Preliminary Mathematics of Geometric Modeling (3)

Hongxin Zhang and Jieqing Feng
2006-11-27

State Key Lab of CAD\&CG, Zhejiang University

Differential Geometry of Surfaces

- Tangent plane and surface normal
- First fundamental form I (metric)
- Second fundamental form II (curvature)
- Principal curvatures
- Gaussian and mean curvatures
- Explicit surfaces
- Implicit surfaces
- Euler's theorem and Dupin's indicatrix

Tangent vector on the surface

A parametric surface $\mathbf{r}=\mathbf{r}(u, v)$
A curve $u=u(t), v=v(t)$ in the parametric domain

Tangent vector on the surface

The tangent vector of the curve on the surface respect to the parameter t :

$$
\begin{aligned}
\mathbf{r}(t) & =\mathbf{r}(u(t), v(t)) \\
\dot{\mathbf{r}}(t) & =\mathbf{r}_{u} \dot{u}+\mathbf{r}_{v} \dot{v}
\end{aligned}
$$

where

$$
\begin{aligned}
\dot{u} & =\dot{u}(t) \\
\dot{v} & =\dot{v}(t)
\end{aligned}
$$

Tangent plane on the surface

The tangent plane at point P can be considered as a union of the tangent vectors for all $\mathbf{r}(t)$ through P

The tangent plane at a point on a surface

Tangent plane on the surface

Suppose: $P=\mathbf{r}\left(u_{p}, v_{p}\right)$
The equation of tangent plane at $\mathbf{r}\left(u_{p}, v_{p}\right)$:

$$
\mathbf{T}_{p}(\mu, \nu)=\mathbf{r}\left(u_{p}, v_{p}\right)+\mu \mathbf{r}_{u}\left(u_{p}, v_{p}\right)+\nu \mathbf{r}_{v}\left(u_{p}, v_{p}\right)
$$

Where μ, v are parameter

Surface normal

The surface normal vector is perpendicular to the tangent plane. The unit normal is

$$
\mathbf{N}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

The implicit form of tangent surface is

$$
\left(\mathbf{r}-\mathbf{r}\left(u_{p}, v_{p}\right)\right) \cdot \mathbf{N}\left(u_{p}, v_{p}\right)=0
$$

Surface normal

The normal to the point on a surface

Regular point on the surface

Definition: A regular (ordinary) point P on a parametric surface is defined as a point where $\mathbf{r}_{u} \times \boldsymbol{r}_{v} \neq 0$. A point which is not a regular point is called a singular point.
Notes for

- Regular point:

1. $\mathbf{r}_{u} \neq 0$ and $\mathbf{r}_{v} \neq 0$
2. \mathbf{r}_{u} is not parallel to r_{v}

- Singular point:

1. Normal may exist at the singular point

Examples of singular point

$$
\mathbf{r}_{u}=0 \text { or } \mathbf{r}_{v}=0
$$

$$
\mathbf{r}_{u} / / \mathbf{r}_{v}
$$

Types of singular points

- Essential singularities: specific features of the surface geometry
- Apex of cone
- Artificial singularities
- parametrization

Regular surface

- Existence of a tangent plane everywhere on the surface
- Without self-intersection

Surface with intersection

Example: elliptic cone

Parametric form: $\mathbf{r}=(a t \cos \theta, b t s i n \theta, c t)^{T}$
Where $0 \leqslant \theta \leqslant 2 \pi, 0 \leqslant t \leqslant l, a, b, c$ are constants

$$
\begin{gathered}
\mathbf{r}_{\theta}=(-a t \sin \theta, b t \cos \theta, 0)^{T} \quad \mathbf{r}_{t}=(a \cos \theta, b \sin \theta, c)^{T} \\
\left\lvert\, \begin{aligned}
\left|\mathbf{r}_{\theta} \times \mathbf{r}_{t}\right| & =\left|b c t \cos \theta \mathbf{e}_{x}+a c t \sin \theta \mathbf{e}_{y}-a b t \mathbf{e}_{z}\right| \\
& =\sqrt{t^{2}\left(b^{2} c^{2} \cos ^{2} \theta+a^{2} c^{2} \sin ^{2} \theta+a^{2} b^{2}\right)}
\end{aligned}\right.
\end{gathered}
$$

