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Bernstein Polynomials
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Introduction of Polynomials

• Polynomial: p(t)=antn+an-1tn-1+…+a1t+a0  are the 
linear combination of power basis {(1,t,t2,…,tn)}

• Polynomials are incredibly useful mathematical 
tools in Science and Engineering

Simply defined
Calculated quickly on computer systems
Represent a tremendous variety of functions
Differentiated and integrated easily
Pieced together to form spline curves that can 
approximate any function to any accuracy desired
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Introduction of Polynomials

• The set of polynomials of degree less than or 
equal to n forms a vector space

Polynomials can be added together
Polynomials can be multiplied by a scalar
All the vector space properties hold 

• The set of functions {(1,t,t2,…,tn)} form a basis
for above vector space 

Any polynomial of degree less than or equal to n can 
be uniquely written as a linear combinations of these 
functions 
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Introduction of Polynomials

• Notes
The power basis is only one of an infinite 
number of bases for the space of polynomials
The Bernstein basis is another of the 
commonly used bases for the space of 
polynomials
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Definition of Bernstein Polynomial

• The n+1 Bernstein polynomials of degree n
are defined by 

for i=0,1,…,n. where  

• Note:  Bi,n(t)=0 if i<0 or i>n
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Example of Bernstein 
Polynomials (1)

The Bernstein Polynomials 
of degree 1 are

B0,1(t)=1-t
B1,1(t)=t

When 0 ≤ t ≤1, they 
can be plotted as 
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Example of Bernstein 
Polynomials (2)

The Bernstein Polynomials 
of degree 2 are

B0,2(t)=(1-t)2

B1,2(t)=2t(1-t)
B2,2(t)=t2

When 0 ≤ t ≤1, they 
can be plotted as 
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Example of Bernstein 
Polynomials (3)

The Bernstein Polynomials 
of degree 3 are

B0,3(t)=(1-t)3

B1,3(t)=3t(1-t)2

B2,3(t)= 3t2(1-t)
B2,3(t)=t3

When 0 ≤ t ≤1, they 
can be plotted as 
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A Recursive Definition of the 
Bernstein Polynomials 

• The Bernstein polynomials of degree n
can be defined by blending together two
Bernstein polynomials of degree n-1

Bk,n(t)=(1-t) Bk,n-1(t)+tBk-1,n-1(t)
The above statement can be proved by 
utilizing definition of the Bernstein polynomials 
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A Recursive Definition of the 
Bernstein Polynomials

Proof
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Properties of Bernstein Polynomial

• Non-Negative
• Partition of Unity 
• Symmetry
• Degree Raising 
• Linear Precision
• Derivatives
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Non-Negative

• A function f(t) is non-negative over an 
interval [a,b] if f(t)≥0 for t∈[a,b]

• The property can be proved easily from 
the definition of Bernstein Polynomials

• The Bernstein Polynomials are positive
when 0 < t<1.
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Partition of Unity

• A set of functions fi(t) is said to partition of 
unity if they sum to one for all values of t.

• ∑i Bi,n(t) =1, for all t∈[0,1].
Proof:  1=1n=[(1-t)+t]n=∑i Bi,n(t)
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Partition of Unity

• For any set of points P0,P1,…,Pn, and for 
any t, the expression

P(t)=P0B0,n(t)+P1B1,n(t)+…+PnBn,n(t) 
is an affine combination of the set of points 
{P0,P1,…,Pn} and if 0 ≤ t ≤1, it is a convex 
combination of the points
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Symmetry

• Bi,n(t)= Bn-i,n(1-t) 
• Proof:  from definition……
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Degree Raising

• Any of the lower-degree Bernstein 
polynomials (degree < n) can be 
expressed as a linear combination of 
Bernstein polynomials of degree n.

• Any Bernstein polynomial of degree n-1
can be written as a linear combination of 
Bernstein polynomials of degree n.

( ) ( ) ( ), , 1 1, 1
1 1

1 1i n i n i n
n i iB t B t B t

n n+ + +

− + +
= +

+ +
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Degree Raising

Proof:  Bi,n(t)=(1-t)Bi,n(t)+tBi,n(t)
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Degree Raising

• Any Bernstein polynomial of degree n can 
be written as a linear combination of 
Bernstein polynomials of degree n+r (r>0).
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Linear Precision

• The monomial t can be expressed as the 
weighted sum of Bernstein polynomials of 
degree n with coefficients evenly spaced in the 
interval [0,1].

