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Representation of
Planar Curves

 Parametric Form

where t<t<ty

x(?) and y(¢) are assumed to be continuous
with a sufficient number of continuous
derivatives
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Representation of
Planar Curves

* Vector-Valued Parametric Form
r =r(t)
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Representation of
Planar Curves

* Implicit Form
flz,y) =0
¢ Linear (line): Alx,y) = axtby+c =0

+ Quadric (Conic sections):
azr? 4 2bzy + cy? +2dz +2ey+h =0
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Representation of
Planar Curves

* Explicit Form
y=F(x) or x=G(y)

* A special case of parametric and implicit
forms
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Representation of
Planar Curves

* Special parametric form If de £ )or & #£0
IS satisfied at least locally.
+ Special implicit form if L £0or gL £0

IS satisfied at least locally.
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Representation of
Planar Curves

« A planar curve can also be expressed as
an intersection curve between a plane and
a surface
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Example of Planar Curves

* Folium of Descartes o 22 \7
| | | | r():(1+t331+t3)

//W | —co <t<oo (t#-—1)

\
A\
A
N\

Parametric form

flz,y) =2 +y° =32y =0

Implicit form

Cubic curve with a single loop, a node,
and two ends asymptotic to the same line

&
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Representation of
Space Curves

* The parametric representation of space
curves

r=ux(t), y=y(t), z==z(t)
where
1 <t <to

11
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Representation of
Space Curves

« The implicit representation of space
curves

¢+ Intersection curve between two implicit
surfaces

flz,y,2) =0 N g(z,y,2z) =0
¢+ Intersection curve between parametric and
Implicit surfaces

r=r(u,v) N f(z,y,2) =0
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Representation of
Space Curves

« The implicit representation of space
curves

¢+ Intersection curve between two parametric
surfaces

r =p(o,t) N r=q(u,v)
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Representation of
Space Curves

* The explicit representation of space
curves

It Is hold at least locally when

> ' - dx
Parametric form: 1z L ()

* Implicit form:  8£89 _ 9199 - g
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Representation of
Space Curves

* The explicit representation of space
curves

y=Y(x), z=2()

The explicit equation for the space curve
can be expressed as an intersection curve
of two cylinders projecting the curve onto
xy and xz planes.

=

15
11/23/06 State Key Lab of CAD&CG



Representation of Surfaces

» Parametric Form
r=xz(u,v), y=yuv), z==z2(u,v)

where
up < u < ug, v S U< U9

Note: the functions x(u,v), y(u,v) and z(u,v)
are continuous and possess a sufficient
number of continuous partial derivatives
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Representation of Surfaces

 Parametric form as vector-valued function

r =r(u,v)
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Representation of Surfaces

* Implicit form: an implicit surface is defined as
the locus of points whose coordinates (x,y,z)
satisfy an equation of the form

* flxy.2) is linear: / (%4, 2) =0

* flx,y,z) IS quadratic in the variables x,y,z:
guadratic surface

ax® +by? +cz +dry+eyz+hrz+kx+ly+mz+n=0
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Representation of Surfaces

* Quadratic surfaces:

¢ The natural quadrics, sphere, circular cone and
circular cylinder: widely used in mechanical design
and CAD/CAM systems

¢ Result from standard manufacturing operations:
rolling, turning(+), filleting(-),drilling and milling

+ 80-85% of mechanical parts were adequately
represented by planes and cylinders, while 90-95%
were modeled with the addition of cones. (Univ. of
Rochester , in the mid 1970's)
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Representation of Surfaces

paraboloid of revolution parabolic cylinder
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Representation of Surfaces

« Explicit Form
z = F(z,y)

* From implicit form: locally 9L # 0

* From parametric form: locally =~ 229 _ 929y 4

* z=F(xy) : x=u, y=v, z=f(u,v)

explicit form Is special case of parametric
form.

