Preliminary Mathematics of Geometric Modeling (2)

Hongxin Zhang and Jieqing Feng

State Key Lab of CAD\&CG
Zhejiang University

Contents

- Representation of Curves and Surfaces
- Differential Geometry of Curves

Representation of Curves and Surfaces

- Planar Curves (2D)
- Space Curves (3D)
- Surfaces
- Summary

Representation of Planar Curves

- Parametric Form

$$
x=x(t), \quad y=y(t)
$$

where

$$
t_{1} \leq t \leq t_{2}
$$

$x(t)$ and $y(t)$ are assumed to be continuous with a sufficient number of continuous derivatives

Representation of Planar Curves

- Vector-Valued Parametric Form

$$
\mathbf{r}=\mathbf{r}(t)
$$

Representation of Planar Curves

- Implicit Form

$$
f(x, y)=0
$$

- Linear (line): $f(x, y)=a x+b y+c=0$
- Quadric (Conic sections):

$$
a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+h=0
$$

Representation of Planar Curves

- Explicit Form

$$
y=F(x) \quad \text { or } \quad x=G(y)
$$

- A special case of parametric and implicit forms

Representation of Planar Curves

- Special parametric form if

$$
\frac{d x}{d t} \neq 0 \text { or } \frac{d y}{d t} \neq 0
$$

is satisfied at least locally.

- Special implicit form if

$$
\frac{\partial f}{\partial y} \neq 0 \text { or } \frac{\partial f}{\partial x} \neq 0
$$

is satisfied at least locally.

Representation of Planar Curves

- A planar curve can also be expressed as an intersection curve between a plane and a surface

Example of Planar Curves

- Folium of Descartes

$$
\begin{gathered}
\mathbf{r}(t)=\left(\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right)^{T} \\
-\infty<t<\infty \quad(t \neq-1) \\
\text { Parametric form } \\
f(x, y)=x^{3}+y^{3}-3 x y=0
\end{gathered}
$$

Implicit form
Cubic curve with a single loop, a node, and two ends asymptotic to the same line

Representation of Space Curves

- The parametric representation of space curves

$$
x=x(t), \quad y=y(t), \quad z=z(t)
$$

where

$$
t_{1} \leq t \leq t_{2}
$$

Representation of Space Curves

- The implicit representation of space curves
- intersection curve between two implicit surfaces

$$
f(x, y, z)=0 \cap g(x, y, z)=0
$$

- intersection curve between parametric and implicit surfaces

$$
\mathbf{r}=\mathbf{r}(u, v) \cap f(x, y, z)=0
$$

Representation of Space Curves

- The implicit representation of space curves
- intersection curve between two parametric surfaces

$$
\mathbf{r}=\mathbf{p}(\sigma, t) \cap \mathbf{r}=\mathbf{q}(u, v)
$$

Representation of Space Curves

- The explicit representation of space curves

$$
y=Y(x), \quad z=Z(x)
$$

It is hold at least locally when

- Parametric form: $\quad \frac{d x}{d t} \neq 0$
- Implicit form: $\quad \frac{\partial f}{\partial y} \frac{\partial g}{\partial z}-\frac{\partial f}{\partial z} \frac{\partial g^{-}}{\partial y} \neq 0$

Representation of Space Curves

- The explicit representation of space curves

$$
y=Y(x), \quad z=Z(x)
$$

The explicit equation for the space curve can be expressed as an intersection curve of two cylinders projecting the curve onto $x y$ and $x z$ planes.

Representation of Surfaces

- Parametric Form

$$
x=x(u, v), \quad y=y(u, v), \quad z=z(u, v)
$$

where

$$
u_{1} \leq u \leq u_{2}, \quad v_{1} \leq v \leq v_{2}
$$

Note: the functions $x(u, v), y(u, v)$ and $z(u, v)$ are continuous and possess a sufficient number of continuous partial derivatives

Representation of Surfaces

- Parametric form as vector-valued function

$$
\mathbf{r}=\mathbf{r}(u, v)
$$

Representation of Surfaces

- Implicit form: an implicit surface is defined as the locus of points whose coordinates (x, y, z) satisfy an equation of the form
- $f(x, y, z)$ is linear: $f(x, y, z)=0$
- $f(x, y, z)$ is quadratic in the variables x, y, z : quadratic surface

