A2 A AN
BFHESMEFLAR

@

Digital Asset Management

HFRABFRE

6. Introduction to
Digital Media Retrieval

ERZEIM: KRS
2015-11-03




* IR (Information Retrieval)

—To retrieve information that users want based on
some keys or hints

—Support:

* daily life use

* authoring

» thinking and designing
T ——————— —————
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» Text-based digital media retrieval
—Boolean model

—Clustering model GOOglﬁg YaHoOO!

—Vector model
—Probability model

» Content-based digital media retrieval
—Query By Examples

 Semantic-based digital media retrieval
==
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* Query by example on multimedia-data

| | I 1 | | == |

* Demo:
—The GNU Image-Finding Tool
—http://www.gnu.org/software/qgift/
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http://www.gnu.org/software/gift/

» hitps://code.google.com/p/lire/

Visual Information
Retrieval using
Java and LIRE

Mathias Lux
Oge Marques
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https://code.google.com/p/lire/

The workflow of

digital media analysis and retrieval

Digital media

> Find features
Data stream

|
il

Digital media
Data segmentation

recognition
classification/clustering

|

Indexing and retrieval
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* In this lesson, we will know ...

ten
ten

ten

—Content-based graphics retrieval

—Merging and analysis of multiple media
—Development and challenging

t-based image retrieval
t-based video retrieval
t-based audio retrieval

—
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1. Content-based image
retrieval

CBIR



Query Image

http://amazon.ece.utexas.edu/~gasim/sample queries.htm


http://amazon.ece.utexas.edu/~qasim/sample_queries.htm

DEMO from the RGB group

iPad APP: "BRHf48”
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Multimedia Information Retrieval

o Content-based Image Retrieval

Image DB Ee-Hire w e

EXxtraction A Color histogram

Color Color moments
C/C++ A Color correlogram

: @ Texture
Off-line &'Ct_‘f,e/ Tamura texture
Automatic Co-occurrence
matrices

ﬁ Gabor features
Wavelet moments

memo

User o Shape

Interface Fourier descriptor

Vi | oI o Structure
Isua R
Cii WeIgIing Edge-based features
Similarity
ranking




Images — Find features

|
T

Similarity measurement . 'Tec‘?gn'“o“ .
classification/clustering

X1, X2, ..., XN 1, v2, ..., . :
( xn) l 1.y yn) Indexing and retrieval
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* Finding out features of image is a key step of image retrieval

— Image-based retrieval usually need to pre-construct feature database
of images for retrieval

* Major image features:
— Color features
— Texture features
— Shape features
— Space relation features
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» Color feature is a most widely used vision feature. It is
mainly used to analyze color distributions in an image,
including:

— Color histogram
— Color moments
— Color set

L .udﬂ
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— Color clustering vectors
— Color relation graph
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Image histogra
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Image histogram




"« Color moments are %Iobal statistical features of an image,

which are proposed by Stricker and Orengo.

1 n
— First order moment (mean) W, = ; 2 L
‘=
— Second order moment (variance) 012 — l i (]ij _ Mi)z
n 4
— Thi 1 ¢
Third order moment (skewness) 53 = ;2 (I, - ™5
j=1

* Color moments are always applied with other image
features for efficiently shrinking seeking ranges.
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color moments: example

11363 mean =4.72
306|18|6]3

6|8|10[8]6 variance =6.52
306|863

113631 skewness =2.34




Image texture featu res
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» Texture features are such vision features employed to
measure homogeneous phenomenon in images. They are

— independent to color or illuminance,
— and are intrinsic features of object surfaces.

* Major texture features
— Tamura texture features
— Self-regression texture model

— Transform based texture features
« DWT, DFT, Garbor filter bank

— others
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Tamura texture features

K a set of texture feature representation based on the

psychology research results on human vision cognition of
textures:

—coarseness (FHKEE)
—contrast (XJEEFE)
—directionality (FEE)

S

—line-likeness (£ AEMUE)
—regularity (FIEE)
—roughness  (fHEEE)
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Tamura — Coarseness

s Goal

= Pick a large size as best when coarse texture s
present, or a small size when only fine texture

= Step 1: Compute averages at different scales at

" x+2%1 -1 y+2F -1
every points 4= Y Z 1G. ) 2%
i j=x=25" j=p-2%7
- - \
I
/ ' "
/ | ‘41 ‘42 ‘o0 ‘4"
/

/ Window size Window size Window size
- 4 "+
(.\ . .‘ ) 3Ix3 S5x35 2°+1



Tamura — Coarseness (cont.)

