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Coordinate Systems

Cartesian coordinate system
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Coordinate Systems

Frame  
Origin  O
Three Linear-Independent 
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Vector Spaces

Definition 
A nonempty set ς of elements               is 
called a vector space if in ς there are 
two algebraic operations, namely 
addition and scalar multiplication 
Examples of vector space 

Linear Independence and Bases 
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Vector Spaces Addition

Addition associates with every pair of 
vectors     and     a unique vector     
which is called the sum of      and     
and is written   
For 2D vectors, the summation is 
componentwise, i.e., if                          
and                       , then 
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Vector Spaces Addition

parallelogram illustration 
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Addition Properties

Commutativity
Associativity
Zero Vector
Additive Inverse
Vector Subtraction
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Commutativity

for any two vectors     and     in ς , 
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Associativity

for any three vectors     ,     and     in ς, 
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Zero Vector

There is a unique vector  in ς called the 
zero vector and denoted    such that for 
every vector 
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Additive Inverse

For each element          , there is a 
unique element in ς , usually 
denoted      , so that 
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Vector Subtraction

joining the ends of the two original vectors
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Vector Spaces Scalar 
Multiplication 

Scalar Multiplication associates with 
every vector           and every scalar c, 
another unique vector (usually 
written      ) 
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Scalar Multiplication 
Properties

Distributivity
Distributivity of Scalars 
Associativity
Identity
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Distributivity

For every scalar c and vectors     and      
in ς
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Distributivity of Scalars

For every two scalars c1 and c2 and 
vector 
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Associativity

For every two scalars c1 and c2 and 
vector 
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Identity

For every vector
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Examples  of Vector Spaces

Vector Space of 3-Dimensional Vectors
Vector Spaces of Polynomials 
Vector Spaces of Matrices 



11/20/2006 State Key Lab of CAD&CG 21

Vector Spaces of Polynomials

The set of quadratic polynomials of the 
form  P(x)=ax2+bx+c
If P1(x)=a1x2+b1x+c1

P2(x)=a2x2+b2x+c2

Then
(P1+P2)(x)=(a1+a2)x2+(b1+b2)x+(c1+c2)

sP(x)=(sa)x2+(sb)x+(sc)



11/20/2006 State Key Lab of CAD&CG 22

Linear Independence and 
Bases 

Linear Combinations 
Linear Independence 
A Basis for a Vector Space 
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Linear Combinations

Let                   be any vectors in a vector 
space ς and let                  be any set of 
scalars. Then an expression of the form 

is called a linear combination of the vectors
This element is clearly a member of the 
vector space ς
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Linear Combinations

The set S that contains all possible 
linear combinations of                   is 
called the span of                   . We 
frequently say that S is spanned (or 
generated) by those n vectors 
The span of any set of vectors is again 
a vector space 
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Linear Independence

Given a set of vectors                   from 
a vector space ς. This set is called 
linearly independent in ς if the 
equation 

implies that ci=0 for all i=1,2,…n. 
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Linearly Dependent 
Linearly Dependent implies that the 
equation                                         has a 
nonzero solution, i.e. there exist c1,c2,…, 
cn which are not all zero
This implies that at least one of the 
vectors     can be written in terms of the 
other n-1 vectors in the set. Assuming 
that c1 is not zero, we can see that 
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A Basis for a Vector Space

Let                   be a set of vectors in a 
vector space ς and let Σ be the span 
of                  . If                   is linearly 
independent, then we say that these 
vectors form a basis for Σ and Σ has 
dimension n. 
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A Basis for a Vector Space

If Σ is the entire vector space ς , we 
say that                  forms a basis for ς , 
and ς has dimension n . 
Any vector           can be written 
uniquely as 
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Points and Vectors

The fundamental 3-dimensional space 
objects that form the basis for all operations 
in computer graphics are the point and the 
vector (sometimes called a free vector). 

Are points and vectors are ``essentially'' the 
same?

No!



11/20/2006 State Key Lab of CAD&CG 30

Points and Vectors

A Point has position in space. The only 
characteristic that distinguishes one point 
from another is its position. (bold letters 
such as P and Q in our course)
A Vector has both magnitude and direction, 
but no fixed position in space. (lower case 
letters with an arrow above such as     and 
in our course) 
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Affine Space

An affine space is made up of a set of 
points Π and a vector space ς
The relationship between points and 
vectors are described by the following 
axioms

Points: (x,y,z)
Vectors: <u,v,w>
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Relating Points and Vectors

In general, the points are thought to 
play the primary role in the space, 
while the vectors are utilized to move
about in the space from point to point. 
The General Axioms
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The General Axioms (1)

For each pair of points P and Q , there exists 
a unique vector     such that 

Geometric explanation: there is a direction and 
magnitude between any two points in the affine 
space
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The General Axioms (2)

For each point P and vector    , there is a 
unique point Q , such that 

Geometric explanation: if we move point P a distance       in the 
direction of     , we should find a point Q∈Π defined there
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The General Axioms (3)

