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Reparameterizing Bézier Curves

• Bézier Curve P(t):
a set of control points {P0,P1,…,Pn} with 
Bernstein polynomials {Bi,n(t)} t∈[0,1]

• Purpose
General B-spline curves: piecewise Bézier 
curves over an arbitrary parametric interval 
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Defining the Reparameterized 
Curve 

• Given a Bézier curve P(t), a new 
parameterization of the curve where 
t∈[a,b] can be developed as

P[a,b](t) and P(t) are exactly the same curve, 
but traversed through different ranges of t.
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Impaction of Parameterization  on 
Bézier Curve Properties

• P[0,1](t)=P(t)
• Using the chain rule, the derivative of the 

curve P[a,b](t) at a value t is equal to

• Subdividing the curve P[a,b](t) at the point 
c∈[a,b], is equivalent to subdividing the 
curve P(t) at the point  
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Bézier Control Polygons for a Cubic 
Curve

• A Matrix Equation for a Cubic Curve
• Reparameterization using the Matrix Form
• A Specific Example
• An Expanded Example
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A Matrix Equation for a Cubic Curve

• A cubic polynomial curve P(t) can be 
written as a cubic Bézier curve 

• Let P0, P1, P2, P3 be the control points of the 
curve P(t)

its matrix form is Cubic Bézier curve and 
its control polygon
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A Matrix Equation for a Cubic Curve
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A Matrix Equation for a Cubic Curve

Where

Notes:
The matrix M defines the blending functions for the 
curve P(t) - i.e. the cubic Bernstein polynomials. 
There are three equations here, one for each of the x, 
y and z components of P(t). 
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Reparameterization using the 
Matrix Form

• Let P0, P1, P2, P3 be the control points of the 
curve P(t)

In general, the used parametric interval is [0,1]
P0=P(0), P1=P(1)

• Given an interval [a,b], there exists a 
unique control polygon {Q0, Q1, Q2, Q3 }
defining a Bézier curve Q(t), such that   
Q(0)=Q0=P(a) and Q(1)=Q1=P(b)
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Reparameterization using the 
Matrix Form

• Purpose: finding the Bézier polygon for the 
portion of the curve P(t) where t∈[a,b]

• Solution: by reparameterization and by 
manipulating the matrix representation
above
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Reparameterization using the 
Matrix Form

• Defining the new curve as Q(t), then
Q(t)=P((b-a)t+a)

Both Q(t) and P(t) are cubic curves, and 
represent the same curve.
The difference of Q(t) and P(t) is their 
parametric domain

P(t): t∈[0,1]
Q[0,1](t)=P[a,b](t): t∈[a,b]  
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Reparameterization using the 
Matrix Form 

where the matrix [C] has columns whose entries are the 
coefficients of 1, t, t2 and t3 respectively in the polynomials 
1, (b-a)t+a,((b-a)t+a)2, and ((b-a)t+a)3, respectively
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Reparameterization using the 
Matrix Form

• Q(t) can be written as 

where S[a,b] is equal to

• The new control points for the portion of 
the curve where t ranges from a to b can 
now be written as (S[a,b]P )
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A Specific Example

• P(t): parameter ranges from 1 to 2
It is natural extension of P(t) from [0,1] to [1,2]
It is useful to learn how to piece together two 
Bézier curves: The general B-spline curves 
are piecewise Bézier curves which are 
smoothly joined.
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Matrix Representation of P(t) on [1,2]
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Matrix Representation of P(t) on [1,2]

where
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Matrix Representation of P(t) on [1,2]

• The control polygon for that portion of P(t)
curve where t ranges from 1 to 2 is: 
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Geometric Interpretation of the New 
Control Points {Q0, Q1, Q2, Q3 }

Defining new 
temporary points 
R1, R2, R3

{Q0, Q1, Q2, Q3 }
can be calculated 
by a simple 
geometric 
process using 
only the initial 
control polygon 

{P0, P1, P2, P3}
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Geometric Interpretation of the Q0  (1)

• Q0=P0



12/07/2006 State Key Lab of CAD&CG 21

Geometric Interpretation of the Q1  (2)

• lies on the line          , 
where the distance between P2 and P3 is 
equal to that between Q0 and Q1. 
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Geometric Interpretation of the Q1  (3)
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Geometric Interpretation of the Q1  (4)
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Geometric Interpretation of the Q1  (4)
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A Specific Example: Results

• The above geometric construction is the 
inverse process of the de Casteljau 
geometric construction. 

• These two functions represent the same 
curve.

• Exercise: constructing the control points of 
Q(t)=P(t), t∈[0,2].