21
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Representation of Surfaces

« Example: hyperbolic paraboloid surface patch

parametric form:

r=u+v, Yy=u-—u, z=u*—v%* 0<u,v<l
explicit form: u=(x+y)/2, v=(x-y)/2
z=ay, 0<zrz+y<2,0<z—y<2

=
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Summary

Representations of curves and surfaces

Geometry  Parametric Implicit Explicit
Plane z=ux(t),y=y(t)  flz,y) =0 or y = F(z)
curves t1 <t <ty r =r(u,v) N plane
Space r=zx(t),y=y), flr,y,2)=0ng(r,y,2)=0 y=Y(x)N
curves z=2z(t),t1 <t<tz orr=r(u,v)N flz,y,2) =0 2z=Z(x)
orr =p(o,t) Nr=q(u,v)
Surfaces x = x(u,v), flr,y,2) =0 z = F(x,y)
Yy = y(ua U)a
z = z(u,v),

ur < u < ug,
v1 < v < v

23
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Disadvantages

Explicit Implicit Parametric

e Infinite slopes are im- e Difficult to fit and e High flexibility compli-
possible if f(x) is a poly- manipulate free form cates intersections and
nomial. shapes. point classification.

e Axis dependent (diffi-
cult to transform).

e Closed and multival-
ued curves are difficult to
represent.

e Axis dependent.

e Complex to trace.

Advantages

Explicit

Implicit

Parametric

e Fasy to trace.

e (Closed and multival-
ued curves and infinite

slopes can be repre-
sented.
e Point classification
(solid  modeling, in-
terference  check) s
easy.

e Intersections/offsets
can be represented.

e Closed and multival-
ued curves and infinite
slopes can be repre-
sented.

e Axis independent (easy
to transform).

e [lasy to generate com-
posite curves.

e [Lasy to trace.

e Kasy in fitting and
manipulating free-form
shapes.




Summary

* The parametric form is the most versatile
method among the three and the explicit is
the least

* The explicit form can always be easily
converted to parametric form

« Conversion between parametric form and
implicit form
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Differential Geometry of Curves

. .
 Arc length and tangent vector
 Principal normal and curvature

e Binormal vector and torsion
e Frenet-Serret formulae

26
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Arc length and tangent vector

11/23/06

Parametric curve r=r(z)
Segment between PO

P(r()) O(r(+A7))

Its arc length As

As ~ |Ar| = |r(t + At) — r(t)|

dr d?r
= | — At + — (At)?
dt * dtz( )

dr
dt

At

L

dr

d
=t

dt = |f|dt = Vi - tdt

27
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Arc length and tangent vector

» Arc length between r(z,) and r(¢)

s(t):/t:ds:/t: \/ﬂdt:/t: V&0 1 5200 + 2Dt

« Tangent vector dr/dt . ferivative about ¢

11/23/06

+|r| is called parametric speed

State Key Lab of CAD&CG
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Arc length and tangent vector

« Useful formulae of the derivatives (s/t)

d
s=% i =VEr podt_ L1
dt ds |r| r-r
o8 _ ¥F g A EF
T dt VEep ds — (f-1)?°

o ds (Be)(Br 4E-E) - (B-F)? AT
8 = — = 3 S . sn T
dt (i-1)3 ds (- )2

29
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Arc length and tangent vector

« Derivative about arc length: r’

. d
t:izizgzr,
| 2 ds

+ |t Is a unit vector

30
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Arc length and tangent vector

11/23/06

Definition: A regular (ordinary) point P on a
parametric curve r=r()=(x(?)y(¢),z(r))" is
defined as a point where |r(t)| # 0. A point
which iIs not a regular point is called a
singular point.