The apex of the cone $(t=0)$ is singular

Normal of implicit surface

Implicit surface: $f(x, y, z)=0$
Considering the two parametric curves on the surfaces

$$
\begin{aligned}
& \mathbf{r}_{1}=\left(x_{1}\left(t_{1}\right), y_{1}\left(t_{1}\right), z_{1}\left(t_{1}\right)\right) \\
& \mathbf{r}_{2}=\left(x_{2}\left(t_{2}\right), y_{2}\left(t_{2}\right), z_{2}\left(t_{2}\right)\right)
\end{aligned}
$$

The \mathbf{r}_{1} and \mathbf{r}_{2} intersect at point P
By substituting \mathbf{r}_{1} and \mathbf{r}_{2} into f, we have

Normal of implicit surface

$\Gamma f\left(x_{1}\left(t_{1}\right), y_{1}\left(t_{1}\right), z\left(t_{1}\right)\right)=0$

$$
f\left(x_{2}\left(t_{2}\right), y_{2}\left(t_{2}\right), z\left(t_{2}\right)\right)=0
$$

By differentiation with t_{1} and t_{2} respectively
$f_{x} \frac{d x_{1}}{d t_{1}}+f_{y} \frac{d y_{1}}{d t_{1}}+f_{z} \frac{d z_{1}}{d t_{1}}=0 \quad f_{x} \frac{d x_{2}}{d t_{2}}+f_{y} \frac{d y_{2}}{d t_{2}}+f_{z} \frac{d z_{2}}{d t_{2}}=0$
After simplification, we can deduce:

$$
\begin{aligned}
& f_{x}: f_{y}: f_{z}= \\
& \frac{d z_{2}}{d t_{2}} \frac{d y_{1}}{d t_{1}}-\frac{d z_{1}}{d t_{1}} \frac{d y_{2}}{d t_{2}}: \frac{d z_{1}}{d t_{1}} \frac{d x_{2}}{d t_{2}}-\frac{d z_{2}}{d t_{2}} \frac{d x_{1}}{d t_{1}}: \frac{d x_{1}}{d t_{1}} \frac{d y_{2}}{d t_{2}}-\frac{d x_{2}}{d t_{2}} \frac{d y_{1}}{d t_{1}}
\end{aligned}
$$

Normal of implicit surface

As we know

$$
\frac{d \mathbf{r}_{1}\left(t_{1}\right)}{d t_{1}} \times \frac{d \mathbf{r}_{2}\left(t_{2}\right)}{d t_{2}}
$$

$$
=\left(\frac{d z_{2}}{d t_{2}} \frac{d y_{1}}{d t_{1}}-\frac{d z_{1}}{d t_{1}} \frac{d y_{2}}{d t_{2}}, \frac{d z_{1}}{d t_{1}} \frac{d x_{2}}{d t_{2}}-\frac{d z_{2}}{d t_{2}} \frac{d x_{1}}{d t_{1}}, \frac{d x_{1}}{d t_{1}} \frac{d y_{2}}{d t_{2}}-\frac{d x_{2}}{d t_{2}} \frac{d y_{1}}{d t_{1}}\right)^{T}
$$

Thus the normal is the gradient of f, i.e.

$$
\nabla f=\left(f_{x}, f_{y}, f_{z}\right)^{T} \| \frac{d \mathbf{r}_{1}\left(t_{1}\right)}{d t_{1}} \times \frac{d \mathbf{r}_{2}\left(t_{2}\right)}{d t_{2}}
$$

Normal of implicit surface

Unit normal of the implicit surface

$$
\mathbf{N}=\frac{\left(f_{x}, f_{y}, f_{z}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}}=\frac{\nabla f}{|\nabla f|}
$$

provided that $|\nabla f| \neq 0$

Tangent plane of implicit surface

The tangent plane of point $P\left(x_{p}, y_{p}, z_{p}\right)$ on the implicit surface $f(x, y, z)=0$ is

$$
\nabla f \cdot(\mathbf{r}-P)=0
$$

i.e.