= Step 2: compute neighborhood difference at
each scale on opposite sides of different

directions

Eh’h (\.. ") — ‘4’: (\. - 2;‘.-1 . “) - ‘4}‘. (\ T 2;‘.-1 . ‘.){

~ Kk

-~ ~

Zh ,\ 4
1 2
—— Ek.a(.\'. .1‘) — Ak o Ak

/l

k
(.\‘._\')D \

4* :
A = (X, y)— {El.a-El_b~Ez.a~E:.b~-"~En.a’E"-b}

3 4




Tamura — Coarseness (cont.)

= Step 3: select the scale with the largest variation

Y '~ ) — Ak _— .| !
Spc (X, v)=2" | E, =max \E|,E,..... E; g

= Step 4: compute the coarseness
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Tamura — Contrast

Gaussian-like histogram distribution = low contrast

A A

S VAN

Histogram polarization. Is it Gaussian? How many peaks it has?

Where they are?

A A
__’ 4’

Polarization can be estimated by the kurtosis (il %)

_ M4 pa = ElI*(2,y)]

87
4T A ot = Bl(I(z,y) — )"



Tamura — Contrast (cont.)

Qg = Ha l distribution with
4 two separate peaks
A
_ 4
g =~y PP
0- —>

= Contrast estimate Is given by:

O

1
(ag)2

Montrast =



Tamura — Orientation

= Building the histogram of local edges at different
orientations Hp(k)
= By deriving the edge magnitude at X and Y directions

- P /'Z' V. V
O=tg"(V,/Vy)+= 7 #
2 (-1 0 1"‘ (1 1 1)

| -1 0 1/|0 o0 o
VHI)/Z l |
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Tamura — Orientation (cont.)

= Compute the estimate from the sharpness of the peaks

= By summing the second moments around each peak
e.g., flat histogram
- large 2nd moment (variance)
- small orientation

Ajorz‘enr :1—’..”}’ Zp Z(¢_¢P)2 HD(¢))

p o"eup

n, = Number of peaks

¢, = Position of peak, p, in H

u'pz Points in peak p A S i | -
°© ¢ v, ¢, vy

1’ = Normalisation factor




(MR)SAR

[Mao’92]

= Each pixel is a random variable whose value is estimated
from its neighboring pixels + noise
= A kid of Markov Random Field model

= SAR Model (Simultaneous Autoregressive)
= Describes each pixel in terms of its neighboring pixels.

= MRSAR Model (MultiResolution SAR)

= Describing granularities by representing textures at variety of

resolutions
= SAR applied at various image levels AV d SR Bam o
= Metric > parameter differences g _, _%a::m; )
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image image pyramid



Edge Histogram

= Edge histogram (EHD)

= Captures the spatial distribution of the edge in six statues: 0°,
45°, 90°, 135°, non direction and no edge.

= Utilizing the filters
1 = 4 A
he
90° edge 0 ° edge 45 °© edge 135 ° edge non-directional edge
= Global EHD of an image: Concatenating 16 sub EHDs into a 96 bins

= Local EHD of a segment
= Grouping the edge histogram of the image-blocks fallen into the segment

Macro-block

Image-block




= Represent function on a

new basis

= [hink of
vectors,

The Fourier Transform

functions as
with many

components

= We now

transformation to transform

apply a linear

the basis
= dot product with each

basis

element

form e

= In the expression, uandv

select the basis element,
so a functionof xand y
becomes a function of u

and v
basis elements have the

—i2m(ux+vy)

op (~wet)
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Discrete

Fourier Transform
e 2D DFT
4 N-1 N-1 o
F(k,1) =+ S 3" f(a, b) e 25+
Y a=0 b=0
e 2D IDFT
1 N—-1 N-1 -
fla,b) = A Z Z Fl(k, 1) et (N tw)
k=0 =0