Given three points P, Q and R, these 
points satisfy

(P-Q)+(Q-R)=(P-R)
Geometric Explanation: head-to-tail axiom
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Some corollaries
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Some corollaries



11/20/2006 State Key Lab of CAD&CG 38

Some corollaries
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Operations in Affine Space

Affine Combinations
Barycentric Coordinates
Convex Combinations
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Affine Combinations of Points

Let P1 and P2 be points in the affine space, the 
expression

P=P1+t(P2-P1)  or  P=(1-t)P1+tP2 

represents a point P on the line that passes 
through P1 and P2 . 
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Affine Combinations of Points

The affine combination of two points 
P1 and P2 is  

where  
The form P=(1-t)P1+tP2 is affine 
transformation by setting 
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Affine Combinations of Points

An affine combination of an arbitrary 
number of points

P1,P2,…,Pn are points
α1,α2,…αn are scalars such that 
α1+α2+…+αn=1

α1P1+α2P2+…+αnPn

Then P1+α2(P2-P1)+…+αn(Pn-P1) is 
defined to be the point     
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Example of Affine Combination
Consider three points P1, P2 and P3, a point P defined by 

P=α1P1+α2P2+α3P3

gives a point in the triangle. The definition of affine combination defines 
this point to be 

P=P1+α2(P2-P1)+α3(P3-P1) 

(1/4,1/4,1/2)

• If  0≤α1, α2, α3≤1, the point P will be 
within (or on the boundary) of the triangle 

• If any αi is less than zero or greater than 
one, then the point will lie outside the 
triangle

• If any αi is zero, then the point will lie on 
the boundary of the triangle. 
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p0=1-(p1+p2+…+pn)

Then we can see that P can be 
equivalently written as

P=p0P0+p1P1+p2P2+…+pnPn

where p0+p1+p2+…+pn=1

In this form the value 

(p0, p1, p2, …, pn) 

are called the barycentric
coordinates of P relative to the 
points(P0,P1,P2,…,Pn) 

Note: barycentric coordinates of 
point

Given a frame for 
an affine space Α , we can write 
any point P uniquely as 

If we define Pi by 

And define p0 to be 

Barycentric Coordinates
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Barycentric Coordinates
Vectors can also be expressed in barycentric form by 
letting

u0=-(u1+u2+…+un)

Then we have

where now we have that u0+u1+u2+…+un=0

Note: barycentric coordinates of vector  sum=0

barycentric coordinates of point  sum=1
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Consider two points P1 and P2 in the plane, if α1 and α2 are scalars such 
that α1+α2=1, then the point  P defined by 

P=α1P1+α2P2

is a point on the line that passes through P1 and P2.

1. If 0≤α1, α2≤1 , the point P on the line segment joining P1 and P2.

2. Some numerical examples

• P (1/2, 2/3)

• Q (3/4, 1/4)

• R (4/3, -1/3)    

Example of Barycentric Coordinates
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Example of Affine Combination
Consider three points P1, P2, P3 in the plane , if α1, α2, α3 are scalars such 
that α1+α2+α3=1 , then the point P defined by 

P=α1P1+α2P2+α3P3

is a point in the triangle P1P2P3. 

1. If 0≤α1, α2, α3≤1, the point P will be 
within (or on the boundary) of the 
triangle 

2. Some numerical examples

• P (1/4, 1/4, 1/2)

• Q (1/2,  3/4, -1/4)

• R (0, 3/4, -1/4)  
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Given a set of points P0,P1,…,Pn, we can 
form affine combinations of these points 
by selecting α0, α1,…, αn, with 
α0+α1+…+αn=1 and form the point 

P=α0P0+α1P1+…+αnPn

If each αi is such that 0 ≤αi≤1 , then the 
points P is called a convex combination of 
the points P0,P1,…,Pn.

Convex Combinations
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Consider two points P1 and P2 in the plane, if α1 and α2 are scalars such 
that α1+α2=1, then the point  P defined by 

P=α1P1+α2P2

is a point on the line that passes through P1 and P2.

1. If 0≤α1, α2≤1, the point P on the line segment joining P1 and P2, and it 
is the convex combination of P1 and P2

2. Some numerical examples

• P (1/2, 2/3) √

• Q (3/4, 1/4) √

• R (4/3, -1/3) ×

Example of Convex 
Combinations
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Convex Set 

Convex set : Given any set of points, if 
given any two points of the set, any 
convex combination of these two 
points is also in the set. 

