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主要内容

Shape from shading
Kernel methods



Shape from X
Many cues can be used for inferring object shapes from images. 
Based on the number of images used, there are two categories of 
methods: 

methods using multiple images
methods using a single image. 

A list of so called shape-from-X algorithms are shown in the following 
table.



Shape from texture

(a) image of a plane covered by a deterministic texture. 
(b) the same texture on a curved surface



Shape from shading
Shape can be recovered from a single image by human visual system based on 
the shading information
To estimate the shape from a single image, some assumptions have to be made, 
e.g. constant albedo (surface color)
This technique is very useful for reconstructing surfaces of planets from 
photographs acquired by spacecrafts

two images of the same Lambertian surface seen 
from above but illuminated from different directions

3D rendering of the surface



Shape from shading - Example



Reflectance of a Lambertian surface
The radiance at a 3D point is proportional to the cosine of the angle 
between the surface normal and the direction of the illuminant

ρ is called the effective albedo(反照率）: the real albedo times the 
intensity of illuminant

,( )  L Rρ ρ= =iP i ni

Luminance 亮度

Intensity 强度，光强

Illuminance 照度



Fundamental equation for shape from shading

The pixel intensity at  p=[x, y]T is

Assumptions:
If we neglect the constant term and if we assume the optical system has 
been calibrated to compensate the cos4α effect, and in addition, 
if we assume that all the visible points of the surface receive direct 
illumination, we have the fundamental equation for shape from shading

Notice that the image intensity is determined only by the surface normal vector 
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Reflectance map is a viewer-centered 
representation of reflectance
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Representing normal vectors
Assume that 

the scene is far away from the camera, we can use a weak-
perspective camera model to describe the projection.
the average depth of the scene is Z0. 

The weak-perspective projection can be written as

Therefore, with some rescaling, the scene surface can be 
thought of as a function of the (x, y), or

Then the slopes along the x axis and y axis are
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Representing normal vectors
We denote the above vectors as [1, 0,  p]T and [0, 1, q]T . The 
normal vector is the cross product of these two vectors, therefore

Now we can rewrite the fundamental equation as
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The problem of shape from shading

Assumptions
The imaging system is calibrated so that the cos4α effect is compensated 
All the visible surface receive direct illumination
The surface is imaged under weak-perspective projection
The surface can be parameterized as Z=Z[x, y]

Shape from shading
Given the reflectance map of the surface                    , and full knowledge of the 
parameters ρ and i relative to the available image, reconstruct the surface slopes, p
and q, for which 

and the surface Z=Z[x, y] s.t.

To simplify the formulation, we will reconstruct a scaled version of the original 
surface so that
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Finding albedo and illuminant direction

Assumption
Albedo is the same for all surface points
The surface is Lambertian
The direction of the surface normal vectors are uniformly 
distributed in the 3D space

A normal vector is represented by two angles, α
and β, where α∈[0,2π] and β∈[0, π/2]

As seen from the image plane, the 
probability of a normal vector with



Finding albedo and illuminant direction

If we also represent the illuminant direction using two angles τ
∈[0,2π] and σ∈[0,π/2]. As the result, the illuminant vector is

The image brightness of a surface point with normal angles α
and β is

The average image intensity becomes 



Finding albedo and illuminant direction

Similar derivation gives us

From above two equations, we can recover the 
albedo and the angle σ

Therefore 



Finding albedo and illuminant direction

To estimate the angle τ, we compute the average image spatial 
gradient and estimate

Algorithm_Approximate_Albedo_Illuminant
Compute the average of the image intensity <E> and of its 
square, <E2>
Compute the average spatial image gradient <Ex, Ey>
Estimate the albedo and the illuminant angle as



Shape from shading
The fundamental equation of shape from shading is

The problem of shape from shading
Given an image E(x,y), 
and full knowledge of the parameters ρ and i relative to the 
available image, 
reconstruct the surface slopes p and q, and the surface Z(x,y)
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Shape from shading
For each pixel, 

there are two unknown variables and one known quantity. 
Shape from shading is a highly under-constrained problem

