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Coordinate Systems

| e

- _+Cartesian coordinate system

7 J
3
3 / - #
cight-handed sy¥steim |eft-handed system
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Coordinate Systems

. _+Frame F =(i,#,,0) @

+0rigin O
+Three Linear-Independent

e e

Vectors (u,v,w)
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X Vector Spaces

4+ Definition

+ A nonempty set ¢ of elements o, w,... IS
called a vector space if in ¢ there are

two algebraic operations, namely
addition and scalar multiplication

+ Examples of vector space
+Linear Independence and Bases
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Vector Spaces Addition

____{f-___]_tA:ddition associates with every pair of

vectors 1 and v2 a unique vector v € V
which is called the sum of v; and vUs
and Is written v; + vs.

+ For 2D vectors, the summation IS
componentwise, I.e., If 41 =< z1,y1 >
and vy =< x9,y2 >, then

IS 02— thito, U] o
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. Vector Spaces Addition

—’
U1
parallelogram illustration
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Addition Properties

ik _'.‘ e g =
-y - o o r
u, 2 :

- +Commutativity

+ Associativity
+/Zero Vector

+ Additive Inverse
+\Vector Subtraction
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Commutativity

| e

- forany two vectors ¥7 and 4, in ¢ ,

U1 + U2 = U + U1

&
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) Associativity
forany three vectors ¢ , v and vsiIn g,
(01 + ¥2) + U3 = v+ (V2 |+ U3)

a &%
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Zero Vector

There IS a unique vector In ¢ called the

zero vector and denoted ¢ such that for
every vector v € YV

i+0 =040 =7

&
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Additive Inverse

| e

- Foreach element# € V , there is a

unique element in ¢ , usually
denoted —v , so that 74 (—%) = 0

&
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Vector Subtraction

&

joining the ends of the two original vectors
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Vector Spaces Scalar
Multiplication

Scalar Multiplication associates with

every vector # € v and every scalar c,
another unique vector (usually
written cv)

7] 1.259
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Scalar Multiplication

e Properties
- 4+Distributivity
+ Distributivity of Scalars
+ Associativity
+ldentity
=)
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Distributivity

| e

- For'every scalar ¢ and vectors 91 and U2

In ¢

C(’(_fl =F ’172) = cU1 + CUs

& r

(1 2’!71
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Distributivity of Scalars

-~ Forevery two scalars ¢, and ¢, and

vector v ¢V

(c1 +c2)U = U+ cov

&
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Assoclativity

-~ Forevery two scalars ¢, and ¢, and

vector v € V

c1(cav) = (c1¢2)v

&
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ldentity

~_For every vector € V
— —>
]_ vV = U

&
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~ Examples of Vector Spaces

= __{f-__'._t\'/felctor Space of 3-Dimensional Vectors
+Vector Spaces of Polynomials
+Vector Spaces of Matrices
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Ve._.g';_}tor Spaces of Polynomials

__ +The set of quadratic polynomials of the

form P(X)=ax?+bx+c
If P,(X)=a,x?+b x+c,
P,(X)=a,x?+b,x+c,
Then
(P1+P2)(x)=(a;+a,)x*+ (b +b,)x+(c,+¢,)
sP(x)=(sa)x>+(sb)x+(sc) —
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Llnear Independence and
e ?? Bases

- #+linear Combinations

+Linear Independence
+ A Basis for a Vector Space
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et Linear Combinations

| e

-~ +letw,d,,..., v, be any vectors in a vector

space ¢ and let ci, ¢, ..., cybe any set of
scalars. Then an expression of the form

C1U1 + coUo + - - - + ¢, Un,
IS called a linear combination of the vectors

+ This element is clearly a member of the
vector space ¢
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Linear Combinations

+The set S that contains all possible

linear combinations of w1, s, ..., U, IS
called the span of v1,v2,...,vn . We
frequently say that S Is spanned (or
generated) by those n vectors

+ The span of any set of vectors Is again
a vector space

&
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Linear Independence

~ +Given a set of vectors @y, %, ..., 7, from

a vector space ¢. This set iIs called
linearly independent in ¢ If the
equation cyv7 + coto + -+ - + U, = 0

Implies that ¢,;=0 for all 1=1,2,...n.
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% ; Linearly Dependent
_ + Lmearly Dependent |mpI|es that the

equatlon cC 11;1 -+ (2‘112 TR T ("ﬂﬂn — 0 haS d

nonzero solution, I.e. there exist c,,C,,...,
¢, which are not all zero

+ This implies that at least one of the
vectors v; can be written in terms of the
other n-1 vectors in the set. Assuming
that c, IS not zero, we can see that

e 2N Cn
& V1 = —Us+ -1+ —Up
C1 C1
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A Basis for a Vector Space

~ +let v1,%,...,U, be a set of vectors in a

vector space ¢ and let £ be the span
of vy,7s,...,0, . If ¥1,0s,...,7, IS linearly
Independent, then we say that these
vectors form a basis for £ and X has
dimension n.
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- ABasis for a Vector Space

s e If = is the entire vector space ¢ , we
say that #,,,...,4, forms a basis for ¢ ,
and ¢ has dimension n .