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e y z+h x z+k x+l y+m z+n=0
$$

Representation of Surfaces

- Quadratic surfaces:
- The natural quadrics, sphere, circular cone and circular cylinder: widely used in mechanical design and CAD/CAM systems
- Result from standard manufacturing operations: rolling, turning(+), filleting(-),drilling and milling
- 80-85\% of mechanical parts were adequately represented by planes and cylinders, while 90-95\% were modeled with the addition of cones. (Univ. of Rochester , in the mid 1970's)

Representation of Surfaces

hyperbolic paraboloid

paraboloid of revolution

elliptic paraboloid

Representation of Surfaces

- Explicit Form

$$
z=F(x, y)
$$

- From implicit form: locally $\quad \frac{\partial f}{\partial z} \neq 0$
- From parametric form: locally $\quad \frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \neq 0$
- $z=F(x, y): x=u, y=v, z=f(u, v)$
explicit form is special case of parametric form.

Representation of Surfaces

- Example: hyperbolic paraboloid surface patch parametric form:

$$
x=u+v, \quad y=u-v, \quad z=u^{2}-v^{2}, \quad 0 \leq u, v \leq 1
$$

explicit form: $u=(x+y) / 2, v=(x-y) / 2$

$$
z=x y, \quad 0 \leq x+y \leq 2,0 \leq x-y \leq 2
$$

Summary

Representations of curves and surfaces

Geometry	Parametric	Implicit	Explicit
Plane	$x=x(t), y=y(t)$	$f(x, y)=0$ or	$y=F(x)$
curves	$t_{1} \leq t \leq t_{2}$	$\mathbf{r}=\mathbf{r}(u, v) \cap$ plane	
Space	$x=x(t), y=y(t)$,	$f(x, y, z)=0 \cap g(x, y, z)=0$	$y=Y(x) \cap$
curves	$z=z(t), t_{1} \leq t \leq t_{2}$	or $\mathbf{r}=\mathbf{r}(u, v) \cap f(x, y, z)=0$	$z=Z(x)$
		or $\mathbf{r}=\mathbf{p}(\sigma, t) \cap \mathbf{r}=\mathbf{q}(u, v)$	
Surfaces	$x=x(u, v)$,	$f(x, y, z)=0$	$z=F(x, y)$
	$y=y(u, v)$,		
	$z=z(u, v)$,		
	$u_{1} \leq u \leq u_{2}$,		
	$v_{1} \leq v \leq v_{2}$		

Disadvantages

Explicit	Implicit	Parametric
- Infinite slopes are impossible if $f(x)$ is a polynomial. - Axis dependent (difficult to transform). - Closed and multivalued curves are difficult to represent.	- Difficult to fit and manipulate free form shapes. - Axis dependent. - Complex to trace.	- High flexibility complicates intersections and point classification.

Advantages

Explicit	Implicit	Parametric
- Easy to trace.	- Closed and multivalued curves and infinite slopes can be represented. - Point classification (solid modeling, interference check) is easy. - Intersections/offsets can be represented.	- Closed and multivalued curves and infinite slopes can be represented. - Axis independent (easy to transform). - Easy to generate composite curves. - Easy to trace. - Easy in fitting and manipulating free-form shapes.

Summary

- The parametric form is the most versatile method among the three and the explicit is the least
- The explicit form can always be easily converted to parametric form
- Conversion between parametric form and implicit form

Differential Geometry of Curves

- Arc length and tangent vector
- Principal normal and curvature
- Binormal vector and torsion
- Frenet-Serret formulae

Arc length and tangent vector

Parametric curve $\mathbf{r}=\mathbf{r}(t)$
Segment between $P Q$

$$
P(\mathbf{r}(t)) Q(\mathbf{r}(t+\Delta t))
$$

Its arc length Δs

$$
\begin{aligned}
\Delta s & \simeq|\Delta \mathbf{r}|=|\mathbf{r}(t+\Delta t)-\mathbf{r}(t)| \\
& =\left|\frac{d \mathbf{r}}{d t} \Delta t+\frac{d^{2} \mathbf{r}}{d t^{2}}(\Delta t)^{2}\right| \simeq\left|\frac{d \mathbf{r}}{d t}\right| \Delta t \\
d s & =\left|\frac{d \mathbf{r}}{d t}\right| d t=|\dot{\mathbf{r}}| d t=\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} d t
\end{aligned}
$$