• Proof: Definition and some algebraic operations
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0
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i
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Derivatives

• Derivatives of the nth degree Bernstein 
polynomials are Bernstein polynomials of 
degree n-1

for  0≤k≤n.
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Derivatives

Proof:
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Conversion Between Bernstein 
Basis and Power Basis

• Conversion from the Bernstein Basis to 
the Power Basis 

• Conversion from the Power Basis to the 
Bernstein Basis 

• The Bernstein Polynomials as a Basis of 
Polynomial Space
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Conversion from the Bernstein 
Basis to the Power Basis

Since the power basis 
{(1,t,t2,…,tn)} forms a 
basis for the space of 
polynomials of degree 
less than or equal to n, 
any Bernstein 
polynomial of degree n
can be written in terms 
of the power basis. 
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Conversion from the Power Basis 
to the Bernstein Basis

To show that each 
power basis element 
can be written as a 
linear combination of 
Bernstein Polynomials, 
we use the degree 
elevation formulas and 
induction to calculate: 
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The Bernstein Polynomials as a 
Basis of Polynomial Space

• The Bernstein polynomials of degree n
form a basis for the space of polynomials 
of degree less than or equal to n.

They span the space of polynomials of degree 
≤ n: any polynomial of degree less than or 
equal to n can be written as a linear 
combination of the Bernstein polynomials 
They are linearly independent



12/04/06 State Key Lab of CAD&CG 28

Linearly Independent

If there exist constants c0,c1,…,cn s.t. the identity 
c0B0,n(t)+c1B1,n(t)+…+cnBn,n(t)=0 holds for all t, 
then all ci’s must be zero.
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Linearly Independent

→ c0=0

→ c1=1

→ cn=0
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A Matrix Representation for 
Bernstein Polynomials

• Given a polynomial written as a linear 
combination of the Bernstein basis functions 

B(t)=c0B0,n(t)+c1B1,n(t)+…+cnBn,n(t)
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A Matrix Representation for 
Bernstein Polynomials

• The bi,j are the coefficients of the power 
basis that are used to determine the 
respective Bernstein polynomials. 

• The matrix in this case is lower triangular.
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Examples of Matrix Representation 
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A Divide-and-Conquer Method for 
Drawing a Bézier Curve

In the late 1960s, two European 
engineers independently developed a 
mathematical curve formulation which 
was extremely useful for modeling 
and design and also easily adaptable 
to use on a computer system.

P. de Casteljau  at Citroën
P. Bézier at Rénault (1910~1999)
A. R. Forrest 

P. Bézier
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The Subdivision Procedure

1. The curve is defined by 
using three control 
points P0, P1 and P2 . 
Whereas these points 
can be arbitrarily placed 
in three-dimensional 
space 

2. The curve will pass 
through the points P0 
and P2 and will lie within 
the triangle △P0P1 P2

3. P1 will be a control point 
that serves as a ``handle'' 
or a ``influence'' on the 
curve
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The Subdivision Procedure

4. Our general procedure 
will split the curve into 
two segments, each of 
which is again specified 
by three control points.

5. With this procedure, we 
can recursively generate 
many small segments of 
the curve, which can be 
eventually approximated 
by straight lines when the 
curve is to be drawn

Note:  
The most complicated 
mathematics being the 
calculation of midpoints of 
the lines connecting control 
points. 
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The Basic Subdivision Procedure (1)
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The Basic Subdivision Procedure (2)
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The Basic Subdivision Procedure (3)
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The Basic Subdivision Procedure

• We define        to be a point on the curve
• The two new sets control points 

can be use to define the first and second 
portions of the subdivided curve.

• Result: an additional point on the curve +
two new sets of three control points 

(2)
2P

{ }(1) (2)
0 1 2, ,P P P { }(2) (1)

2 2 2, ,P P P
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Continuing the Subdivision (Left)

• Performing the procedure again, we use 
the control points                     , and 
relabeling them for convenience as P0, P1
and P2

{ }(1) (2)
0 1 2, ,P P P
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Continuing the Subdivision (Left-1)
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Continuing the Subdivision (Left-2)
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Continuing the Subdivision (Left-3)
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Continuing the Subdivision (Left)

• We now define        to be a point on the 
curve. This process produces another 
point on the curve, and creates two new 
sets of control points as was the case 
before. 