Fourier
Transform

phase transform



magnitude transform

Fourier
Transform

Leopard

phase transform



Zebra’s phase Leo’s phase
+ Leo’s mag + Zebra’s mag



Natural Images and Their FT

LA B B B b A B L A kel e b

AIBINIRIRININIIN)
RINISIRINININININ)
BIRIRIRInINININ
RISIRININIRINININY
BINIRIRINIAIRININ
RIRTRIRIRININININ
BINIRINININIRININ
RIBIAINIMINIRIR IS

. oy proe - - . .-‘.“ ,,-'.}.7, (} s }
; - g L S M P 5T 2 = v .

- . —— ?m -ine - W.l = .\,f F SPTH .",'\ .

.‘. " . g JIS e _?. ‘e o

(a) structured (b) oriented (¢) granular (d) random

= What happened to the FT patterns when the texture scale and
orientation are changed?




Frequency Domain Features

Fourier domain energy distribution
= Angular features (directionality)

9(1062 //|F(u ) |2 dudv

where,

9, < tan1[] < 65
U

= Radial features (coarseness)

7“(1,7‘)2 —//|F(u,v)|2du.dv

where,

-r1§u2—|—'v2<7‘2

Uniform division may not be the best!! |




Gabor Texture

Fourier coefficients depend on the entire image (Global) > we lose
spatial information

Objective: local spatial frequency analysis

Gabor kernels: looks like Fourier basis multiplied by a Gaussian
= The product of a symmetric (even) Gaussian with an oriented sinusoid
= Gabor filters come in pairs: symmetric and anti-symmetric (odd)

= Each pair recover symmetric and anti-symmetric components in a
particular direction

= (ky, k,): the spatial frequency to which the filter responds strongly
= O :the scale of the filter. When ¢ = infinity, similar to FT

We need to apply a number of Gabor filters are different scales,
orientations, and spatial frequencies

- | | | 22 4 42
| | | A Gs;ummet.ric(f'fe y) = cos(kyx + kyy) exp — 202
| 24,2
) . T4+ y
l ] ﬂ I ulll* Ga-nt..-zf—symmctrz'.c(ms y) = sin(kyx+kyy) €xp — 55?2




Example — Gabor Kernel

/Zebra stripes at different scales and orientations and convolved with
the Gabor kernel

The response falls off when the stripes are larger or smaller

The response is large when the spatial frequency of the bars
roughly matches the windowed by the Gaussian in the Gabor kernel

Local spatial frequency analysis

N\ -

Gabor kernel

magnitude of
the filtered image




Gabor Texture (cont.) \\\\\\ ’/II’

= |Image /(x,y) convoluted with Gabor filters h, \!
(totally M x N) *-

Winn(@,9) = [ 1(@1,y1)hmn(z—21,y—y1)derdys

= Using first and 2nd moments for each scale and
orientations

HUmn =//|Wmn($a y)|da:dy

omn = \// / (“/V 7‘7?.71($3 y)| o ﬂm‘n) Qd:cdy

= Features: e.qg., 4 scales, 6 orientations
- 48 dimensions

v = 100,000, K01 ---s 1435, O35]



Gabor Texture (cont.)

structured oriented granular random

= Arranging the mean energy in a 2D form

= Structured: localized pattern

= oriented (or directional): column pattern
= granular: row pattern

= random: random pattern




Wavelet Features (PWT, TWT)

= \Wavelet

= Decomposition of signal with a family of basis functions with
recursive filtering and sub-sampling

= Each level, decomposes 2D signal into 4 subbands, LL LH, HL,
HH (L=low, H=high) .

