extensions of those for the curves.
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Definition of the Bézier Patch

e The patch is constructed from an nXm array of
control points: {P;;, 0<i<n, 0<|]<m}

Po,1
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Definition of the Bézier Patch

« The Bezier patch is parameterized by two
variables, is given by the equation

P(u,v) = ZZP.i,sz-,n(u)Bj,m(v)

7=0 2=0
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Definition of the Bézier Patch

* It Is summations running over all the
control points

* The bi-variate Bernstein Polynomials
serving as the functions that blend the
control points together

Bi,n(u)Bj,m(V)

12/07/2006 State Key Lab of CAD&CG
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Deductions from Definition of the
Bézier Patch

* By set v=0, we obtain

=Y Y Pi;Bin(u)B;m(0)

7=0 2=0

Z zOan

1=0

since B,,(0)=1 and B;,,(0)=0 for J=1,2,...,m

Result: P(u,0) is a Bézier Curve
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Deductions from Definition of the
Bézier Patch

* P(u,1), P(l,v)Pand P(0,v) are Bézier Curve

0,1

Bézier Curve

Po,2

’!
1 S - - - b :
LA \\ 2 -
/ | N
Bézier Curve \ .
Bézier Curve
P33
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Relations between the Bézier Curve
and Patch

* The corner ones of control points are actually on

the patch Pog
On the Patch

\ On the Patch

P33
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Properties of the Bézier Patch

* The four points Py, Py, P,gand P, are
on the patch. The other control points are
all on the patch only if the patch is planar.

* The patch is continuous and partial
derivatives of all orders exist and are
continuous.

* The patch lies within the convex hull of its
control points.
(]
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Bézier Curves on Bézier Patches

 Overview

+ P(0,v) and P(1,v) are Bézier curves lying on
the boundary of the Bézier patch.

+ A Bézier patch can be treated as a continuous
set of Bézier curves. That is, for any fixed
parameter u, or v, we can define a Bézier
curve that lies directly on the surface of the

patch.

* |t Is a very valuable tool for calculations on the
patch

12/07/2006 State Key Lab of CAD&CG 48



Bézier Curves on Bézier Patches

Grouping factors of the Bézier patch function
appropriately
P(u,v) = Y P ;Bin(u)| Bjm(v)
j=0 Li= _

i) \

If we fix u=u,, the internal sum can be calculated
(for J=0, ...,m). This implies that P(u,,v) is a Bézier
curve on the surface.
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Bézier Curves on Bézier Patches

If we define Q;(u) to be the value

n

Qj(u) = Y PijBin(u)

1=0

we can see that -
P(u,v) = ) Qj(u)Bjm(v)

§=0

That is, the quantities Q;(u) form the control points
of another Bézier curve, and together for all u and
v, they form the surface.
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Bézier Curves on Bézier Patches

Therefore, given u=u,, we can calculate the

quantities Qy(Uy), Q(Up), -, Qn(Up), giving m
control points to utilize for the curve

Q(v) = ) Qj(uo)Bjm(v)
j=0

* This curve lies on the patch: P(uy,v)=Q(v),
* Q(vp) Is the point on the patch at (ug,V,)-

Result: Calculating a point on the patch can be reduced
to finding several points on curves which is parameter
Independent

12/07/2006 State Key Lab of CAD&CG
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Calculating a Point on a Bi-Cubic
Surface: STEP 1

The point Q,(u,), is calculated as a point on the Bézier
curve defined by the control points P, Py 4, Py, and Py ;.

Po 3
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Calculating a Point on a Bi-Cubic
Surface: STEP 2

The point Q,(u,), is calculated as a point on the Bézier
curve defined by the control points P, o, P,,, P,, and P, ,
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Calculating a Point on a Bi-Cubic
Surface: STEP 3

The point Q,(u,), is calculated as a point on the Bézier
curve defined by the control points P, , P, ,, P,, and P, ,.

12/07/2006 State Key Lab of CAD&CG o4



Calculating a Point on a Bi-Cubic
Surface:STEP 4

The point Q4(u,), is calculated as a point on the Bézier
curve defined hv tha rantrnal nninte B P P 5 and P33_

-~
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Calculating a Point on a Bi-Cubic
Surface: STEPS

The point P (u,,v,), on the patch, Is calculated as a point on
the Bézier curve defined by the control points Q,(u,), Q,(uy),

Q,(Ug), Qs(Up).