+Any vector ; ¢ ) can be written
uniquely as

—

U= "CyJ1 | Caia | -6, TR

&
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Points and Vectors

+ The fundamental 3-dimensional space

objects that form the basis for all operations
In computer graphics are the point and the
vector (sometimes called a free vector).

+ Are points and vectors are ~ essentially" the
same?

No!
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Points and Vectors

+ A’Point has position in space. The only

characteristic that distinguishes one point
from another is its position. (bold letters
such as P and Q In our course)

+ A Vector has both magnitude and direction,
but no fixed position in space. (lower case
letters with an arrow above such as ¥ and w
INn our course)
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Affine Space

: +An affine space Is made up of a set of

_points IT and a vector space g

+ The relationship between points and
vectors are described by the following
axioms

+ Points: (x,y,2)
+ Vectors: <u,v,w>
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f.-R:'eIating Points and Vectors

~ 41In general, the points are thought to

play the primary role in the space,
while the vectors are utilized to move
about In the space from point to point.

+The General Axioms
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The General Axioms (1)

| e

' ¥ F"@f each pair of points P and Q , there exists

= unique vector ¥ such that

7F=Q—P k

P‘/-‘
Q-P

Geometric explanation: there Is a direction and
magnitude between any two points in the affine

space
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~ The General Axioms (2)

| e

+ For each point P and vector v/, there is a

unique point Q , suchthat Q =P + v

Q=P+7

P’/“
()

Geometric explanation: if we move point P a distance ‘17‘ in the
direction of 77, we should find a point QeIl defined there
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The General Axioms (3)

__-ﬁ;"-__'._tG:fiVen three points P, Q and R, these

points satisfy
(P-Q)+(Q-R)=(P-R)

Geometric Explanation: Qead-to—tail axiom

P-Q

Q

Q - R R
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Some corollaries
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Some corollaries

 +Q-R+MN=(Q-R) -7

R+

+ P=Q+(P—Q)
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N Some corollaries

4 (Q+9) - (R+d) = (Q—R) + (75— D)

Q-I—ﬁ‘

(Q-I—’B’)—(R-l—%ﬂ) -
P+ \ )
%,
(Q R) + (7 — )
Q

)
R
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~ Operations in Affine Space
-+ Affine Combinations

+ Barycentric Coordinates

+Convex Combinations

&
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~ Affine Combinations of Points

LetP1 and P, be points in the affine space, the

~expression

P=P,+t(P,-P,) or P=(1-t)P,+tP,
represents a point P on the line that passes
through P, and P, .

_-®
Y,
t(P2 —P1) -\ "_ﬁ,.-"" 2
/Pl —|—t(P2 —P1)
P,
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Affine Combinations of Points

__ +The affine combination of two points

P, and P, is
P — oP1+ aPs
where a1 +az =1

+The form P=(1-t)P,+tP, Is affine
transformation by setting as =t
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~ Affine Combinations of Points

+An affine combination of an arbitrary

number of points
+P,,P,,...,P, are points
+0,,0,,...0,, are scalars such that
o toLt...to,=1
o Pi+a,Pot...+a P,
Then P,+o,(P,-P)+...+o (P,-P,) IS
defined to be the point
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~ Example of Affine Combination
S .CO_”'Sid_ef fh'ree points P,, P, and P,, a point P defined by
' it P=o,P,+0,P,+a,P,

e -'gi\'}eé a point in the triangle. The definition of affine combination defines
this point to be

P=P,+0,(P;-P;)+05(P5-Py) P,

e If O<ay, a,, a;=1, the point P will be
within (or on the boundary) of the triangle

« If any o, is less than zero or greater than
one, then the point will lie outside the as(Ps —P1)
triangle 2Pz — P1) —

* If any a, is zero, then the point will lie on P,

the boundary of the triangle. (1/4.1/4.1/2) Ps
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~ Barycentric Coordinates

2k Gl\'ien a fr-ame (D1, T2, ..., Ty, O) fOr Po=1-(p,+p,*...+p,)
an‘affine space A , we can write

W7 ; Then we can see that P can be
- J-any.point P uniquely as

equivalently written as

B= oL+ ozt Pl +0 P=poPy+P;P1+p,Pot...+p,P,

LU i) where p,+p,;+p,+...+p,=1

Po=0 In this form the value
P =0+ v (p 0., D 0 )
P2:0—|—172 0r M1 M2y =y Mn
are called the barycentric
coordinates of P relative to the
P,=047%3, points(Py,P,,P,,...,P,)