31
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Arc length and tangent vector

« Parameter ¢t and Arc length parameter s

¢ . arbitrary speed

¢ §: unit speed

Parameter Space

| | | ] |
F T T T T

|
1

to t1 t2 ts ts4

ts

-

AY
ts

t1

to

-

When parametric speed does not vary significantly, points with uniformly spaced
parameter values are nearly uniformly spaced along a parametric curve

11/23/06
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Arc length and tangent vector

« Parameter ¢t and Arc length parameter s
¢ Every regular curve has an arc length parametrization

+ |n practice it is very difficult to find it analytically, due
to the fact that it is hard to integrate analytically

+ Pythagorean hodograph (PH) curves form a class of
special planar polynomial curves whose parametric

speed is a polynomial

11/23/06 State Key Lab of CAD&CG
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Arc length and tangent vector

« Tangent vector of implicit planar curve
* f(x,»)=0 total differentiation

df = f, dxtf,dy =0

i dy _ fa
by assuming /,70  —~ = T
_ T
+ Unit tangent vector : t = i(fw fz)

IR+

34
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Arc length and tangent vector

« Tangent vector of implicit space curve

¢ Curve: f(xy,2)=0Ng (x,,2)=0

T
» Gradient vector operator: V = (c’?m’ 55 c’?z)

VfxVg
IV f x Vg

¢ Unit tangent vector: |t =+

35
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Arc length and tangent vector

« Example r(t) = (¢4, ¢%)"

+ Parametric speed  |i(t)| = \/t2(4 + 9t2)
+ r(0) is a singular point

* Implicit form:  f(z,y) =2°—y* =0

+ (0,0) is a singular point since

11/23/06 State Key Lab of CAD&CG

36



Arc length and tangent vector

A singular point occurs on a semi-cubical parabola in the form of a cusp

=

37
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Principal normal and curvature

* r(s): an arc length parametrized curve
Ir'(s) unit tangent vector
r' r=1 — r.r =0

r'"(s) Is orthogonal to r'(s)

/ /
PN r'(s+ As) —r'(s)
r'(s) = AI}QIEO As

11/23/06 State Key Lab of CAD&CG
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Principal normal and curvature

» r’ (s+As)

r’(s)
r’' (s+As)-r’ (s)
A8 s

r' (s+As)

Center of curvature

Derivation of the normal vector of a curve

D o r'(s+ As) —r'(s)
ri(s) = Aliril() As

r'(s) _ t'(s)

~ )] (s)]

n

N: unit principal normal vector

The plane determined by t(s)
and n(s) is called osculating
plane

39
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Principal normal and curvature

A Z
(t,n) : osculating plane b
(n,b) : normal plane n t
(b,t): rectifying plane
~ Y
r=r(t)

X
40
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Principal normal and curvature

o Calculation of [t (s)]

r'(s+ As) —1'(s)| = A0-1= A0

Ab Ab 1
7 e _
Fs)l = fim A = A oA T o

K

0 : radius of curvature
K. curvature

41
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Principal normal and curvature

 Curvature vector
k=r1r"=t = kn

* measures the rate of change of the tangent
along the curve

¢+ It is the same as r”(s) provided defining «is
nonnegative

42
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Principal normal and curvature

« Curvature for arbitrary speed curve (non-
arc-length parametrized)

f—@@—tv
dsdt

I = E[tv] = @‘Uz—i—t@ —ﬁ:n’UZth@
dtt 7 ds dt dt

X T =krv't Xn

T X T
K =
r]®

43
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Principal normal and curvature

« Curvature for the planar curve

+ Give the curvature x a sign by defining the
normal vector such that (t,n,e ) form a right-
handed screw

e.=(0,0,1)"
* The point where the curvature changes sign is
called an inflection point

44
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Principal normal and curvature

inflection
point &

t

Normal and tangent vectors along a 2D curve

45
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Principal normal and curvature

* The unit normal vector of the plane curve

(_ya 'CU)T
Va2 + g2

* The curvature of the plane curve

n—e, xt=

o (Exi) e dj— i
v3 (82 + 32)3

11/23/06 State Key Lab of CAD&CG
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Principal normal and curvature

11/23/06

The unit principal normal vector for planar
Implicit curves (2D)

T
Unit tangent vector t = + (fyv —fz)
I+
r \%
Unit principal normal n=e, xt= Ua: fy) — _f
vector \/fa% + fy2 IV f]

47
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Principal normal and curvature

* The curvature for planar implicit curves

df 9fdr | Of dy

 — ———

ds ~ Or ds T Oy ds
(@ QJT: b= =fo)

ds ds /fa;2‘|'fy2

d 1 0 0
— &~ e )