Solution
To make the problem tractable, we add a constraint that a 
“smoother” surface is preferred.  This soft constraint can be 
translated into a regularization term in an optimization problem
Variational method for shape from shading: we will find the 
smoothest solution that satisfies the fundamental equation. In 
other words, the solution should minimize the following energy 
function



Euler-Lagrange equation
If J is defined as

where 
The derivative of J vanishes if the Euler-Lagrange 
equation

is satisfied. If the time-derivative        is  replaced by 
space-derivative qx, the equation becomes
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Euler-Lagrange equation
In our case, the equation is

Using the Euler-Lagrange equation with two independent 
variables, the stationary value can be achieved when

where

Therefore, 



The discrete form

can be simplified as

The discrete version of these equations are



An iterative algorithm

The previous discrete equations can be 
rewritten as



An iterative algorithm
The previous discrete equations can be rewritten as

pij and qij can be solved by starting from some initial solution at 
step 0, and advancing from step k to step k+1 using the updating 
rule

(1)



Enforcing integrability
pij and qij are solved independently, there may not 
exist surface Z so that Zx=p, Zy=q

Solution:
After each iteration, we find a revised solution p’ and q’, so 
that they are integrable and are closest to p and q
Suppose IFFT of p and q are



Enforcing integrability

Solution:

(2)



Enforcing integrability
Then the integrable solution that are closest p
and q are

It can be verified by starting from p’ and q’
and using the above equation to obtain the 
same p’ and q’



Shape from shading -
algorithm

Given the effective albedo, the illuminant direction, 
and the image, initialize the surface slopes p and q
to 0.

Until a suitable criterion is met, iterate the following 
two steps

Update p and q using (1)
Compute the FFT of the updated p and q, estimate Z and p’
and q’ using (2)

Output Z, p, q



Experimental results

After 100 iterations After 1000 iterations

After 2000 iterations



主要内容

Shape from shading
Kernel methods

main idea : ( )φ φx x6



( ) ( , )i if x k x xα=∑

The stages involved in the 
application of kernel method

K(X,Z) K A

Data Kernel 
Function

Kernel 
Matrix

PA 
Algorithm

Pattern 
Function

Kernel ? Nonlinear ? SVM ?



Linear regression in a feature 
space

Primal linear regression: 
Find a homogeneous real-valued linear function

That best interpolate a given training set

Or create a pattern function that should be 
approximately equal to zero
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Primal linear regression

We would like to find a function for which all 
of these training errors are small

Hence the lose function can be written as

We have
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Primal linear regression

Normal equations

The cost is O(n)3

Dual representation
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Ridge regression

Ridge regression corresponds to solving the 
following optimization:

Primal:
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Ridge regression

The resulting prediction function is

Dual:
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Ridge regression

The dual solution:

The ridge regression can be solved in a form 
that only requires inner products between 
points
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Nonlinear feature mappings

An embedding map
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Kernel function

A kernel is a function k that for all x, z satisfies

where is a mapping from X to an (inner 
product) feature space F

( , ) ( ), ( )κ φ φ=x z x z

φ

: ( ) Fφ φ ∈x x6





Kernel Example

The feature map

The hypothesis space of linear functions in F

The inner product
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The kernel trick

More generally: 
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Characterization of kernels
A function

which is either continuous or has a countable domain, cab be 
decomposed

into a feature map  into a Hilbert space F applied to both its 
arguments followed by the evaluation of the inner product in F if 
and only if it satisfies the finite positive semi-definite properties
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Kernel PCA
Input: data                             , dimension k

Process:

Output: transformed data { }1 2, , , lS = x x x� � � �…
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Kernel matrix

normalization

Eigen-analysis
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Dual principle component 
regression

Input: data                           , dimension k and target 
output vectors

Process:

Output: regression functions
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