Arc length and tangent vector

- Arc length between $\mathbf{r}\left(t_{0}\right)$ and $\mathbf{r}(t)$

$$
s(t)=\int_{t_{0}}^{t} d s=\int_{t_{0}}^{t} \sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} d t=\int_{t_{0}}^{t} \sqrt{\dot{x}^{2}(t)+\dot{y}^{2}(t)+\dot{z}^{2}(t)} d t
$$

- Tangent vector $d \mathbf{r} / d t$: $\dot{\mathbf{r}}$ erivative about t

$$
|\dot{\mathbf{r}}|=\frac{d s}{d t}
$$

- $|\dot{\mathbf{r}}|$ is called parametric speed

Arc length and tangent vector

- Useful formulae of the derivatives (s / t)

$$
\begin{array}{rlrl}
\dot{s} & =\frac{d s}{d t}=|\dot{\mathbf{r}}|=\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}} & t^{\prime} & =\frac{d t}{d s}=\frac{1}{|\dot{\mathbf{r}}|}=\frac{1}{\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}}}, \\
\ddot{s} & =\frac{d \dot{s}}{d t}=\frac{\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}}{\sqrt{\dot{\mathbf{r}} \cdot \dot{\mathbf{r}}}}, & t^{\prime \prime}=\frac{d t^{\prime}}{d s}=-\frac{\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{2}}, \\
\cdots & =\frac{d \ddot{s}}{d t}=\frac{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})(\dot{\mathbf{r}} \cdot \dddot{\mathbf{r}}+\ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}})-(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}})^{2}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{\frac{3}{2}}} & t^{\prime \prime \prime} & =\frac{d t^{\prime \prime}}{d s}=-\frac{(\ddot{\mathbf{r}} \cdot \ddot{\mathbf{r}}+\dot{\mathbf{r}} \cdot \dddot{\mathbf{r}})(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})-4(\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}})^{2}}{(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})^{\frac{7}{2}}}
\end{array}
$$

Arc length and tangent vector

- Derivative about arc length: \mathbf{r}^{\prime}

$$
\mathbf{t}=\frac{\dot{\mathbf{r}}}{|\dot{\mathbf{r}}|}=\frac{\frac{d \mathbf{r}}{d t}}{\frac{d s}{d t}}=\frac{d \mathbf{r}}{d s} \equiv \mathbf{r}^{\prime}
$$

- It is a unit vector

Arc length and tangent vector

- Definition: A regular (ordinary) point P on a parametric curve $\mathbf{r}=\mathbf{r}(t)=(x(t), y(t), z(t))^{T}$ is defined as a point where $\| \dot{\mathbf{r}}(t) \mid \neq 0$. A point which is not a regular point is called a singular point.

Arc length and tangent vector

- Parameter t and Arc length parameter s
- t : arbitrary speed
- s : unit speed

When parametric speed does not vary significantly, points with uniformly spaced parameter values are nearly uniformly spaced along a parametric curve

Arc length and tangent vector

- Parameter t and Arc length parameter s
- Every regular curve has an arc length parametrization
- In practice it is very difficult to find it analytically, due to the fact that it is hard to integrate analytically
- Pythagorean hodograph (PH) curves form a class of special planar polynomial curves whose parametric speed is a polynomial

Arc length and tangent vector

- Tangent vector of implicit planar curve
- $f(x, y)=0$ total differentiation

$$
d f=f_{x} d x+f_{y} d y=0
$$

by assuming $f_{y} \neq 0$

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}
$$

- Unit tangent vector :

$$
\mathbf{t}= \pm \frac{\left(f_{y},-f_{x}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}
$$

Arc length and tangent vector

- Tangent vector of implicit space curve
- Curve: $f(x, y, z)=0 \cap g(x, y, z)=0$
- Gradient vector operator: $\quad \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^{T}$
- Unit tangent vector :

$$
\mathbf{t}= \pm \frac{\nabla f \times \nabla g}{|\nabla f \times \nabla g|}
$$