= PWT: pyramid-structured wavelet transform

= Recursively decomposes the LL band
= Feature dimension (3x3x1+1)x2 = 20

= [WT: pyramid-structured wavelet transform

L3 B

Lm | WD

LHI

= Some Information in the middle frequency channels N

= Feature dimension 40x2 = 80
u.::”::‘sw‘qlil

A
i

oy
l

original image PWT TWT



Texture Comparisons
Ma’98]

= Retrieval performance of different texture features according to the
number of relevant images retrieved at various scopes using Core

Photo galleries
9 S .
= o_f relevant Dashdot: MRSAR (M) . | MRSAR (M)
Images ak-- Solid: Gabor < , - e LA
Dashed: TWT | P
| Doued: pwT . ‘ -
PIFL‘:MRSAR ) ? ;,-? T 1 Gabor
Diamond: Tamara (improved) Lo | TWT
o 6 Trangle: coarsenass stogram . .. . - o =
& Circle: direCtionaliy : . - ' - et 1 PwT
3 Star: edge histogram p T
S50  Square: Tamwra (traditionaly .7 SR ++*ﬁ MRSAR
i . e +’+"'*
2 -
LX)
2 :| Tamura (improved)
§
<3
Coarseness histogram
@ directionality
2¢ edge histogram
Tamura
1
o
0 150

# of top matches considered
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» Shape features are computed out based on object
segments or regions, mainly including

—contour features
—and regions features.

 Typical approaches include
—Fourier shape description
—Moment invariants
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Region-based vs. Contour-based Descriptor

= Columns indicate contour similarity
= Outline of contours

= Rows Indicate region similarity
= Distribution of pixels



Region-based Descriptor

Express pixel distribution within a 2D object region

Employs a complex 2D Angular Radial Transformation
(ART)
= 35 fields each of 4 bits

Rotational and scale invariance
Robust to some non-rigid transformation
L, metric on transformed coefficients

Advantages
= Describing complex shapes with disconnected regions

= Robust to segmentation noise
s IR

= Small size
= Fast extraction and matching




Contour-based Descriptor

It's based on Curvature (%) Scale-Space (CSS)

representation

Found to be superior to
()

= Zernike moments

= ART
(b)

= Fourier-based
= lurning angles

= Wavelets

Rotational and scale invariance % ‘fé’ 33@
Robust to some non-rigid transformations ()

For example ’A ‘q' ﬁ
(d)

= Applicable to (a)

= Discriminating differences in (b) ‘ * «

= Finding similarities in (c)-(e) e)
e




Problems in Shape-based Indexing

Many existing approaches assume

= Segmentation is given

= Human operator circle object of interest
= Lack of clutter and shadows

= Objects are rigid

= Planar (2-D) shape models

= Models are known in advance
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In image retrieval system, increasing feature dimension can enhance

recision of retrieval greatly. However, high feature dimension will

ead to high computation cost. Hence it is important to reduce the
redundant in feature data.

* Image feature space reduction
— Linear dimensional reduction techniques: PCA ...
— Nonlinear dimensional reduction techniques: Isomap, LLE ...
— Clustering based feature reduction methods

» High-dimensional feature indexing
— Database oriented high-dimensional data indexing
» Bucketing grouping searching techniques, K-d tree, R tree ...
— Clustering methods
— SOM
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* How to measure similarity of different images base
on features?

—Image features always form into a fixed-length feature
vector.

—The similarity therefore can be measure by
 Euclidian distance
* Histogram intersection
» Quadratic distance
» Mahalanobis distance (B K =)
* Non-geometrical similarity

#4)3 Ao
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- Similarity: 1

. distance: l
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Practical image retrieval systems

QBIC (Query By Image Content)

® http://www.gbic.almaden.ibm.com/

Virage

® http://wwwyvirage.com/cgi-bin/query-e
RetrievalVWare

® http://vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat
Photobook

MARS

® http://jadzia.ifp.uiuc.edu:8000



http://www.qbic.almaden.ibm.com/
http://wwwvirage.com/cgi-bin/query-e
http://vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat
http://jadzia.ifp.uiuc.edu:8000/
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* Most existing image retrieval systems have
one or more of following functions features:

—Random browsing
—Classified browsing

—Example based retrieval
—Sketch based retrieval
—Texture based retrieval

GogP) i3 Jof i aAn
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Future of image retrieval

Human-computer ® |mage feature mapping
Interaction
® Standards of
Semantic speech performance
measurements

Web-oriented
® Construction of test

High dimensional data sets

Perspective

Multiple media
channels