Note: barycentric coordinates of

And define p,to be ooint
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. Barycentric Coordinates
5 "..Ve-cf(_jrs_féén also be expressed in barycentric form by
= letting
e Uy=-(u,+u,+...+u,)
Then we have
4 = ugPo + u1 P1 +uwoPsos+ - - + u, P,

where now we have that u,+u,+u,+...+u.=0

Note: barycentric coordinates of vector sum=0

barycentric coordinates of point sum=1
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- Example of Barycentric Coordinates
'_ 5 -an"é:;d_e_-r' two points P, and P, in the plane, if eyitand ezare scalars such
~that oy +o,=1, then the point P defined by
B P=o,P;+a,P,
IS a point on the line that passes through P, and P,.
1. If0<ay, a,=<1, the point P on the line segment joining P, and P,
2. Some numerical examples
« P (1/2, 2/3)
« Q(3/4,1/4) Py "

. R (4/3, -1/3) <~
P P
qQ
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Example of Affine Combination

i Con’slder three points P,, P,, P,in the plane , if a,, o, a, are scalars such

that al+q2+a3 1, then the pomt P defined by

Is a point in the triangle P,P,P.. P,

1. If0<oy, a,, a,=1, the point P will be
within (or on the boundary) of the Q.
triangle R

2. Some numerical examples
e P (1/4, 1/4, 1/2)
e Q(1/2, 3/4,-1/4)

« R (0, 3/4, -1/4) P,

& L
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7 Convex Combinations
e leen a set of points P,,P,,...,P,, we can

- form affine combinations of these points

by selecting o, ay,..., a,, With

a,to,+...+o.=1 and form the point
P=o,Pyt+o,P+...+0, P,

If each o; Is such that 0 <o,<1 , then the

points P Is called a convex combination of
the points P,,P,,...,P,.
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Example of Convex
binations

5 -ConSLder two points P, and P, in the plane, if o, an(! , are scalars such
- that o;*+a1,=1, then the point P defined by

! | .k

P=a,P,+a,P,
IS a point on the line that passes through P, and P,.

1. If0<ay, o,<1, the point P on the line segment joining P, and P,, and it
IS the convex combination of P, and P,

2. Some numerical examples
e P (1/2,2/3)

e Q(3/4,1/4) -2y

e R (4/3, -1/3) x F /r
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Convex Set

_if__'._tC'o'nvex set . Given any set of points, If

given any two points of the set, any
convex combination of these two

points Is also In the set.

Convex set Non-convex set
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+ convex hull of points Po,Py1,-..,P

Convex Hull

- - The set of

all points P that can be written as convex
combinations of P,,P,...,P,

+ The convex hull 1s the smallest convex set
that contains the set of points P,,P,,...,P,

&
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Frames

4+ Definition of a Frame
+ Matrix representation of Points and

Vectors
+Converting Between Frames
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Definition of a Frame

-+ Let A be an affine space of dimension n. Let

" O'be a point in this space and let

v1, U2, ..., Up, b€ any basis for A. We call the
collection F — (@), %, ..., U, O) & Trame for
A .

+ Frames form coordinate systems in our
affine space A .
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. Definition of a Frame

| e

+ _':I_"'“h-e" coordinates of point P relative to the frame @

+ Point P can be writtenas O + v
+ ¢ Isavector. The v1,vs,...,v, forms a basis for

A, then U = Cc1U1 + U2 + - - - + CpUn
+ The point P can be written as

P =cvi+ecvs+---+c,v,+ 0
+ (c,Cy...,C,) are the coordinates of point P

relative to the frame @
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Example of Frames (1)

~ 4 “The standard Cartesian frame (i, #, Q) ,
~_where#¢ =< 1,0 >, 7 =< 0,1 > and O = (0,0)
The coordinate (Xx,y) equals to the point

xu + yv + O
The above statement can be extended to
any dimension by setting origin (0,0,...,0),
vectors

<1,0,...,0>,<0,1,...,0>, ... , <0,0,...,1>.
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Example of Frames (2)

+ Cbhsider the frame: the origin O=(2,2), the

two vectors# = (1,0)and ¥ = (1,1). The
point P that has coordinates (5,3) can be
written as

5<1,0> + 3<0,2> + <2,2>
which has the Cartesian coordinates (7,8)

&
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e % -\.\._

Matrlx representation of Points

'

and Vectors

+ Pomts and vectors can be
~£~"uniquely identified by the
coordinates relative to a

specific frame.