Q(vo) = P(u,vo)

.
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Subdivision of Bézier Patches

12/07/2006 State Key Lab of CAD&CG

If we take the analytic equation of a Bézier patch,
fix u and group factors appropriately, we obtain

m

P(u,v) = Z

7=0

n
> PijBin(u)| Bjm(v)

1=0

We notice that portion of the equation inside the
brackets is the representation of a Bézier curve.

Y/



Subdivision of Bézier Patches

If we let Q;(u) be the value inside the brackets,

Then

That is, the quantities Q;(u) form the control points of
another Bézier curve, and together for all u and v, they form

the surface
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Subdivision of Bézier Patches

12/07/2006

If we subdivide each of the m Gril Obtained by
Subdividing the Rows

rows of the P matrix, it of the Original Grid

implies that the Q;s in the

above equation represent

only points from the first half

of the patch (with respect to

u)

The second half of the patch
can be obtained in a similar
fashion.

The first and second half of

the patch, with respect to v, The above illustration shows
can be obtained by the result of subdividing the
subdividing the columns. rows in the 4 X4 case. ‘t
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A Matrix Representation of the
l Cubic Bezier Patch l
—
e Overview
* Developing the Matrix Formulation
« Patch Subdivision Using the Matrix Form

e Calculation of the Second Half of the
Patch

e General Subdivision with either Parameter

1
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Overview

* The matrix representation of the cubic
Bézier patch allows us to specify many
operations with Bézier patches

« The matrix operations can be performed
quickly on computer systems optimized for
geometry operations with matrices

&=

12/07/2006 State Key Lab of CAD&CG
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Developing the Matrix Formulation

A cubic Bézier curve can be written in a matrix form similar to that for
a Bézier Curve by utilizing the representation of a Bézier patch as a
continuous set of Bézier curves

§=0i=0
2 T.3
=Z P;;B;3(u) | Bjs(v)
§=0 Li=0
1 0 0 0]][Pg,
3
-3 3 0 0 P
ZZ[l u u? u3} Y| Bjs(v)
£ 3 -6 3 0] Py,
4 & B || Py
[ 4 8 & 6] [ % Poo P @] 1 -3 8 2 [ 1]
: -3 3 0 0 Pl_g Pl.l P1_2 P1_3 0 3 —6 3 v
= [1 u  u? ’u,3] ' '
3 —6 3 0 ng P21 P2_2 PQ‘_g 0 0 3 -3 Uz
= & =d 1 P3o P31 P32 P33 0 0 0 1 v
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Developing the Matrix Formulation

The cubic Bézier patch is frequently written

P(u,v) 2[1 u u? ’U,S]M

where

- L i
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Patch Subdivision Using the Matrix
Form

* Purpose: subdividing the patch at the
point u=1/2

* Method: reparameterizing the matrix
eqguation above (by substituting u/2 for u)
to cover only the first half of the patch,
and simplify to obtain.
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Patch Subdivision Using the Matrix
Form

Poo Poi1 Poo Pogs 1
u " uN2 a3 Pip Pig Pip Pis r| v
PGGo)=[1 () ¥ &°|M T
Po P21 Pao Pog3 v
| Psp P31 P32 Psz _’03_
1 0 0 O Pyo Pg,l PO}Q Pys 1
g = & 0 P,o Py Pio Pi: v
= { 1 u u? ud ] . i M ol s b2 FL3 L yT )
00 3 0 Pyo P21 Poo Po3 v
_0 0O O %_ _ng Pg,l P312 P33_ _’Ug_
Poo Po1 Poz2 Pogs 1
P P P P )
:[1 _— u3]MSL 10 Pri Piz Pig | 7 2
Poo Po1 Poo Poj v
| Pap P3a Pz Paz I v3 _
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Patch Subdivision Using the Matrix
Form

The matrix S, Is identical to the left subdivision matrix for
the curve case. So In particular, the subpatch P(u/2,v) is
again a Bézier patch whose control points of this patch is
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Calculation of the Second Half of
the Patch

For the second half of the patch: First we reparameterize the original curve,
and then simplify to obtain
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Calculation of the Second Half of
the Patch

WI iere

Qo=

Sp =

O O B~ oolw
O N = ol
= N = OOl

o O O

« Syisidentical to the right subdivision matrix in the curve case

e S; can be applied to a set of control points to produce the control
points for the second half of the patch
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General Subdivision with either
Parameter

« The matrix representation of control points for the first
and second portions of the patch when subdivision is
done with respect to v:

PS, and PSy
where P Is
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General Subdivision with either
Parameter

Combining these two methods, we can see that
the arrays below segment the patch into quarters

S PS, O<u<x1/2, Ov<1/2
S PSg Osu<x1/2, 12<v<l
SgPS, 12<u<l, O0sv<1/2
SrPSg 12<u<l, 12<v<1

&=

12/07/2006 State Key Lab of CAD&CG

3



Advanced Topics on Bezier
Curves/Patches

« Triangular Bézier Patches
* Rational Bézier Curves/Surfaces
* Topics on Bézier
¢ Degree Elevation
¢+ Degree Reduction
¢ The Variation Diminishing Property
+ Nonparametric Curves/Surfaces: (t,f(t))=(t(u), f(u))
¢ Integrals
¢+ Geometric Continuity

+ Conversion between Different Bézier Patches
« Offset ...... 1

12/07/2006 State Key Lab of CAD&CG 72



Course Downloaded

http://www.cad.zju.edu.cn/nome/jgfeng/GM/GMO03.zip

12/07/2006 State Key Lab of CAD&CG 73



	Bézier Curves and Surfaces (2)
	Contents
	Reparameterizing Bézier Curves
	Defining the Reparameterized Curve 
	Impaction of Parameterization  on Bézier Curve Properties
	Bézier Control Polygons for a Cubic Curve
	A Matrix Equation for a Cubic Curve
	A Matrix Equation for a Cubic Curve
	A Matrix Equation for a Cubic Curve
	Reparameterization using the Matrix Form
	Reparameterization using the Matrix Form
	Reparameterization using the Matrix Form
	Reparameterization using the Matrix Form 
	Reparameterization using the Matrix Form
	A Specific Example
	Matrix Representation of P(t) on [1,2]
	Matrix Representation of P(t) on [1,2]
	Matrix Representation of P(t) on [1,2]
	Geometric Interpretation of the New Control Points {Q0, Q1, Q2, Q3 } 
	Geometric Interpretation of the Q0  (1)
	Geometric Interpretation of the Q1  (2)
	Geometric Interpretation of the Q1  (3)
	Geometric Interpretation of the Q1  (4)
	Geometric Interpretation of the Q1  (4)
	A Specific Example: Results
	An Expanded Example
	Matrix Representation of P(t) on [1, b]
	Matrix Representation of P(t) on [1, b]
	Matrix Representation of P(t) on [1, b]
	Geometric Interpretation of the New Control Points {Q0, Q1, Q2, Q3 }
	Geometric Interpretation of the New Control Points {Q0, Q1, Q2, Q3 }
	Geometric Interpretation of the New Control Points {Q0, Q1, Q2, Q3 }
	The Equations for a Bézier Curve of Arbitrary Degree
	The Equations for a Bézier Curve of Arbitrary Degree
	The Analytic Definition 
	Geometric Definition
	Properties of the Bézier Curve 
	Summary of the Bézier Curve 
	Bézier Patches
	Bézier Patches
	Definition of the Bézier Patch
	Definition of the Bézier Patch
	Definition of the Bézier Patch
	Deductions from Definition of the Bézier Patch
	Deductions from Definition of the Bézier Patch
	Relations between the Bézier Curve and Patch
	Properties of the Bézier Patch 
	Bézier Curves on Bézier Patches
	Bézier Curves on Bézier Patches
	Bézier Curves on Bézier Patches
	Bézier Curves on Bézier Patches
	Calculating a Point on a Bi-Cubic Surface: STEP 1
	Calculating a Point on a Bi-Cubic Surface:  STEP 2
	Calculating a Point on a Bi-Cubic Surface: STEP 3
	Calculating a Point on a Bi-Cubic Surface:STEP 4
	Calculating a Point on a Bi-Cubic Surface: STEP5
	Subdivision of Bézier Patches
	Subdivision of Bézier Patches
	Subdivision of Bézier Patches
	A Matrix Representation of the Cubic Bézier Patch
	Overview
	Developing the Matrix Formulation
	Developing the Matrix Formulation
	Patch Subdivision Using the Matrix Form
	Patch Subdivision Using the Matrix Form
	Patch Subdivision Using the Matrix Form
	Patch Subdivision Using the Matrix Form
	Calculation of the Second Half of the Patch
	Calculation of the Second Half of the Patch
	General Subdivision with either Parameter
	General Subdivision with either Parameter
	Advanced Topics on Bézier Curves/Patches
	Course Downloaded