Tips: the result control points {P0, R1, R2, Q3 }
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An Expanded Example

• The example above 
illustrated there are many Bézier polygons 
that can represent a cubic curve
did not quite illustrate the necessary 
characteristics of the algorithm 

• Considering the cubic curve P(t) when
t∈[1,b]

Q (t)=P(at+1)   where a=b-1
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Matrix Representation of P(t) on [1, b]
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Matrix Representation of P(t) on [1, b]

where
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Matrix Representation of P(t) on [1, b]

The control polygon of the curve P(t) where t∈[1, b]
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Geometric Interpretation of the New 
Control Points {Q0, Q1, Q2, Q3 }

Defining new 
temporary points 
R1, R2, R3

{Q0, Q1, Q2, Q3 }
can be calculated 
by a simple 
geometric 
process using 
only the initial 
control polygon 

{P0, P1, P2, P3}
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Geometric Interpretation of the New 
Control Points {Q0, Q1, Q2, Q3 }
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Geometric Interpretation of the New 
Control Points {Q0, Q1, Q2, Q3 }

• Results
The important factor here is the a term
Each of these points is on an extension of a 
line of the original control polygon, or the 
extension of a constructed line
The factor a determines how much to extend. 
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The Equations for a Bézier Curve of 
Arbitrary Degree

• Overview
The Bézier curve representation is one that is utilized 
most frequently in computer graphics and geometric 
modeling. 
The curve is defined geometrically, which means that 
the parameters have geometric meaning - they are 
just points in three-dimensional space.
It was developed by two competing European 
engineers in the late 1960s to attempt to draw 
automotive components. 
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The Equations for a Bézier Curve of 
Arbitrary Degree

• Specification of the Bézier Curve of 
Arbitrary Degree

Generalizing the development for the 
quadratic and cubic Bézier curves 
Given the set of control points, {P0,P1,…,Pn }, 
defining a Bézier curve of degree n by either 
Analytic Definition or Geometric 
Construction.
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The Analytic Definition 

where

are the Bernstein polynomials of degree n , and  
t ranges between zero and one  0≤t≤1 . 
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Geometric Definition

where

where t ranges between zero and one  0≤t≤1
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Properties of the Bézier Curve 

• P0 and Pn are on the curve. 
• The curve is continuous and has continuous 

derivatives of all orders. 
• The tangent line to the curve at the point P0 is the line 

P0 P1. The tangent to the curve at the point Pn is the 
line Pn-1Pn . 

• The curve lies within the convex hull of its control 
points. This is because each successive        is a 
convex combination of the points           and          . 

• P0,P1,…,Pn are all on the curve only if the curve is linear. 
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Summary of the Bézier Curve 

• Given a sequence of  n+1 control points, one can 
specify a Bézier curve of degree n defined by 
these points. 

• Two definitions of the curve can be given: 
An analytic definition specifying the blending of the 
control points with Bernstein polynomials
A geometric definition specifying a recursive 
generation procedure that calculates successive 
points on line segments developed from the control 
point sequence. 
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Bézier Patches

• Overview
Pierre Bézier in Renault and Paul de 
Casteljau in Citroën, initially developed a 
Bézier curve representation and extended it to 
a surface patch methodology

The extension of Bézier curves to surfaces is called 
the Bézier patch 

The Bézier patch is the most commonly used 
surface representation in computer graphics 



12/07/2006 State Key Lab of CAD&CG 40

Bézier Patches

• Bézier curve and patch
The Bézier curve is a function of one variable
and takes a sequence of control points. 
The Bézier patch is a function of two variables
with an array of control points. 
Most of the methods for the patch are direct 
extensions of those for the curves. 
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Definition of the Bézier Patch

• The patch is constructed from an n×m array of 
control points: {Pij, 0≤i≤n, 0≤j≤m}
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Definition of the Bézier Patch

• The Bézier patch is parameterized by two 
variables, is given by the equation
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Definition of the Bézier Patch

• It is summations running over all the 
control points

• The bi-variate Bernstein Polynomials 
serving as the functions that blend the 
control points together

Bi,n(u)Bj,m(v)
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Deductions from Definition of the 
Bézier Patch

• By set v=0, we obtain

since B0m(0)=1 and Bjm(0)=0 for j=1,2,…,m

Result: P(u,0) is a Bézier Curve 
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Deductions from Definition of the 
Bézier Patch

• P(u,1), P(1,v) and P(0,v) are Bézier Curve 
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Relations between the Bézier Curve 
and Patch

• The corner ones of control points are actually on 
the patch
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Properties of the Bézier Patch 

• The four points P0,0, P0,m, Pn,0 and Pn,m are 
on the patch. The other control points are 
all on the patch only if the patch is planar.

• The patch is continuous and partial 
derivatives of all orders exist and are 
continuous.

• The patch lies within the convex hull of its 
control points.
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Bézier Curves on Bézier Patches

• Overview
P(0,v) and P(1,v) are Bézier curves lying on 
the boundary of the Bézier patch. 
A Bézier patch can be treated as a continuous 
set of Bézier curves. That is, for any fixed 
parameter u0 or v0 we can define a Bézier 
curve that lies directly on the surface of the 
patch. 
It is a very valuable tool for calculations on the 
patch 
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Bézier Curves on Bézier Patches

Grouping factors of the Bézier patch function 
appropriately

If we fix u=u0, the internal sum can be calculated 
(for j=0, ...,m). This implies that P(u0,v) is a Bézier 
curve on the surface.
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Bézier Curves on Bézier Patches

If we define Qj(u) to be the value

we can see that 

That is, the quantities Qj(u) form the control points 
of another Bézier curve, and together for all u and 
v, they form the surface.
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Bézier Curves on Bézier Patches

Therefore, given u=u0, we can calculate the 
quantities Q0(u0), Q1(u0), ..., Qm(u0), giving m
control points to utilize for the curve

This curve lies on the patch: P(u0,v)=Q(v),
Q(v0) is the point on the patch at (u0,v0).

