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Differential Geometry of Surfaces

• Tangent plane and surface normal 
• First fundamental form I (metric) 
• Second fundamental form II (curvature)
• Principal curvatures 
• Gaussian and mean curvatures 

Explicit surfaces
Implicit surfaces

• Euler's theorem and Dupin's indicatrix
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Tangent vector on the surface

A parametric surface r=r(u,v)

A curve u=u(t), v=v(t) in the parametric domain
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Tangent vector on the surface

The tangent vector of the curve on the 
surface respect to the parameter t :

r(t) = r(u(t),v(t))

where
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Tangent plane on the surface

The tangent plane at a point on a surface

The tangent plane at point P can be considered as a 
union of the tangent vectors for all r(t) through P
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Tangent plane on the surface

Suppose:  P = r(up,vp)
The equation of tangent plane at r(up,vp) :

Where μ, ν are parameter
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Surface normal

The surface normal vector is perpendicular 
to the tangent plane. The unit normal is

The implicit form of tangent surface is
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Surface normal

The normal to the point on a surface
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Regular point on the surface

Definition: A regular (ordinary) point P on a 
parametric surface is defined as a point where  
ru × rv ≠ 0. A point which is not a regular point is 
called a singular point.

Notes for
Regular point: 
1. ru ≠ 0 and rv ≠ 0
2. ru is not parallel to rv

Singular point:
1. Normal may exist at the singular point
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Examples of singular point

ru = 0 or rv = 0 ru ∥ rv
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Types of singular points

• Essential singularities: specific features of 
the surface geometry

Apex of cone

• Artificial singularities 
parametrization
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Regular surface

• Existence of a tangent plane everywhere 
on the surface

• Without self-intersection

Surface with 
intersection
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Example: elliptic cone

Parametric form: r=(atcosθ,btsinθ,ct)T

Where 0≤θ≤2π,  0≤t≤l, a,b,c are constants

The apex of the cone (t=0) is singular
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Normal of implicit surface

Implicit surface:  f (x,y,z)=0

Considering the two parametric curves on 
the surfaces

r1=(x1(t1), y1(t1), z1(t1))
r2=(x2(t2), y2(t2), z2(t2))

The r1 and r2 intersect at point P

By substituting r1 and r2 into f,  we have
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Normal of implicit surface

By differentiation with t1 and t2 respectively

After simplification, we can deduce: 
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Normal of implicit surface

As we know

Thus the normal is the gradient of f , i.e.
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Normal of implicit surface

Unit normal of the implicit surface

provided that 
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Tangent plane of implicit surface

The tangent plane of point P(xp,yp,zp) on the 
implicit surface f (x,y,z)=0 is 

∇ f ⋅ ( r – P ) = 0
i.e.

r=(x,y,z)
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Example: elliptic cone

Elliptic cone in implicit form

The gradient (normal) is 

subject to
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First fundamental form I (metric)

The differential arc length of parametric 
curve on the parametric surface

Parametric surface   r=r(u,v)
Parametric curve defined the in parametric 
domain   u=u(t), v=v(t)
The differential arc length of parametric 
curve 
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First fundamental form I (metric)

where
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First fundamental form

• First fundamental form

E, F, G : first fundamental form coefficients
E, F, G are important for intrinsic properties
Alternative representation 
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First fundamental form

Thus
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First fundamental form

• I ≥ 0 for arbitrary surface
I > 0:  positive definite provided that the 
surface is regular

I = 0 iff du = 0 and dv = 0
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Example: First fundamental form

Hyperbolic paraboloid:
r(u,v)=(u,v,uv)T

0≤u,v≤1

Curve:
u=t, v=t.  
0≤t≤1

Aim: arc length of the 
curve on the surface Hyperbolic paraboloid

arc length along u=t, v=t
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Example: First fundamental form

First fundamental form coefficients 
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Example: First fundamental form

First fundamental form coefficients along the 
curve

The differential arc length of the curve
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Example: First fundamental form

The arc length of the curve
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Application of first fundamental form: 
angle between curves on surface

• Two curves on a parametric surface

Angle between r1 and r2 is the angle between 
their tangent vectors

Angle between two vectors a and b

cosω ⋅
=

a b
a b

a=rudu1+rvdv1

b=rudu2+rvdv2
where
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Application of first fundamental form: 
angle between curves on surface

• Angle between curves on the surface

r1 and r2 is orthogonal (cos(π/2)=0) if
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Application of first fundamental form: 
angle between curves on surface

• Special case: iso-parametric curves

r1: u1(t)=t, v1(t)=0

r2: u2(t)=0, v2(t)=t

The iso-parametric curves are orthogonal if F=0
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Application of first fundamental 
form: area of the surface patch

The area bounded by four vertices r(u,v),
r(u+δu,v), r(u+δu,v), r(u+δu,v+δv)

Area of small surface patch
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Application of first fundamental 
form: area of the surface patch

The area bounded by four vertices r(u,v),
r(u+δu,v), r(u+δu,v), r(u+δu,v+δv)

In differential form
Recall
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Example: area of surface patch

Hyperbolic paraboloid:
r(u,v)=(u,v,uv)T

0≤u,v≤1

Bounded curves:     
u=0; v=0;  
u2+v2=1

Aim: Area of the surface 
patch bounded by the 3 
curves?