+ Given a frame
(Ul y U2y «evy Un,y 0)

In an affine space A, we can
write a point P uniquely as

P =ctv1+cte+:--+cpvp,+0

This can also be written
as
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Matrlx representation of Points

and Vectors
| Thewectors of affine This can be written as _
~ I'space form a vector space, U
we can write a vector U
uniquely as P=la & -+ & 0 Z
'En.
U = C1U1 + CcoU2 + + + - + CpUn 0

e Points are represented as row vectors whose last componentis 1

e \ectors are represented as row vectors whose last component is O

&
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~ Converting Between Frames

| + When given two different frames, to take a

point that has a certain set of coordinates In
one frame and find its coordinates In the
second frame

+ if the second frame is the Cartesian frame
+ If the second frame iIs not the Cartesian frame ?
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An Example of Converting Between Frames

5> -Framel (uhyj ,O1) P(3,2) in the Framel, compute its
o) coordinates in the Frame2?
S Z<1,0> P 7
gj :<1 1> i :it?|+2F|+D[=[:i 2 i} U}
3 b D]
01 =< (), 0 > "o, & | iy
=3 2 1] iy + 15
Frame2 (@2, %2, 02) | -2 -3+ 0,
4 La 0 0 i
iy =< 1,0 > =[321] 1 1 0 3
’ | =2 0,
U =< 0,2 > o
= [ 3 0 1 J T
O =<2,2 > | 0,
0, i
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- An Example of Converting
= Between Frames

S We wrote the vectors of the first frame in terms of

~ the vectors of the second frame since the vectors of
the second frame (any frame actually) form a basis
for the space of vectors.

+ We wrote the origin O, in terms of the origin and
vectors of the second frame

1 0O O
1
+Theresu|tis[u e 1] 1 2 U
: -2 -1 1 ]
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+ ;
- -

b)

~ Converting Between Frames

.;-;Sljppose a point P has coordinates (c,,c,,...,C,,1) relative to

some frame F = (¥, ?2,...,7,,0) , Compute the
coordinates of P relative to another frame

F =iy s 7 OF)

Since (v, 75, ..., U5,) IS a basis, we can write each of the

=3/

vectors V1,2;---; Un yniquely in terms of the Y

U; = ei,10] +ei2ty + -+ einty

(i=1,2,...n)
Since P-O is a vector, we cam also write O uniquely in terms
of 7/ and Q'

1

O egpaat) +enpratat -+ eniraty + O
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_f*{;':C-'Qf;nverting Between Frames

7,

f:1§1+ﬁgﬁg+---+fﬂﬁlﬂ=[cl Ca - Cp ]_]

eL1Ty +ereth +--- +e1,7,

ﬁg_‘lfﬁ}"l -+ ﬁg_‘g'!_;; -+ -4 £’.2__,,,1'_,f1

en 1V + Cnoth + -+ €p nt),

a3 . ]
Cnt1,1V] Fenp12th + -+ enp1at, + O

e, €2 - ea 0 vy
€21 2z -+ ey 0 i
“la a o w 1] :
€n,1 €n2 *** €Epn 0 o,
| €n+11 €n+l2 " Cniln 1 11 O ]
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[

;'"'._-Thé'{-:cbordinates (c1,¢2,.,¢n) OF the point in the second

~ Converting Between Frames

- frame iS €1,1 €1,2 ein 0O
€21 €22 e2n 0O
g & --- o ].]:[{51 Co -+ Cq ].] : :
€n,1 €n,2 €nn O
| En+l1,1 €n4l2 En+ln
1. The change of coordinates is accomplished via a matrix multiplication.
2. The rows of the matrix consist of the coordinates of the elements of the old
frame @ relative to the new frame @' .
3. The frames in n dimensional space, the matrix is nxn.
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Compute the matrix by utilizing
~ Cramer’s Rule (for 3D case)

\ leen two frame (i1, @y, w1, 01) and (i, vz, 102, O2) ,

compute the conversion the following matrix

€11 €12
€21 €22
€3,1 €32

€4,1 €42

€1.,3
€3.3

€4,3

0
0
0
1

It can be accomplished by utilizing Cramer’s Rule

11/20/2006 State Key Lab of CAD&CG
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S Cramer’s Rule

- Given any frame (@,7,,0) and a vector 7, it can be

" written as = wid + vv + wa , for some u,v,w. The

Cramer’s rule is to compute the u,v,w. The formulae
are:

D=1iu-(Txw e
. D
D]_:t(’l—)}xu_)’ 9
V= —
Dgz’l_l:(tXH_]' o D.'-‘l
i =
e\ Dz=u- (@ xq) D
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A Download courses and
S ey references

http://www.cad.zju.edu.cn/home/zhx/GM/GMO0O0.zip
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