Arc length and tangent vector

- Example $\mathbf{r}(t)=\left(t^{2}, t^{3}\right)^{T}$
- Parametric speed $|\dot{\mathbf{r}}(t)|=\sqrt{t^{2}\left(4+9 t^{2}\right)}$
- $\mathbf{r}(0)$ is a singular point
- Implicit form: $\quad f(x, y)=x^{3}-y^{2}=0$
- $(0,0)$ is a singular point since

$$
f(0,0)=f_{x}(0,0)=f_{y}(0,0)=0
$$

Arc length and tangent vector

A singular point occurs on a semi-cubical parabola in the form of a cusp

Principal normal and curvature

- $\mathbf{r}(s)$: an arc length parametrized curve $\mathbf{r}^{\prime}(s)$ unit tangent vector

$$
\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}=1 \quad \Longleftrightarrow \quad \mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime \prime}=0
$$

$\mathbf{r}^{\prime \prime}(s)$ is orthogonal to $\mathbf{r}^{\prime}(s)$

$$
\mathbf{r}^{\prime \prime}(s)=\lim _{\Delta s \rightarrow 0} \frac{\mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)}{\Delta s}
$$

Principal normal and curvature

Derivation of the normal vector of a curve
$\mathbf{r}^{\prime \prime}(s)=\lim _{\Delta s \rightarrow 0} \frac{\mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)}{\Delta s}$
$\mathbf{n}=\frac{\mathbf{r}^{\prime \prime}(s)}{\left|\mathbf{r}^{\prime \prime}(s)\right|}=\frac{\mathbf{t}^{\prime}(s)}{\left|\mathbf{t}^{\prime}(s)\right|}$
n: unit principal normal vector

The plane determined by $\mathbf{t}(s)$ and $\mathbf{n}(s)$ is called osculating plane

Principal normal and curvature

(t,n): osculating plane
(n, b): normal plane
(b,t): rectifying plane

State Key Lab of CAD\&CG

Principal normal and curvature

- Calculation of $\left|\mathbf{r}^{\prime \prime}(s)\right|$

$$
\begin{aligned}
& \left|\mathbf{r}^{\prime}(s+\Delta s)-\mathbf{r}^{\prime}(s)\right|=\Delta \theta \cdot 1=\Delta \theta \\
& \left|\mathbf{r}^{\prime \prime}(s)\right|=\lim _{\Delta s \rightarrow 0} \frac{\Delta \theta}{\Delta s}=\lim _{\Delta s \rightarrow 0} \frac{\Delta \theta}{\varrho \Delta \theta}=\frac{1}{\varrho} \equiv \kappa
\end{aligned}
$$

ϱ : radius of curvature
κ : curvature

Principal normal and curvature

- Curvature vector

$$
\mathbf{k}=\mathbf{r}^{\prime \prime}=\mathbf{t}^{\prime}=\kappa \mathbf{n}
$$

- measures the rate of change of the tangent along the curve
- It is the same as $\mathbf{r}^{\prime \prime}(s)$ provided defining κ is nonnegative

Principal normal and curvature

- Curvature for arbitrary speed curve (non-arc-length parametrized)

$$
\begin{aligned}
& \dot{\mathbf{r}}=\frac{d \mathbf{r}}{d s} \frac{d s}{d t}=\mathbf{t} v, \\
& \ddot{\mathbf{r}}=\frac{d}{d t}[\mathbf{t} v]=\frac{d \mathbf{t}}{d s} v^{2}+\mathbf{t} \frac{d v}{d t}=\kappa \mathbf{n} v^{2}+\mathbf{t} \frac{d v}{d t} \\
& \dot{\mathbf{r}} \times \ddot{\mathbf{r}}=\kappa v^{3} \mathbf{t} \times \mathbf{n}
\end{aligned}
$$

$$
\kappa=\frac{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}{|\dot{\mathbf{r}}|^{3}}
$$

Principal normal and curvature

- Curvature for the planar curve
- Give the curvature к a sign by defining the normal vector such that ($\mathbf{t}, \mathbf{n}, \mathbf{e}_{z}$) form a righthanded screw

$$
\mathbf{e}_{z}=(0,0,1)^{T}
$$

- The point where the curvature changes sign is called an inflection point

Principal normal and curvature

Normal and tangent vectors along a 2D curve

Principal normal and curvature

- The unit normal vector of the plane curve

$$
\mathbf{n}=\mathbf{e}_{z} \times \mathbf{t}=\frac{(-\dot{y}, \dot{x})^{T}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}
$$