$$
f_{x}\left(x-x_{p}\right)+f_{y}\left(y-y_{p}\right)+f_{z}\left(z-z_{p}\right)=0
$$

$$
\mathbf{r}=(x, y, z)
$$

Example: elliptic cone

Elliptic cone in implicit form

$$
f(x, y, z)=\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}-\left(\frac{z}{c}\right)^{2}=0
$$

The gradient (normal) is

$$
\nabla f=\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}},-\frac{2 z}{c^{2}}\right)^{T}
$$

subject to

$$
(x, y, z) \in f(x, y, z)=0
$$

\square

First fundamental form / (metric)

The differential arc length of parametric curve on the parametric surface

- Parametric surface $\mathbf{r}=\mathbf{r}(u, v)$
- Parametric curve defined the in parametric domain $u=u(t), v=v(t)$
- The differential arc length of parametric curve

$$
d s=\left|\frac{d \mathbf{r}}{d t}\right| d t=|\dot{\mathbf{r}}| d t=\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} d t
$$

First fundamental form / (metric)

$$
\begin{aligned}
d s & =\left|\frac{d \mathbf{r}}{d t}\right| d t=\left|\mathbf{r}_{u} \frac{d u}{d t}+\mathbf{r}_{v} \frac{d v}{d t}\right| d t \\
& =\sqrt{\left(\mathbf{r}_{u} \dot{u}+\mathbf{r}_{v} \dot{v}\right) \cdot\left(\mathbf{r}_{u} \dot{u}+\mathbf{r}_{v} \dot{v}\right)} d t \\
& =\sqrt{E d u^{2}+2 F d u d v+G d v^{2}}
\end{aligned}
$$

where $E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}, \quad F=\mathbf{r}_{u} \cdot \mathbf{r}_{v}, \quad G=\mathbf{r}_{v} \cdot \mathbf{r}_{v}$

First fundamental form

- First fundamental form

$$
I=d s^{2}=d \mathbf{r} \cdot d \mathbf{r}=E d u^{2}+2 F d u d v+G d v^{2}
$$

- E, F, G : first fundamental form coefficients
- E, F, G are important for intrinsic properties
- Alternative representation

$$
I=\frac{1}{E}(E d u+F d v)^{2}+\frac{E G-F^{2}}{E} d v^{2}
$$

First fundamental form

$$
\begin{aligned}
& (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \\
& (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{a} \times \mathbf{b})=(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})-(\mathbf{a} \cdot \mathbf{b})^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)^{2} & =\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) \\
& =\left(\mathbf{r}_{u} \cdot \mathbf{r}_{u}\right)\left(\mathbf{r}_{v} \cdot \mathbf{r}_{v}\right)-\left(\mathbf{r}_{u} \cdot \mathbf{r}_{v}\right)^{2} \\
& =E G-F^{2}>0
\end{aligned}
$$

First fundamental form

- $I \geq 0$ for arbitrary surface
- I>0: positive definite provided that the surface is regular
- $I=0$ iff $d u=0$ and $d v=0$

Example: First fundamental form

Hyperbolic paraboloid:

$$
\begin{aligned}
& \mathbf{r}(u, v)=(u, v, u v)^{\mathrm{T}} \\
& 0 \leq u, v \leq 1
\end{aligned}
$$

Curve:

$$
\begin{aligned}
& u=t, v=t . \\
& 0 \leq t \leq 1
\end{aligned}
$$

Aim: arc length of the curve on the surface

Hyperbolic paraboloid arc length along $u=t, v=t$

Example: First fundamental form

First fundamental form coefficients

$$
\begin{gathered}
\mathbf{r}_{u}=(1,0, v)^{T}, \quad \mathbf{r}_{v}=(0 \\
E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}=1+v^{2} \\
F=\mathbf{r}_{u} \cdot \mathbf{r}_{v}=u v \\
G=\mathbf{r}_{v} \cdot \mathbf{r}_{v}=1+u^{2}
\end{gathered}
$$