(2)
2P
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Continuing the Subdivision (Right)

• Next, we consider the control points      
generated in the first 

subdivision  and relabel them as P0, P1 and 
P2

{ }(2) (1)
2 2 2, ,P P P
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Continuing the Subdivision (Right-1)
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Continuing the Subdivision (Right-2)
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Continuing the Subdivision (Right-3)
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Continuing the Subdivision (Right)

• We now have        on the curve . (2)
2P
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The Subdivision Algorithm 

• Three points have now been generated on 
the curve and four subcurves have been 
generated.

• At each step the process creates both a 
point on the curve and two new sets of 
control points. 

• This effectively subdivides the curve into 
two new curve segments, each of which 
can be handled separately. 
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The Subdivision Algorithm
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Summary

• It is a geometric method, as it uses only the 
midpoint formula as it's fundamental tool.

• It uses the basic computer science paradigm of 
(sub)divide and conquer to calculate points on 
the curve. 

• The curve can be ``drawn'' using computer 
graphics by calculating a somewhat-dense set of 
points, and connecting them with straight lines. 

• The curve drawn by this method is a quadratic 
Bézier curve. 
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Quadratic Bezier Curves

• Development of the Quadratic Bézier 
Curve 

• Developing the Equation of the Curve 
• Properties of the Quadratic Curve 
• Summarizing the Development of the 

Curve 
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Development of the Quadratic 
Bézier Curve

• Given three control points P0, P1 and P2 ,
we develop a divide procedure that is 
based upon a parameter t , which is a 
number between 0 and 1  ( the illustrations 
utilize the value 0.75 ). 
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Development of the Quadratic 
Bézier Curve  (1)

• Let       be the point on the segment        
defined by 

(1)
1P 0 1P P

(1)
1 0 1 0 1 0(1 ) ( )t t t= − + = + −P P P P P P
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Development of the Quadratic 
Bézier Curve  (2)

• Let       be the point on the segment        
defined by 

(1)
2P 1 2P P

(1)
2 1 2(1 )t t= − +P P P
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Development of the Quadratic 
Bézier Curve  (3)

• Let       be the point on the segment        
defined by 

(2)
2P 1 2

1 2P P
(2) (1) (1)
2 1 2(1 )t t= − +P P P
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Development of the Quadratic 
Bézier Curve  (4)

• Define 

• Note
1. It is a geometric mean to define points on 

the curve.
2. It is identical to the divide-and-conquer 

method in the case t=1/2.

(2)
2( )t =P P
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Developing the Equation of the 
Curve

• There is a parameter t involved in the 
above steps

,       and        is really a function of the 
parameter t.

can be equated with P(t) since it is a point 
on the curve that corresponds to the 
parameter value t.

(1)
1P (1)

2P (2)
2P

(2)
2P
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Developing the Equation of the 
Curve

where

Substituting these two equations back into the original, 
we have
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Developing the Equation of the 
Curve

• This is quadratic polynomial (as it is a linear 
combination of quadratic polynomials), and therefore 
it is a parabolic segment. 

• The quadratic Bézier curve is simply a parabolic 
curve.
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Properties of the Quadratic Curve (1)

1. P(0)=P0 and P(1)=P2, so the curve passes 
through the control points P0 and P2.

2. The curve P(t) is continuous and has 
continuous derivatives of all orders. (This 
is automatic for a polynomial)  
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Properties of the Quadratic Curve (2)

3. We can differentiate P(t) with respect to t
and obtain 

Thus  
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Properties of the Quadratic Curve (3)

4. The functions (1-t)2, 2t(1-t) and t2 that are used 
to “blend” the control points P0, P1 and P2  
together are the degree-2 Bernstein 
Polynomials. They are all non-negative 
functions and sum to one.

5. The curve is contained within the triangle 
△P0P1P2. Since 

P(t) is a convex combination of the points P0, P1 and P2. 
The convex hull of a triangle is the triangle itself. 
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Properties of the Quadratic Curve (4)

6. If the points P0, P1 and P2 are colinear, 
then the curve is a straight line. 

7. The process of calculating one P(t)
subdivides the control points into two 
sets                   and                  , each of 
which can be used to define another 
curve, as in our subdivision process 
above. 