48
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Principal normal and curvature

 The curvature for planar implicit curves
d_ 1 (.0 0
ds |Vf| \"Yox “Toy

(dx dy)T: t::l:(fya_fm)T
ds ' ds \/f£+f§

_fwa:f; o 2fwyfa:fy + f:?fyy
(F2+£3)

) K =

49
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Principal normal and curvature

e The curvature for space implicit curves

d_1( 0 0 2
ds o \" 'Oz * Dy 0z

where o = (O{l,afz, 053) — vf X VQ

o = 999 0g9f
1_8y8z oy 0z
_Ogof 0Of0g
T 9r 0z 0z 0z

0. = 2109 9g0f
3_5m8y Ox Oy
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Principal normal and curvature

11/23/06
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Principal normal and curvature

la?kn + |al|la)'t = | o a—aJras 8—a+cx Oa
~\ " ow 28y >0z

Cross product with

la|’kb=ax (a 8—a—|—a a—a—l—a Oa
B Yoz 28@/ 0z

Thus

oxx oxx o
la X (061% T O{Qa—y —I—Odgﬁ)\
K =

af?

52
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Binormal vector and torsion

 Define a unit binorma

b=txn

vector b

 (t,n.b) form a right-handed screw
b=txXxn t=nxb n=bxt

+ Normal plane: (n,b)
+ Rectifying plane: (b,t)

+ Osculating plane: (t,n)

Binomal for arbitrary
speed parameter ¢

I X1

b =

e

58
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Binormal vector and torsion

A Z
(t,n): osculating plane b
(n,b) : normal plane n t
(b,t): rectifying plane
Y
r=r(t)

X

54
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Binormal vector and torsion

 Torsion: measures how much the curve
deviates from the osculatina nlane

t
b’ = j(txn) g—xn—ktxj—n—txn
s S s
T
t' = kn

— 1w nn =0 = n’ is parallel to the
e B rectifying plane (b,t)

n' = ut+7b
b'=tx (ut+7b) =7t xb=—-7bxt=—7n

55
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Binormal vector and torsion

« Torsion for arc length parameter

/
, r! , r" ! , ! (I”I’"I'm)
r=-nb=—— (rx—) =—— . [rx—) =
v . !

K K K K

« Torsion for arbitrary speed parameter
(i 1)
(X T)-(Frx7T)

T =

56
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Binormal vector and torsion

« Geometric interpretation of torsion

¢ 1> 0 : the rotation of the osculating plane is in
the direction of a right-handed screw moving
In the direction of t as s Increases

+ 1 <0 : the rotation of the osculating plane is in
the direction of a left-handed screw moving in
the direction of t as s increases

¢+t = 0: planar curve

11/23/06 State Key Lab of CAD&CG
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Binormal vector and torsion

* Binormal vector for space implicit curve

Qx iYe Yo
O (O‘l oz T %275, 0‘35)

dQx DY oY
o X (a/l% + a2 G- ‘|—OZ3W) |

b —
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Binormal vector and torsion

« Torsion of space implicit curve
d_1( 9 9 9
| ds  |a| \ "oz " Coy ' 0z
I
:_ oo oo 80«)

3
——lafrb=ax (@22 40, 2% + 0,22
|’k (alé):c -|-Ofgay +a382

1 0 0 0 9Je" [9Je" o
— |l toa—tazs— | |laX|ag— tay— +a3—
Ox Jy 0z

59
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Binormal vector and torsion

la|(|a|?k)b — |a|*kmn =

(

9, 0 6)( ( Do
a1 — + e — +as ax|oo—-+o

ox dy 0z

§ ! dot product !
oo 80:

2
t =
la|*kn + |af|a (ala + o 25y + a3

50{
33;

oo

oz

c’:)_at
302

)

11/23/06

{

o oo o )

6, .2
—|a|"K'T= |1 — +oaog—— + a3
'R (10;1; 25 B

0 0 @)( ( 19/6"
17— T 02— + Q3 a X 061%4—(1

oz oy 0z

oo

26—y+

oo

O3 ——
0z

)
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Binormal vector and torsion