Example: First fundamental form

First fundamental form coefficients along the curve

$$
E=1+t^{2}, \quad F=t^{2}, \quad G=1+t^{2}
$$

The differential arc length of the curve

$$
d s=\sqrt{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}} d t=2 \sqrt{t^{2}+\frac{1}{2}} d t
$$

Example: First fundamental form

The arc length of the curve

$$
\begin{aligned}
s & =2 \int_{0}^{1} \sqrt{t^{2}+\frac{1}{2}} d t \\
& =\left[t \sqrt{t^{2}+\frac{1}{2}}+\frac{1}{2} \log \left(t+\sqrt{t^{2}+\frac{1}{2}}\right)\right]_{0}^{1} \\
& =\sqrt{\frac{3}{2}}+\frac{1}{2} \log (\sqrt{2}+\sqrt{3})
\end{aligned}
$$

Application of first fundamental form: angle between curves on surface

- Two curves on a parametric surface

$$
\mathbf{r}_{1}=\mathbf{r}\left(u_{1}(t), v_{1}(t)\right) \quad \mathbf{r}_{2}=\mathbf{r}\left(u_{2}(t), v_{2}(t)\right)
$$

- Angle between \mathbf{r}_{1} and \mathbf{r}_{2} is the angle between their tangent vectors
- Angle between two vectors a and b

$$
\cos \omega=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \quad \text { where } \quad \begin{aligned}
& \mathbf{a}=\mathbf{r}_{u} d u_{1}+\mathbf{r}_{v} d v_{1} \\
& \mathbf{b}=\mathbf{r}_{u} d u_{2}+\mathbf{r}_{v} d v_{2}
\end{aligned}
$$

Application of first fundamental form: angle between curves on surface

- Angle between curves on the surface

$$
\begin{aligned}
\cos \omega & =\frac{E d u_{1} d u_{2}+F\left(d u_{1} d v_{2}+d v_{1} d u_{2}\right)+G d v_{1} d v_{2}}{\sqrt{E d u_{1}^{2}+2 F d u_{1} d v_{1}+G d v_{1}^{2}} \sqrt{E d u_{2}^{2}+2 F d u_{2} d v_{2}+G d v_{2}^{2}}} \\
& =E \frac{d u_{1}}{d s_{1}} \frac{d u_{2}}{d s_{2}}+F\left(\frac{d u_{1}}{d s_{1}} \frac{d v_{2}}{d s_{2}}+\frac{d v_{1}}{d s_{1}} \frac{d u_{2}}{d s_{2}}\right)+G \frac{d v_{1}}{d s_{1}} \frac{d v_{2}}{d s_{2}} .
\end{aligned}
$$

- \mathbf{r}_{1} and \mathbf{r}_{2} is orthogonal $(\cos (\pi / 2)=0)$ if

$$
E d u_{1} d u_{2}+F\left(d u_{1} d v_{2}+d v_{1} d u_{2}\right)+G d v_{1} d v_{2}=0
$$

Application of first fundamental form: angle between curves on surface

- Special case: iso-parametric curves

$$
\begin{gathered}
\mathbf{r}_{1}: u_{1}(t)=t, v_{1}(t)=0 \\
\mathbf{r}_{2}: u_{2}(t)=0, v_{2}(t)=t \\
\cos \omega=\frac{\mathbf{r}_{u} \cdot \mathbf{r}_{v}}{\left|\mathbf{r}_{u}\right|\left|\mathbf{r}_{v}\right|}=\frac{\mathbf{r}_{u} \cdot \mathbf{r}_{v}}{\sqrt{\mathbf{r}_{u} \cdot \mathbf{r}_{u}} \sqrt{\mathbf{r}_{v} \cdot \mathbf{r}_{v}}}=\frac{F}{\sqrt{E G}}
\end{gathered}
$$