{ }(1) (2)
0 1 2, ,P P P { }(2) (1)

2 2 2, ,P P P
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Properties of the Quadratic Curve (4)

8. All the points, generated from the divide-
and-conquer method, lie on this curve. 
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Summarizing the Development of 
the Curve

• We now have two methods by which we 
can generate points on the curve

The first of which is geometrically based -
points are found on the curve by selecting 
successive points on line segments. 
The other is an analytic formula, which 
expresses the curve in functional notation. 
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The Geometrical Construction 
Method 

• Given points P0, P1 and P2 , we can 
construct a curve P(t) by the following 
construction 

where

for t∈[0,1]

(2)
2( )t =P P
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The Analytical Formula

• Given points P0, P1 and P2 , we can 
construct a curve P(t) by the following

for t∈[0,1]
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Cubic Bézier Curve – Geometric 
Construction

Defining cubic Bézier 
curve trough geometric 
construction:
Given four control 
points P0, P1, P2, P3, one 
can generate a curve 
P(t) at the parameter t
as following
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Cubic Bézier Curve – Geometric 
Construction

Geometric Construction of Cubic Bézier Curve
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Cubic Bézier Curve – Geometric 
Construction

Given four control points P0, P1, P2, P3, one 
can generate a curve P(t) (t∈[0,1]) by

where 
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Cubic Bézier Curve –Analytical 
Construction

Expanding above geometric construction 
about parameter t
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Cubic Bézier Curve –Analytical 
Construction

Given four control points P0, P1, P2, P3, we 
define the Bézier curve to be

where  

the Bernstein polynomials of degree three
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Properties of the Cubic Bézier 
Curve 

1. P0 and P3 are on the curve. 
2. The curve is continuous, infinitely 

differentiable, and the second derivatives 
are continuous (automatic for a 
polynomial curve). 

3. The tangent line to the curve at the point 
P0 is the line        . The tangent to the 
curve at the point P3 is the line        . 2 3P P

0 1P P
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Properties of the Cubic Bézier 
Curve

• The curve lies within the convex hull of its 
control points. 

• Both P1 and P2 are on the curve only if the 
curve is linear. 
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A Matrix Representation for Cubic 
Bezier Curves

• Overview
• Developing the Matrix Equation 
• Subdivision Using the Matrix Form 
• Generating a Sequence of Bézier Control 

Polygons 
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Overview

• Purposes of matrix representation
Fast computation of matrices multiplication
Generating different Bézier control polygons 
for the cubic curve 
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Developing the Matrix Equation

• A cubic Bézier Curve can be written in a 
matrix form 

1. Expanding the analytic definition of the 
curve into its Bernstein polynomial 
coefficients, 

2. Then writing these coefficients in a matrix 
form using the polynomial power basis.
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Developing the Matrix Equation
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Developing the Matrix Equation

• The matrix M defines the 
blending functions for the 
curve P(t) - i.e. the cubic 
Bernstein polynomials

• Utilizing equipment that is 
designed for fast 4×4
matrix calculations, this 
formulation can be used to 
quickly calculate points on 
the curve.
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Subdivision Using the Matrix Form

• Suppose we wish to generate the control 
polygon for the portion of the curve P(t)
where t ranges between 0 and 1/2

Clearly this new curve is a cubic polynomial, 
and traces the desired portion of P as t ranges 
between 0 and 1
For the control points of the new curve Q(t)

Geometric Construction
Using matrix form of the curve P
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Subdivision Using the Matrix Form
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Subdivision Using the Matrix Form
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Subdivision Using the Matrix Form

• The control points of the Bézier curve Q(t)
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Subdivision Using the Matrix Form

• Similarly, the Bézier control polygon for 
the second half of the curve t∈[1/2,1] can 
be obtained as following



12/04/06 State Key Lab of CAD&CG 87

Subdivision Using the Matrix Form
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Subdivision Using the Matrix Form

The matrix can be applied to the original Bézier 
control points to produce Bézier control points for 
the second half of the curve. 
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Generating a Sequence of Bézier 
Control Polygons

• Using matrix calculations similar to those above, 
we can generate an iterative scheme to 
generate a sequence of points on the curve

• If we consider the portion of the cubic curve   
where P(t) ranges between 1 and 2 , we 
generate the Bézier control points of Q(t) by 
reparameterization of the original curve - namely 
by replacing t by t+1
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Generating a Sequence of Bézier 
Control Polygons



12/04/06 State Key Lab of CAD&CG 91

Generating a Sequence of Bézier 
Control Polygons
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Generating a Sequence of Bézier 
Control Polygons