A circular helix  r(t) = (acost,asint,bt)!

so
-wi
z.a;
?{IE
-_ui
ol
-2 | -2
" / 1
—_— ]
1 1
T

Circular helix with a=2,b=3for 0<¢<6 7

61
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Binormal vector and torsion

The parametric speed  [t(¢)] = Va?+1? = ¢

t t
Arc length s(t):/ |x'-|dt:/ Va2 + b2dt = ct
0 0

Arc length parameterization

S bS)T

r = (acos2,asin 2, %
C C C

62
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Binormal vector and torsion

Derivatives to arc lenath

a s a s b\ "
r'(s) = (——Sin—,—cos—,—)

c cc c' c
. a s a . s \7T
r'(s) = (—— cos—, ——sin—,0
c c’ c c
» a . S a s \T
r(s)=(-—5sin—,——cos—,0
c c c

63
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Binormal vector and torsion

Curvature and torsion

2

2
a S 5 8 a
K2 =1".1" = — ({2082 Z + sin? —) = — = constant ,
c C C c
a ... 8§ a s b
- sin CcOS -
(I,J"I,HIJH) (r.'I,HI,HF) (34 . . u . .
T = = = —|—5%cos= —%sin-= 0
v . ! K2 a2 c2 c c2 c
1 S (1 o]
5 sin = cos > 0
c* ba* 98 . 98
= —5 ~— | COS — 4+ s1n“ — :—2:constant h
a“ c c C C C
64
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Frenet-Serret formulae

We have known
t' = kn
b’ = —7n
n=(bxt)=b' xt+bxt
= —nxt+bx(kn)=—kt+7b

65
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Frenet-Serret formulae

For the arc length parameter

Frenet-Serret formulae

11/23/06 State Key Lab of CAD&CG
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Frenet-Serret formulae

Intrinsic equations of the curve

They totally decide the shape of curve
except for a rigid transformation!

11/23/06 State Key Lab of CAD&CG
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Frenet-Serret formulae

For the arbitrary speed parameter

t 0 VK 0 t
1f1 = | —vK 0 VT n
b 0 —vr 0 b

11/23/06 State Key Lab of CAD&CG
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Frenet-Serret formulae: example

A circular helix  r(t) = (acost,asint,bt)

50
10

30

20

10§

oL

-2 -2

-3 -1
0 &__ 0
1 1
22
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Frenet-Serret formulae: example

A circular helix  r(¢t) = (acost,asint,bt)”
Arc length parametrization
S bs)T

r = (acos?,asinz, 2>
C

Intrinsic equations
K(s) =%, 7(s) = &

c=+vVa?+ b2

70
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Frenet-Serret formulae: example

Frenet-Serret equations
dt _a dn a b db b

— = —n, — =t | b — = ——n
ds  c? ds c2 U c2 ds c2

Differentiate the first equation twice and the
second equation once

d?t _a dn d3t a d*n d*n a dt b?

— —— = ——— — —n

ds?2 2 ds’ ds3 2 ds?’ ds? c2ds A

71
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Frenet-Serret formulae: example

dn d°n

Eliminating n, 7°, 73

d*r 1 d°r 0
ds* = c2ds2
The general solution Is
r(s) = Cy + Cas + Cj cos - + Cysin -
C C

72
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Frenet-Serret formulae: example

Given Initial conditions

I‘(O) = (a,O,O)T C, = (0,0,0)’1“
b\ " b\
I‘,(O) — (0, 9, —) C2 — (07 07 _)
C C —) C
T
I'H(O) S (—%, 0, 0) C3 — (CL, 03 O)T
1 a T
" (0) = (0,~5,0) Cy = (0,a,0)7

73
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Frenet-Serret formulae: example

Finally, A circular helix of arc length
parametrization Is

r = (acos2,asin 2, 22)T

c’) c

&
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Download courses and references

http://www.cad.zju.edu.cn/nome/zhx/GM/GMO01.zip

75
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