The iso-parametric curves are orthogonal if $F=0$

Application of first fundamental form: area of the surface patch

The area bounded by four vertices $\mathbf{r}(u, v)$, $\mathbf{r}(u+\delta u, v), \mathbf{r}(u+\delta u, v), \mathbf{r}(u+\delta u, v+\delta v)$ ठA

Area of small surface patch

Application of first fundamental form: area of the surface patch

The area bounded by four vertices $\mathbf{r}(u, v)$, $\mathbf{r}(u+\delta u, v), \mathbf{r}(u+\delta u, v), \mathbf{r}(u+\delta u, v+\delta v)$

$$
\delta A=\left|\mathbf{r}_{u} \delta u \times \mathbf{r}_{v} \delta v\right|=\sqrt{E G-F^{2}} \delta u \delta v
$$

In differential form

$$
d A=\sqrt{E G-F^{2}} d u d v
$$

Example: area of surface patch

Hyperbolic paraboloid:

$$
\begin{aligned}
& \mathbf{r}(u, v)=(u, v, u v)^{\mathrm{T}} \\
& 0 \leq u, v \leq 1
\end{aligned}
$$

Bounded curves:

$$
\begin{aligned}
& u=0 ; v=0 ; \\
& u^{2}+v^{2}=1
\end{aligned}
$$

Aim: Area of the surface patch bounded by the 3 curves?

Area bounded by positive u and v axes and a quarter circle

Example: area of surface patch

First fundamental form coefficients

$$
\begin{aligned}
\mathbf{r}_{u} & =(1,0, v)^{T}, \quad \mathbf{r}_{v}=(0,1, u)^{T} \\
E & =\mathbf{r}_{u} \cdot \mathbf{r}_{u}=1+v^{2} \\
F & =\mathbf{r}_{u} \cdot \mathbf{r}_{v}=u v \\
G & =\mathbf{r}_{v} \cdot \mathbf{r}_{v}=1+u^{2} \\
A & =\int_{D} \sqrt{1+u^{2}+v^{2}} d u d v
\end{aligned}
$$

Example: area of surface patch

After reparametrization of the surface patch by setting $u=r \cos \theta, v=r \sin \theta$, we have

$$
A=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \sqrt{1+r^{2}} r d \theta d r=\frac{\pi}{6}(\sqrt{8}-1)
$$

介

Second fundamental form (curvature)

- The second fundamental form quantify the curvatures of a surface
- Consider a curve C on surface S which passes through point P
- The differential geometry of curve

Second fundamental form (curvature)

Definition of normal curvature

Second fundamental form (curvature)

The relationship between unit tangent vector t and unit normal vector \mathbf{n} of the curve C at point P

$$
\mathbf{k}=\frac{d \mathbf{t}}{d s}=\kappa \mathbf{n}=\mathbf{k}_{n}+\mathbf{k}_{g}
$$

- Normal curvature vector \mathbf{k}_{n} : component of \mathbf{k} of curve C in the surface normal direction
- Geodesic curvature vector \mathbf{k}_{g} : component of \mathbf{k} of curve C in the direction perpendicular to t in the surface tangent plane

Second fundamental form (curvature)

The normal curvature vector can be expressed as

$$
\mathbf{k}_{n}=\kappa_{n} \mathbf{N}
$$

- κ_{n} is called normal curvature of surface at point P in the direction \mathbf{t}
- κ_{n} is the magnitude of the projection of \mathbf{k} onto the surface normal at P
- The sign of κ_{n} is determined by the orientation of the surface normal at P.

Second fundamental form (curvature)

Definition of normal curvature

Second fundamental form (curvature)

Differentiating $\mathbf{N} \cdot \mathbf{t}=0$ along the curve respect to s :

$$
\frac{d \mathbf{t}}{d s} \cdot \mathbf{N}+\mathbf{t} \cdot \frac{d \mathbf{N}}{d s}=0
$$