- The curvature of the plane curve

$$
\kappa=\frac{(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \cdot \mathbf{e}_{z}}{v^{3}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{3}{2}}}
$$

Principal normal and curvature

- The unit principal normal vector for planar implicit curves (2D)

Unit tangent vector

$$
\mathbf{t}= \pm \frac{\left(f_{y},-f_{x}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}
$$

Unit principal normal vector

$$
\mathbf{n}=\mathbf{e}_{z} \times \mathbf{t}=\frac{\left(f_{x}, f_{y}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}=\frac{\nabla f}{|\nabla f|}
$$

Principal normal and curvature

- The curvature for planar implicit curves

$$
\begin{gathered}
\frac{d f}{d s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s}<---- \\
\left(\frac{d x}{d s}, \frac{d y}{d s}\right)^{T}=\mathbf{t}= \pm \frac{\left(f_{y},-f_{x}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}}}- \\
\longrightarrow \frac{d}{d s}=\frac{1}{|\nabla f|}\left(f_{y} \frac{\partial}{\partial x}-f_{x} \frac{\partial}{\partial y}\right)
\end{gathered}
$$

Principal normal and curvature

- The curvature for planar implicit curves

$$
\begin{gathered}
\frac{d}{d s}=\frac{1}{|\nabla f|}\left(f_{y} \frac{\partial}{\partial x}-f_{x} \frac{\partial}{\partial y}\right) \\
\left(\frac{d x}{d s}, \frac{d y}{d s}\right)^{T}=\mathbf{t}= \pm \frac{\left(f_{y},-f_{x}\right)^{T}}{\sqrt{f_{x}^{2}+f_{y}^{2}}} \\
\longrightarrow \kappa=-\frac{f_{x x} f_{y}^{2}-2 f_{x y} f_{x} f_{y}+f_{x}^{2} f_{y y}}{\left(f_{x}^{2}+f_{y}^{2}\right)^{\frac{3}{2}}}
\end{gathered}
$$

Principal normal and curvature

- The curvature for space implicit curves

$$
\frac{d}{d s}=\frac{1}{|\boldsymbol{\alpha}|}\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right)
$$

where

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\nabla f \times \nabla g \\
& \alpha_{1}=\frac{\partial f}{\partial y} \frac{\partial g}{\partial z}-\frac{\partial g}{\partial y} \frac{\partial f}{\partial z} \\
& \alpha_{2}=\frac{\partial g}{\partial x} \frac{\partial f}{\partial z}-\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} \\
& \alpha_{3}=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial g}{\partial x} \frac{\partial f}{\partial y}
\end{aligned}
$$

Principal normal and curvature

$$
\begin{aligned}
& \frac{d}{d s}=\frac{1}{|\boldsymbol{\alpha}|}\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right) \\
& |\boldsymbol{\alpha}| \mathbf{t}=\boldsymbol{\alpha} \\
& \frac{d|\boldsymbol{\alpha}| \mathbf{t}}{d s}=\frac{1}{|\boldsymbol{\alpha}|}\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right) \\
& \ddot{\mathbf{r}}=\frac{d}{d t}[\mathbf{t} v]=\frac{d \mathbf{t}}{d s} v^{2}+\mathbf{t} \frac{d v}{d t}=\kappa \mathbf{n} v^{2}+\mathbf{t} \frac{d v}{d t}
\end{aligned}
$$

Principal normal and curvature

$$
|\boldsymbol{\alpha}|^{2} \kappa \mathbf{n}+|\boldsymbol{\alpha} \| \boldsymbol{\alpha}|^{\prime} \mathbf{t}=\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)
$$

Cross product with

$$
|\boldsymbol{\alpha}|^{3} \kappa \mathbf{b}=\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)
$$

Thus

$$
\left.\kappa=\frac{\left|\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)\right|}{|\boldsymbol{\alpha}|^{3}} \right\rvert\,
$$