• Now, using a combination of S[0,1/2], S[1/2,1]
and S[1, 2], we can produce Bézier control 
polygons along the curve similar to 
methods developed with divided 
differences.
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Generating a Sequence of Bézier 
Control Polygons

Applying S[0,1/2] to obtain a Bézier control 
polygon for the first half of the curve
Applying S[1, 2] to this control polygon to obtain 
the Bézier control polygon for the second half 
of the curve 
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Generating a Sequence of Bézier 
Control Polygons

• Consider              : applying S[0,1/2] k times 
and then S[1,2] i times

obtain the Bézier control polygon for the 
portion of the curve where t ranges in the 
interval [i/2k, (i+1)/2k]

• By repeatedly applying S[1,2]，we move our 
control polygons along the curve


	Bézier Curves and Surfaces (1)
	Contents
	Bernstein Polynomials
	Introduction of Polynomials
	Introduction of Polynomials
	Introduction of Polynomials
	Definition of Bernstein Polynomial
	Example of Bernstein Polynomials (1)
	Example of Bernstein Polynomials (2)
	Example of Bernstein Polynomials (3)
	A Recursive Definition of the Bernstein Polynomials 
	A Recursive Definition of the Bernstein Polynomials
	Properties of Bernstein Polynomial
	Non-Negative
	Partition of Unity
	Partition of Unity
	Symmetry
	Degree Raising
	Degree Raising
	Degree Raising
	Linear Precision
	Derivatives
	Derivatives
	Conversion Between Bernstein Basis and Power Basis
	Conversion from the Bernstein Basis to the Power Basis
	Conversion from the Power Basis to the Bernstein Basis
	The Bernstein Polynomials as a Basis of Polynomial Space
	Linearly Independent
	Linearly Independent
	A Matrix Representation for Bernstein Polynomials
	A Matrix Representation for Bernstein Polynomials
	Examples of Matrix Representation 
	A Divide-and-Conquer Method for Drawing a Bézier Curve
	The Subdivision Procedure
	The Subdivision Procedure
	The Basic Subdivision Procedure (1)
	The Basic Subdivision Procedure (2)
	The Basic Subdivision Procedure (3)
	The Basic Subdivision Procedure
	Continuing the Subdivision (Left)
	Continuing the Subdivision (Left-1)
	Continuing the Subdivision (Left-2)
	Continuing the Subdivision (Left-3)
	Continuing the Subdivision (Left)
	Continuing the Subdivision (Right)
	Continuing the Subdivision (Right-1)
	Continuing the Subdivision (Right-2)
	Continuing the Subdivision (Right-3)
	Continuing the Subdivision (Right)
	The Subdivision Algorithm 
	The Subdivision Algorithm
	Summary
	Quadratic Bezier Curves
	Development of the Quadratic Bézier Curve
	Development of the Quadratic Bézier Curve  (1)
	Development of the Quadratic Bézier Curve  (2)
	Development of the Quadratic Bézier Curve  (3)
	Development of the Quadratic Bézier Curve  (4)
	Developing the Equation of the Curve
	Developing the Equation of the Curve
	Developing the Equation of the Curve
	Properties of the Quadratic Curve (1)
	Properties of the Quadratic Curve (2)
	Properties of the Quadratic Curve (3)
	Properties of the Quadratic Curve (4)
	Properties of the Quadratic Curve (4)
	Summarizing the Development of the Curve
	The Geometrical Construction Method 
	The Analytical Formula
	Cubic Bézier Curve – Geometric Construction
	Cubic Bézier Curve – Geometric Construction
	Cubic Bézier Curve – Geometric Construction
	Cubic Bézier Curve –Analytical Construction
	Cubic Bézier Curve –Analytical Construction
	Properties of the Cubic Bézier Curve 
	Properties of the Cubic Bézier Curve
	A Matrix Representation for Cubic Bezier Curves
	Overview
	Developing the Matrix Equation
	Developing the Matrix Equation
	Developing the Matrix Equation
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Subdivision Using the Matrix Form
	Generating a Sequence of Bézier Control Polygons
	Generating a Sequence of Bézier Control Polygons
	Generating a Sequence of Bézier Control Polygons
	Generating a Sequence of Bézier Control Polygons
	Generating a Sequence of Bézier Control Polygons
	Generating a Sequence of Bézier Control Polygons