Combined with $\mathbf{k}_{n}=\kappa_{n} \mathbf{N}$, Thus

$$
\begin{aligned}
\kappa_{n} & =\frac{d \mathbf{t}}{d s} \cdot \mathbf{N}=-\mathbf{t} \cdot \frac{d \mathbf{N}}{d s}=-\frac{d \mathbf{r}}{d s} \cdot \frac{d \mathbf{N}}{d s}=-\frac{d \mathbf{r} \cdot d \mathbf{N}}{d \mathbf{r} \cdot d \mathbf{r}} \\
& =\frac{L d u^{2}+2 M d u d v+N d v^{2}}{E d u^{2}+2 F d u d v+G d v^{2}},
\end{aligned}
$$

Second fundamental form (curvature)

where

$$
\begin{aligned}
L & =-\mathbf{r}_{u} \cdot \mathbf{N}_{u} \\
M & =-\frac{1}{2}\left(\mathbf{r}_{u} \cdot \mathbf{N}_{v}+\mathbf{r}_{v} \cdot \mathbf{N}_{u}\right) \\
& =-\mathbf{r}_{u} \cdot \mathbf{N}_{v}=-\mathbf{r}_{v} \cdot \mathbf{N}_{u} \\
N & =-\mathbf{r}_{v} \cdot \mathbf{N}_{v}
\end{aligned}
$$

Second fundamental form (curvature)

Since $\mathbf{r}_{u} \perp \mathbf{N}$ and $\mathbf{r}_{v} \perp \mathbf{N}$

$$
\begin{gathered}
\mathbf{r}_{u} \cdot \mathbf{N}=0 \text { and } \mathbf{r}_{v} \cdot \mathbf{N}=0 \\
d\left(\mathbf{r}_{u} \cdot \mathbf{N}\right) / d u=\mathbf{r}_{u u} \cdot \mathbf{N}+\mathbf{r}_{u} \cdot \mathbf{N}_{u}=0 \\
d\left(\mathbf{r}_{v} \cdot \mathbf{N}\right) / d u=\mathbf{r}_{u v} \cdot \mathbf{N}+\mathbf{r}_{v} \cdot \mathbf{N}_{u}=0 \\
d\left(\mathbf{r}_{u} \cdot \mathbf{N}\right) / d v=\mathbf{r}_{u v} \cdot \mathbf{N}+\mathbf{r}_{u} \cdot \mathbf{N}_{v}=0 \\
d\left(\mathbf{r}_{v} \cdot \mathbf{N}\right) / d v=\mathbf{r}_{v v} \cdot \mathbf{N}+\mathbf{r}_{v} \cdot \mathbf{N}_{v}=0
\end{gathered}
$$

Second fundamental form (curvature)

Alternative expression of L, M and N

$$
L=\mathbf{r}_{u u} \cdot \mathbf{N} \quad M=\mathbf{r}_{u v} \cdot \mathbf{N} \quad N=\mathbf{r}_{v v} \cdot \mathbf{N}
$$

The second fundamental form II

$$
I I=L d u^{2}+2 M d u d v+N d v^{2}
$$

L, M and N are called second fundamental form coefficients

Second fundamental form (curvature)

The normal curvature can be expressed as

$$
\kappa_{n}=\frac{I I}{I}=\frac{L+2 M \lambda+N \lambda^{2}}{E+2 F \lambda+G \lambda^{2}}
$$

- $\lambda=d v / d u$ is the direction of the tangent line to C at P (in the surface parametric domain)
- κ_{n} at a given point P on the surface depends only on λ

Meusnier Theorem

All curves lying on a surface S passing

 through a given point $p \in S$ with the same tangent line have the same normal curvature at this point.

Meusnier Theorem

About sign of normal curvature

- Convention (a): $\kappa \mathbf{n} \cdot \mathbf{N}=\kappa_{n}$

The normal curvature is positive when the center of the curvature of the normal section curve, which is a curve through P cut out by a plane that contains \mathbf{t} and \mathbf{N}, is on the same, side of the surface normal. center of curvature

Definition of normal curvature (minus)

$\kappa \mathbf{n} \cdot \mathbf{N}=\kappa_{n}$

About sign of normal curvature

- Convention (b): $\kappa \mathbf{n} \cdot \mathbf{N}=-\kappa_{n}$

The normal curvature is positive when the center of the curvature of the normal section curve, which is a curve through P cut out by a plane that contains \mathbf{t} and \mathbf{N}, is on the oppossite side of the surface normal.