Result: Calculating a point on the patch can be reduced 
to finding several points on curves which is parameter 
independent
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Calculating a Point on a Bi-Cubic 
Surface: STEP 1

The point Q0(u0), is calculated as a point on the Bézier
curve defined by the control points P0,0, P0,1, P0,2 and P0,3.
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Calculating a Point on a Bi-Cubic 
Surface:  STEP 2

The point Q1(u0), is calculated as a point on the Bézier
curve defined by the control points P1,0, P1,1, P1,2 and P1,3
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Calculating a Point on a Bi-Cubic 
Surface: STEP 3

The point Q2(u0), is calculated as a point on the Bézier
curve defined by the control points P2,0, P2,1, P2,2 and P2,3.
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Calculating a Point on a Bi-Cubic 
Surface:STEP 4

The point Q3(u0), is calculated as a point on the Bézier
curve defined by the control points P3,0, P3,1, P3,2 and P3,3.
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Calculating a Point on a Bi-Cubic 
Surface: STEP5

The point P (u0,v0), on the patch, is calculated as a point on 
the Bézier curve defined by the control points Q0(u0), Q1(u0), 
Q2(u0), Q3(u0).
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Subdivision of Bézier Patches

If we take the analytic equation of a Bézier patch, 
fix u and group factors appropriately, we obtain

We notice that portion of the equation inside the 
brackets is the representation of a Bézier curve.
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Subdivision of Bézier Patches

If we let Qj(u) be the value inside the brackets,

Then

That is, the quantities Qj(u) form the control points of 
another Bézier curve, and together for all u and v, they form 
the surface
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Subdivision of Bézier Patches

• If we subdivide each of the m
rows of the Pi,j matrix, it 
implies that the Qjs in the 
above equation represent 
only points from the first half 
of the patch (with respect to 
u) 

• The second half of the patch 
can be obtained in a similar 
fashion. 

• The first and second half of 
the patch, with respect to v, 
can be obtained by 
subdividing the columns.

The above illustration shows 
the result of subdividing the 
rows in the 4×4  case. 
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A Matrix Representation of the 
Cubic Bézier Patch

• Overview
• Developing the Matrix Formulation 
• Patch Subdivision Using the Matrix Form 
• Calculation of the Second Half of the 

Patch 
• General Subdivision with either Parameter 
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Overview

• The matrix representation of the cubic 
Bézier patch allows us to specify many 
operations with Bézier patches 

• The matrix operations can be performed 
quickly on computer systems optimized for 
geometry operations with matrices
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Developing the Matrix Formulation

A cubic Bézier curve can be written in a matrix form similar to that for 
a Bézier Curve by utilizing the representation of a Bézier patch as a 
continuous set of Bézier curves
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Developing the Matrix Formulation

The cubic Bézier patch is frequently written

where 
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Patch Subdivision Using the Matrix 
Form

• Purpose: subdividing the patch at the 
point u=1/2

• Method: reparameterizing the matrix 
equation above (by substituting u/2 for u) 
to cover only the first half of the patch, 
and simplify to obtain.
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Patch Subdivision Using the Matrix 
Form



12/07/2006 State Key Lab of CAD&CG 66

Patch Subdivision Using the Matrix 
Form

where the matrix SL is 
defined as
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Patch Subdivision Using the Matrix 
Form

The matrix SL is identical to the left subdivision matrix for 
the curve case. So in particular, the subpatch P(u/2,v) is 
again a Bézier patch whose control points of this patch is  
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Calculation of the Second Half of 
the Patch

For the second half of the patch: First we reparameterize the original curve, 
and then simplify to obtain
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Calculation of the Second Half of 
the Patch

where

• SR is identical to the right subdivision matrix in the curve case

• SR can be applied to a set of control points to produce the control
points for the second half of the patch
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General Subdivision with either 
Parameter

• The matrix representation of control points for the first 
and second portions of the patch when subdivision is 
done with respect to v:

PSL and PSR

where P is
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General Subdivision with either 
Parameter

Combining these two methods, we can see that 
the arrays below segment the patch into quarters

SLPSL                     0≤u≤1/2, 0≤v≤1/2
SLPSR 0≤u≤1/2, 1/2≤v≤1
SRPSL 1/2≤u≤1, 0≤v≤1/2
SRPSR                      1/2≤u≤1, 1/2≤v≤1
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Advanced Topics on Bézier
Curves/Patches

• Triangular Bézier Patches 
• Rational Bézier Curves/Surfaces
• Topics on Bézier

Degree Elevation
Degree Reduction
The Variation Diminishing Property
Nonparametric Curves/Surfaces: (t,f(t))=(t(u), f(u))
Integrals
Geometric Continuity
Conversion between Different Bézier Patches
Offset ……
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