Convex set Non-convex set
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Convex Hull

Convex hull of points P0,P1,…,Pn :  The set of 
all points P that can be written as convex 
combinations of P0,P1,…,Pn

The convex hull is the smallest convex set 
that contains the set of points P0,P1,…,Pn

P1

P2

P3

P4

P5

P6
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Frames

Definition of a Frame 
Matrix representation of Points and 
Vectors 
Converting Between Frames 
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Definition of a Frame

Let Α be an affine space of dimension n. Let 
O be a point in this space and let                     

be any basis for Α. We call the 
collection                                  a frame for 
Α .
Frames form coordinate systems in our 
affine space Α .
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Definition of a Frame

The coordinates of point P relative to the frame Φ
Point P can be written as 

is a vector. The                     forms a basis for 
Α, then 

The point P can be written as

(c1,c2,…,cn) are the coordinates of point P
relative to the frame Φ
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Example of Frames (1)

The standard Cartesian frame             , 
where                                                     
The coordinate (x,y) equals to  the point

The above statement can be extended to 
any dimension by setting origin (0,0,…,0), 
vectors 
<1,0,…,0>, <0,1,…,0>, … , <0,0,…,1>.
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Example of Frames (2)

Consider the frame: the origin O=(2,2), the 
two vectors              and               . The 
point P that has coordinates (5,3) can be 
written as 

5<1,0> + 3<0,2> + <2,2>
which has the Cartesian coordinates (7,8)
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Matrix representation of Points 
and Vectors

Points and vectors can be 
uniquely identified by the 
coordinates relative to a 
specific frame.

Given a frame  

in an affine space Α, we can 

write a point P uniquely as

This can also be written 

as
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Matrix representation of Points 
and Vectors

The vectors of affine 
space form a vector space, 
we can write a vector     
uniquely as

This can be written as

Points are represented as row vectors whose last component is  1

Vectors are represented as row vectors whose last component is 0
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Converting Between Frames 

When given two different frames, to take a 
point that has a certain set of coordinates in 
one frame and find its coordinates in the 
second frame

if the second frame is the Cartesian frame √

if the second frame is not the Cartesian frame ?
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An Example of Converting Between Frames
Frame1

Frame2

P(3,2) in the Frame1, compute its 
coordinates in the Frame2? 
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An Example of Converting 
Between Frames  

We wrote the vectors of the first frame in terms of 
the vectors of the second frame since the vectors of 
the second frame (any frame actually) form a basis 
for the space of vectors.
We wrote the origin O1 in terms of the origin and 

vectors of the second frame

The result is



11/20/2006 State Key Lab of CAD&CG 62

Converting Between Frames

Suppose a point P has coordinates (c1,c2,…,cn,1) relative to 
some frame , Compute the 
coordinates of P relative to another frame

a) Since                    is a basis, we can write each of the 

vectors                      uniquely in terms of the

(i=1,2,…n)
b) Since P-O is a vector, we cam also write O uniquely in terms 

of      and
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Converting Between Frames
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Converting Between Frames

The coordinates                of the point in the second 

frame is

1. The change of coordinates is accomplished via a matrix multiplication.

2. The rows of the matrix consist of the coordinates of the elements of the old 
frame Φ relative to the new frame Φ' .  

3. The frames in n dimensional space, the matrix is n×n.
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Compute the matrix by utilizing 
Cramer’s Rule (for 3D case)

Given two frame                       and                    , 
compute the conversion the following matrix

It can be accomplished by utilizing Cramer’s Rule
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Cramer’s Rule

Given any frame               and a vector   , it can be 
written as                           , for some u,v,w. The 
Cramer’s rule is to compute the u,v,w. The formulae 
are: 
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Download courses and 
references

http://www.cad.zju.edu.cn/home/zhx/GM/GM00.zip


	Preliminary Mathematics of Geometric Modeling (1)
	Contents
	Coordinate Systems
	Coordinate Systems
	Vector Spaces
	Vector Spaces Addition
	Vector Spaces Addition
	Addition Properties
	Commutativity
	Associativity
	Zero Vector
	Additive Inverse
	Vector Subtraction
	Vector Spaces Scalar Multiplication 
	Scalar Multiplication Properties
	Distributivity
	Distributivity of Scalars
	Associativity
	Identity
	Examples  of Vector Spaces
	Vector Spaces of Polynomials
	Linear Independence and Bases 
	Linear Combinations
	Linear Combinations
	Linear Independence
	Linearly Dependent 
	A Basis for a Vector Space
	A Basis for a Vector Space
	Points and Vectors
	Points and Vectors
	Affine Space
	Relating Points and Vectors
	The General Axioms (1)
	The General Axioms (2)
	The General Axioms (3)
	Some corollaries
	Some corollaries
	Some corollaries
	Operations in Affine Space
	Affine Combinations of Points 
	Affine Combinations of Points
	Affine Combinations of Points
	Example of Affine Combination
	Barycentric Coordinates
	Barycentric Coordinates
	Example of Barycentric Coordinates
	Example of Affine Combination
	Convex Combinations
	Example of Convex Combinations
	Convex Set 
	Convex Hull
	Frames
	Definition of a Frame
	Definition of a Frame
	Example of Frames (1)
	Example of Frames (2)
	Matrix representation of Points and Vectors
	Matrix representation of Points and Vectors
	Converting Between Frames 
	An Example of Converting Between Frames
	An Example of Converting Between Frames  
	Converting Between Frames
	Converting Between Frames
	Converting Between Frames
	Compute the matrix by utilizing Cramer’s Rule (for 3D case)
	Cramer’s Rule
	Download courses and references