Definition of normal curvature (positive)

About sign of normal curvature

- About convention (b)
- The convention (b) is often used in the area of offset curves and surfaces in the context of NC machining

$$
\begin{aligned}
\mathbf{k}_{n} & =-\kappa_{n} \mathbf{N} \\
\kappa_{n} & =-\frac{I I}{I}=-\frac{L+2 M \lambda+N \lambda^{2}}{E+2 F \lambda+G \lambda^{2}}
\end{aligned}
$$

Point classification by II

- Suppose P and Q on the surface $\mathbf{r}(u, v)$

$$
P=\mathbf{r}(u, v), Q=\mathbf{r}(u+d u, v+\mathrm{d} v)
$$

Point classification by II

$$
\begin{aligned}
\mathbf{r}(u+d u, v+d v)= & \mathbf{r}(u, v)+\mathbf{r}_{u} d u+\mathbf{r}_{v} d v \\
& +\frac{1}{2}\left(\mathbf{r}_{u u} d u^{2}+2 \mathbf{r}_{u v} d u d v+\mathbf{r}_{v v} d v^{2}\right)+\ldots
\end{aligned}
$$

Thus $\mathbf{P Q}=\mathbf{r}(u+d u, v+d v)-\mathbf{r}(u, v)=\mathbf{r}_{u} d u+\mathbf{r}_{v} d v$

$$
+\frac{1}{2}\left(\mathbf{r}_{u u} d u^{2}+2 \mathbf{r}_{u v} d u d v+\mathbf{r}_{v v} d v^{2}\right)+\ldots
$$

Projecting PQ onto \mathbf{N}

$$
d=\mathbf{P Q} \cdot \mathbf{N}=\left(\mathbf{r}_{u} d u+\mathbf{r}_{v} d v\right) \cdot \mathbf{N}+\frac{1}{2} I I
$$

Point classification by II

Finally

$$
d=\frac{1}{2} I I=\frac{1}{2}\left(L d u^{2}+2 M d u d v+N d v^{2}\right)
$$

Thus $|I I|$ is equal to twice the distance from Q to the tangent plane of the surface at P within second order terms.

Next, we determine the sign of $I I$, i.e. Q lies in which side of tangent plane of P

Point classification by II

$d=0$: a quadratic equation interms of $d u$ or $d v$
Assuming $L \neq 0$, we have

$$
d u=\frac{-M \pm \sqrt{M^{2}-L N}}{L} d v
$$

Point classification: Elliptic point

$M^{2}-L N<0$ (Elliptic point) :

- There is no intersection between the surface and its tangent plane except at point P, e.g., ellipsoid

Elliptic point

Point classification: Parabolic point

$M^{2}-L N=0$ (Parabolic point) :

- There are double roots. The surface intersects its tangent plane with one line $d u=-\frac{M}{L} d v$ which passes through point P, e.g., a circular cylinder

Parabolic point

Point classification: Hyperbolic point

$M^{2}-L N>0$ (Hyperbolic point) :

- There are two roots. The surface intersects its tangent plane with two lines $d u=\frac{-M \pm \sqrt{M^{2}-L N}}{L} d v$ which intersect at point P, e.g., a hyperbolic of revolution

Hyperbolic point

Point classification: flat/planar point

$L=M=N=0$ (flat or planar point)

- The surface and the tangent plane have a contact of higher order than in the preceding cases

Point classification: other cases

- If $L=0$ and $N \neq 0$, we can solve for $d v$ instead of $d u$
- If $L=N=0$ and $M \neq 0$, we have $2 M d u d v=0$, thus the iso-parametric lines

$$
\begin{aligned}
& u=\text { const } . \\
& v=\text { const. }
\end{aligned}
$$

will be the two intersection lines.

Download the courses

http://www.cad.zju.edu.cn/home/zhx/GM/GM03.zip