Binormal vector and torsion

- Define a unit binormal vector \mathbf{b}

$$
\mathbf{b}=\mathbf{t} \times \mathbf{n}
$$

- (t,n.b) form a right-handed screw

$$
\mathbf{b}=\mathbf{t} \times \mathbf{n} \quad \mathbf{t}=\mathbf{n} \times \mathbf{b} \quad \mathbf{n}=\mathbf{b} \times \mathbf{t}
$$

- Normal plane: (n,b)

Binomal for arbitrary speed parameter t

- Rectifying plane: (b,t)
- Osculating plane: (t,n)

$$
\mathbf{b}=\frac{\dot{\mathbf{r}} \times \ddot{\mathbf{r}}}{|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}|}
$$

Binormal vector and torsion

Binormal vector and torsion

- Torsion: measures how much the curve deviates from the osculatina nlane

$$
\begin{gathered}
\mathbf{b}^{\prime}=\frac{d}{d s}(\mathbf{t} \times \mathbf{n})=\frac{d \mathbf{t}}{d s} \times \mathbf{n}+\mathbf{t} \times \frac{d \mathbf{n}}{d s}=\mathbf{t} \times \mathbf{n}^{\prime} \\
\mathbf{t}^{\prime}=\kappa \mathbf{n}
\end{gathered}
$$

$$
\mathbf{n} \cdot \mathbf{n}=1 \Rightarrow \mathbf{n} \cdot \mathbf{n}^{\prime}=0 \Rightarrow
$$

$$
\mathbf{n}^{\prime} \text { is parallel to the }
$$

$$
\text { rectifying plane }(\mathbf{b}, \mathbf{t})
$$

$$
\mathbf{n}^{\prime}=\mu \mathbf{t}+\tau \mathbf{b}^{\circ}
$$

$$
\mathbf{b}^{\prime}=\mathbf{t} \times(\mu \mathbf{t}+\tau \mathbf{b})=\tau \mathbf{t} \times \mathbf{b}=-\tau \mathbf{b} \times \mathbf{t}=-\tau \mathbf{n}
$$

Binormal vector and torsion

- Torsion for arc length parameter

$$
\tau=-\mathbf{n} \cdot \mathbf{b}^{\prime}=-\frac{\mathbf{r}^{\prime \prime}}{\kappa} \cdot\left(\mathbf{r}^{\prime} \times \frac{\mathbf{r}^{\prime \prime}}{\kappa}\right)^{\prime}=-\frac{\mathbf{r}^{\prime \prime}}{\kappa} \cdot\left(\mathbf{r}^{\prime} \times \frac{\mathbf{r}^{\prime \prime \prime}}{\kappa}\right)=\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}}
$$

- Torsion for arbitrary speed parameter

$$
\tau=\frac{(\ddot{\mathbf{r}} \ddot{\mathbf{r}})}{(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}) \cdot(\dot{\mathbf{r}} \times \ddot{\mathbf{r}})}
$$

Binormal vector and torsion

- Geometric interpretation of torsion
- $\tau>0$: the rotation of the osculating plane is in the direction of a right-handed screw moving in the direction of \mathbf{t} as s increases
- $\tau<0$: the rotation of the osculating plane is in the direction of a left-handed screw moving in the direction of \mathbf{t} as s increases
- $\tau \equiv 0$: planar curve

Binormal vector and torsion

- Binormal vector for space implicit curve

$$
\mathbf{b}=\frac{\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)}{\left|\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)\right|}
$$

Binormal vector and torsion

- Torsion of space implicit curve

$$
\rightarrow \frac{d}{d s}=\frac{1}{|\boldsymbol{\alpha}|}\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right)
$$

$$
--|\boldsymbol{\alpha}|^{3} \kappa \mathbf{b}=\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)
$$

$$
\begin{aligned}
& \frac{d}{d s}\left(|\boldsymbol{\alpha}|^{3} \kappa \mathbf{b}\right)= \\
& \frac{1}{|\boldsymbol{\alpha}|}\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right)\left(\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)\right)
\end{aligned}
$$