Area bounded by positive u and v
axes and a quarter circle
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Example: area of surface patch

First fundamental form coefficients 
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Example: area of surface patch

After reparametrization of the surface patch 

by setting u=rcosθ, v=rsinθ, we have
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Second fundamental form II
(curvature)

• The second fundamental form quantify the 
curvatures of a surface

• Consider a curve C on surface S which 
passes through point P

The differential geometry of curve
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Second fundamental form II
(curvature)

Definition of normal curvature

surface normal

curve normal

curve tangent
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Second fundamental form II
(curvature)

The relationship between unit tangent vector t and 
unit normal vector n of the curve C at point P 

Normal curvature vector kn : component of k of curve
C in the surface normal direction
Geodesic curvature vector kg : component of k of 
curve C in the direction perpendicular to t in the 
surface tangent plane



11/27/2006 State Key Lab of CAD&CG 40

Second fundamental form II
(curvature)

The normal curvature vector can be expressed as

κn is called normal curvature of surface at point P in 
the direction t
κn is the magnitude of the projection of k onto the 
surface normal at P
The sign of κn is determined by the orientation of 
the surface normal at P.
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Second fundamental form II
(curvature)

Definition of normal curvature
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Second fundamental form II
(curvature)

Differentiating N⋅t=0 along the curve respect to s:

Combined with                   , Thus
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Second fundamental form II
(curvature)

where
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Second fundamental form II
(curvature)

Since ru ⊥ N and rv ⊥ N

ru·N=0  and rv·N=0 

d(ru·N)/du=ruu·N+ ru·Nu=0
d(rv·N)/du=ruv·N+ rv·Nu=0
d(ru·N)/dv=ruv·N+ ru·Nv=0
d(rv·N)/dv=rvv·N+ rv·Nv=0
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Second fundamental form II
(curvature)

Alternative expression of L, M and N

The second fundamental form II

L, M and N are called second fundamental 
form coefficients
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Second fundamental form II
(curvature)

The normal curvature can be expressed as

λ=dv/du is the direction of the tangent line to 
C at P (in the surface parametric domain)
κn at a given point P on the surface depends 
only on λ
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Meusnier Theorem

All curves lying on a surface S passing 
through a given point p∈S with the same 
tangent line have the same normal curvature
at this point.

Meusnier Theorem



11/27/2006 State Key Lab of CAD&CG 48

About sign of normal curvature

• Convention (a): κ n⋅N=κn
The normal curvature is positive when the center of the 
curvature of the normal section curve, which is a curve 
through P cut out by a plane that contains t and N, is 
on the same side of the surface normal.

Definition of normal curvature (minus) κn⋅N=κn
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About sign of normal curvature

• Convention (b): κ n⋅N=-κn
The normal curvature is positive when the center of the 
curvature of the normal section curve, which is a curve 
through P cut out by a plane that contains t and N, is 
on the opposite side of the surface normal.

Definition of normal curvature (positive) κn⋅N=-κn
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About sign of normal curvature

• About convention (b)
The convention (b) is often used in the area of 
offset curves and surfaces in the context of 
NC machining
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Point classification by II

• Suppose P and Q on the surface r(u,v)
P= r(u,v),  Q= r(u+du,v+dv)
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Point classification by II

Thus

Projecting PQ onto N
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Point classification by II

Finally

Thus |II| is equal to twice the distance from Q to 
the tangent plane of the surface at P within second 
order terms.

Next, we determine the sign of II, i.e. Q lies in 
which side of tangent plane of P
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Point classification by II

d=0 : a quadratic equation interms of du or dv
Assuming L≠0, we have
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Point classification: Elliptic 
point

M2-LN<0 (Elliptic point) :
There is no intersection between the surface 
and its tangent plane except at point P, e.g.,
ellipsoid

Elliptic point
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Point classification: Parabolic point

M2-LN=0 (Parabolic point) :
There are double roots. The surface intersects its 
tangent plane with one line which 
passes through point P, e.g., a circular cylinder 

Parabolic point
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Point classification: Hyperbolic 
point

M2-LN>0 (Hyperbolic point) :
There are two roots. The surface intersects its 
tangent plane with two lines
which intersect at  point P, e.g., a hyperbolic of 
revolution

Hyperbolic point
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Point classification: flat/planar 
point

L=M=N=0 (flat or planar point)
The surface and the tangent plane have a 
contact of higher order than in the preceding 
cases
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Point classification: other cases

• If L=0 and N≠0, we can solve for dv instead of du

• If L=N=0 and M≠0, we have 2Mdudv=0, thus the 
iso-parametric lines 

u = const.
v = const.

will be the two intersection lines.
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Download the courses

http://www.cad.zju.edu.cn/home/zhx/GM/GM03.zip
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