Binormal vector and torsion

$$
\begin{gathered}
|\boldsymbol{\alpha}|\left(|\boldsymbol{\alpha}|^{3} \kappa\right)^{\prime} \mathbf{b}-|\boldsymbol{\alpha}|^{4} \kappa \tau \mathbf{n}= \\
\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right)\left(\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)\right) \\
\text { ! dot product! } \\
|\boldsymbol{\alpha}|^{2} \kappa \mathbf{n}+|\boldsymbol{\alpha} \| \boldsymbol{\alpha}|^{\prime} \mathbf{t}=\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right) \\
-|\boldsymbol{\alpha}|^{6} \kappa^{2} \tau=\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right) \\
\cdot\left(\alpha_{1} \frac{\partial}{\partial x}+\alpha_{2} \frac{\partial}{\partial y}+\alpha_{3} \frac{\partial}{\partial z}\right)\left(\boldsymbol{\alpha} \times\left(\alpha_{1} \frac{\partial \boldsymbol{\alpha}}{\partial x}+\alpha_{2} \frac{\partial \boldsymbol{\alpha}}{\partial y}+\alpha_{3} \frac{\partial \boldsymbol{\alpha}}{\partial z}\right)\right)
\end{gathered}
$$

Binormal vector and torsion

A circular helix $\quad \mathbf{r}(t)=(a \cos t, a \sin t, b t)^{T}$

Circular helix with $a=2, b=3$ for $0 \leqslant t \leqslant 6 \pi$

Binormal vector and torsion

The parametric speed $\quad|\dot{\mathbf{r}}(t)|=\sqrt{a^{2}+b^{2}} \equiv c$
Arc length

$$
s(t)=\int_{0}^{t}|\dot{\mathbf{r}}| d t=\int_{0}^{t} \sqrt{a^{2}+b^{2}} d t=c t
$$

Arc length parameterization

$$
\mathbf{r}=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right)^{T}
$$

Binormal vector and torsion

Derivatives to arc lenath

$$
\begin{aligned}
\mathbf{r}^{\prime}(s) & =\left(-\frac{a}{c} \sin \frac{s}{c}, \frac{a}{c} \cos \frac{s}{c}, \frac{b}{c}\right)^{T} \\
\mathbf{r}^{\prime \prime}(s) & =\left(-\frac{a}{c^{2}} \cos \frac{s}{c},-\frac{a}{c^{2}} \sin \frac{s}{c}, 0\right)^{T} \\
\mathbf{r}^{\prime \prime \prime}(s) & =\left(\frac{a}{c^{3}} \sin \frac{s}{c},-\frac{a}{c^{3}} \cos \frac{s}{c}, 0\right)^{T}
\end{aligned}
$$

Binormal vector and torsion

Curvature and torsion

$$
\begin{aligned}
\kappa^{2} & =\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}=\frac{a^{2}}{c^{4}}\left(\cos ^{2} \frac{s}{c}+\sin ^{2} \frac{s}{c}\right)=\frac{a^{2}}{c^{4}}=\text { constant }, \\
\tau & =\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime \prime}}=\frac{\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime \prime} \mathbf{r}^{\prime \prime \prime}\right)}{\kappa^{2}}=\frac{c^{4}}{a^{2}} \left\lvert\, \begin{array}{ll}
-\frac{a}{c} \sin \frac{s}{c} & \frac{a}{c} \cos \frac{s}{c} \\
-\frac{b}{c} \\
-\frac{a}{c^{2}} \cos \frac{s}{c}-\frac{a}{c^{2}} \sin \frac{s}{c} & 0 \\
\frac{a}{c^{3}} \sin \frac{s}{c} & -\frac{a}{c^{3}} \cos \frac{s}{c}
\end{array} 0\right. \\
& =\frac{c^{4}}{a^{2}} \frac{b}{c} \frac{a^{2}}{c^{5}}\left(\cos ^{2} \frac{s}{c}+\sin ^{2} \frac{s}{c}\right)=\frac{b}{c^{2}}=\text { constant }
\end{aligned}
$$

Frenet-Serret formulae

We have known

$$
\begin{aligned}
\mathbf{t}^{\prime} & =\kappa \mathbf{n} \\
\mathbf{b}^{\prime} & =-\tau \mathbf{n} \\
\mathbf{n}^{\prime} & =(\mathbf{b} \times \mathbf{t})^{\prime}=\mathbf{b}^{\prime} \times \mathbf{t}+\mathbf{b} \times \mathbf{t}^{\prime} \\
& =-\tau \mathbf{n} \times \mathbf{t}+\mathbf{b} \times(\kappa \mathbf{n})=-\kappa \mathbf{t}+\tau \mathbf{b}
\end{aligned}
$$

Frenet-Serret formulae

For the arc length parameter

$$
\left(\begin{array}{l}
\mathbf{t}^{\prime} \\
\mathbf{n}^{\prime} \\
\mathbf{b}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

Frenet-Serret formulae

Frenet-Serret formulae

Intrinsic equations of the curve

$$
\kappa=\kappa(s), \tau=\tau(s)
$$

They totally decide the shape of curve except for a rigid transformation!

Frenet-Serret formulae

For the arbitrary speed parameter

$$
\left(\begin{array}{c}
\dot{\mathbf{t}} \\
\dot{\mathbf{n}} \\
\dot{\mathbf{b}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & v \kappa & 0 \\
-v \kappa & 0 & v \tau \\
0 & -v \tau & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

Frenet-Serret formulae: example

A circular helix $\quad \mathbf{r}(t)=(a \cos t, a \sin t, b t)^{T}$

Frenet-Serret formulae: example

A circular helix $\quad \mathbf{r}(t)=(a \cos t, a \sin t, b t)^{T}$ Arc length parametrization

$$
\mathbf{r}=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right)^{T}
$$

Intrinsic equations

$$
\begin{aligned}
& \kappa(s)=\frac{a}{c^{2}}, \tau(s)=\frac{b}{c^{2}} \\
& c=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Frenet-Serret formulae: example

Frenet-Serret equations

$$
\frac{d \mathbf{t}}{d s}=\frac{a}{c^{2}} \mathbf{n}, \quad \frac{d \mathbf{n}}{d s}=-\frac{a}{c^{2}} \mathbf{t}+\frac{b}{c^{2}} \mathbf{b}, \quad \frac{d \mathbf{b}}{d s}=-\frac{b}{c^{2}} \mathbf{n}
$$

Differentiate the first equation twice and the second equation once

$$
\frac{d^{2} \mathbf{t}}{d s^{2}}=\frac{a}{c^{2}} \frac{d \mathbf{n}}{d s}, \quad \frac{d^{3} \mathbf{t}}{d s^{3}}=\frac{a}{c^{2}} \frac{d^{2} \mathbf{n}}{d s^{2}}, \quad \frac{d^{2} \mathbf{n}}{d s^{2}}=-\frac{a}{c^{2}} \frac{d \mathbf{t}}{d s}-\frac{b^{2}}{c^{4}} \mathbf{n}
$$

Frenet-Serret formulae: example

Eliminating $\quad \mathbf{n}, \frac{d \mathbf{n}}{d s}, \frac{d^{2} \mathbf{n}}{d s^{2}}$

$$
\frac{d^{4} \mathbf{r}}{d s^{4}}+\frac{1}{c^{2}} \frac{d^{2} \mathbf{r}}{d s^{2}}=0
$$

The general solution is

$$
\mathbf{r}(s)=\mathbf{C}_{1}+\mathbf{C}_{2} s+\mathbf{C}_{3} \cos \frac{s}{c}+\mathbf{C}_{4} \sin \frac{s}{c}
$$

Frenet-Serret formulae: example

Given initial conditions

$$
\begin{aligned}
\mathbf{r}(0) & =(a, 0,0)^{T} & \mathbf{C}_{1} & =(0,0,0)^{T} \\
\mathbf{r}^{\prime}(0) & =\left(0, \frac{a}{c}, \frac{b}{c}\right)^{T} & \mathbf{C}_{2} & =\left(0,0, \frac{b}{c}\right)^{T} \\
\mathbf{r}^{\prime \prime}(0) & =\left(-\frac{a}{c^{2}}, 0,0\right)^{T} & \mathbf{C}_{3} & =(a, 0,0)^{T} \\
\mathbf{r}^{\prime \prime \prime}(0) & =\left(0,-\frac{a}{c^{3}}, 0\right)^{T} & \mathbf{C}_{4} & =(0, a, 0)^{T}
\end{aligned}
$$

Frenet-Serret formulae: example

Finally, A circular helix of arc length parametrization is

$$
\mathbf{r}=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right)^{T}
$$

Download courses and references

http://www.cad.zju.edu.cn/home/zhx/GM/GM01.zip

