6. Introduction to Digital Media Retrieval
The workflow of digital media analysis and retrieval

Digital media
Data stream

Find features

Digital media Data segmentation

Recognition classification/clustering

Indexing and retrieval
3. Video retrieval techniques
Differences and relations between image and video

- Images are **static**, but video are **dynamic**.
- Video stream can be viewed as sequence of image frames.
CBVR

• Sample YouTube Video page:
Main methods of digital media retrieval

- **Text-based** digital media retrieval

- **Content-based** digital media retrieval
Why we need video shots?

a. **Text Retrieval**: Keyword Extraction

Diagram:
- Indexing
- Document Storage
- A list of icons indicating text retrieval process steps
Why we need video shots?

b. **Database Query**: Entity Extraction

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53666</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53688</td>
<td>Smith</td>
<td>smith@eecs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53650</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Why we need video shots?

Video Shots in Storage

Indexing

Shot Indexing

???
Video shot =?= keyword in video?

Shot is used as basic unit for video indexing!
CBVR Overview

• 2 phases:
 – Database Population phase
 • Video shot boundary detection
 • Key Frames selection
 • Feature extraction
 – Video Retrieval phase
 • Similarity measure
Overview (cont.)

[Wang, Li, Wiederhold, 2001]
Structuralizing video data

- **semantic content layers**, e.g., scenes and shots in a video program.
 - These layers are erased when they are displayed for audience, which weakens the ability for user dealing with raw video data.
Fundamental definitions in video structurization

• Frame (帧)
• Shot (镜头)
• Key frame (关键帧)
• Scene (场景)
• Group (组)
a. Scene Cuts:

Sudden change of video content or focus
Proposal

• Analyze a video stream
• Segment the stream into shots
• Index shots using extracted features
 – Camera work characteristics (Long, Middle, Short …)
 – Color representations
• Browsing methods and user interfaces
Desired Video Interaction

- Focus on fast visual browsing.
- Ability to grasp idea of lengthy video in short time.
- Not simply fast forward.
- Challenge: find and manage essential visual cues, then present them visually in an effective way.
Viewer-Video Interaction: Conceptual Model

a) Viewer Interaction

b) Video Computing

c) Video Production & Editing
Video Production

- Key Concepts:
 - Take: continuous video
 - Cut: separates takes
 - Camera characteristics
 - Pan, tilt, zoom, etc.
 - Shot: edited takes

- Resulting video contains embedded info: cut points, camera characteristics
Main Function: Make the implied video structure explicit.
Video Segmentation: Problems

- Traditional Cut Detection – detect differences between frames using inter-frame comparisons (intensity, RGB, motion vectors).
- Mis-detection due to rapid object motion, slow motion, animation, strobes, fading, wiping, dissolving, etc.
- Result: Low successful detection rate.
Basic video segmentation metrics

- Pair-wise comparison
 - Pixel-level
 - Sensitive to camera movement and motion
 - Block-level (Likelihood ratio)
 - Can tolerate small motion

\[
DP_i(k, l) = \begin{cases}
1 & \text{if } |P_i(k, l) - P_{i+1}(k, l)| > t \\
0 & \text{otherwise}
\end{cases}
\]

\[
\frac{\sum_{k, l=1}^{M, N} DP_i(k, l)}{M \times N} \times 100 > T
\]

\[
\frac{\left[\frac{S_i + S_{i+1}}{2} + \left(\frac{m_i - m_{i+1}}{2} \right)^2 \right]^2}{S_i \times S_{i+1}} > t
\]

\(m_i \): mean intensity
\(S_i \): corresponding variance
Basic video segmentation metrics

How to measure statistical property of video frames?

Color Histogram
Basic video segmentation metrics

- Histogram comparison
 - Basic
 - Tolerate motion better
 - χ²-test
- Color level can also be used but only the MSB to save the number of bins

\[
SD_i = \sum_{j=1}^{G} |H_i(j) - H_{i+1}(j)|
\]

\[
SD_i = \sum_{j=1}^{G} \frac{|H_i(j) - H_{i+1}(j)|^2}{H_{i+1}(j)}
\]
Sample of using histogram
Scene Cut
Gradual transition detection
Gradual transition detection

- Twin-comparison
 - Use two thresholds T_b and T_s to accommodate both short-term and long-term transitions
 - Differences of (F_1, F_2), (F_2, F_3), (F_3, F_4) are small, but difference of (F_1, F_4) is still big
• **Twin-comparison**
 - \(F_s \) — the potential beginning frame of the transition
 - \(F_e \) — the ending frame of the transition

```
scan frame
if (Diff(F_i) \geq T_b)
    detect as camera break
else if (T_b > Diff(F_i) \geq T_s)
    F_s \leftarrow F_i
    i \leftarrow i + 1
    while (Diff(F_i) \geq T_s)
        i \leftarrow i + 1
    if (Diff(F_s, F_i) \geq T_b)
        F_e \leftarrow F_i
```
Threshold selection (Tb, Ts)

- The distribution of frame-to-frame differences has a high and sharp peak near the small value, which is caused by noise instead of transition and assumed to follow Gaussian distribution \((\mu, \sigma)\).
- Choose \(Tb = \mu + \alpha \sigma\), \(\alpha \in [5, 6]\)
- Choose \(Ts\) to be greater than the mean difference and on the right slope of \(M\)
- \(Ts \in [8, 10]\), constant over samples
Multi-pass approach

- Scanning all frames could be computationally hard
- Temporal skipping is more useful
 - e.g. one out of every 10 frames
 - Better for detecting gradual transition
 - May miss camera break
 - May get false detection (distance increased)
- Multi-pass approach
 - First pass, use either pair-wise or histogram with large skip factor and smaller Tb to collect the potential regions.
 - Second pass, two methods may be applied together (hybrid) to search the candidate regions while increasing the confidence.
Distinguish camera movement

- To distinguish gradual transitions from changes made by camera movements
- Basic approach—observing optical flow via motion vectors

Fig. 6a–c. Motion vector patterns resulting from camera panning and zooming. a ✓ Camera panning direction. b Camera zoom-out. c Camera zoom-in
Distinguish camera movement

- **Panning**
 - Distribution of motion vectors has a single modal value (θ_m) that corresponds to the panning direction.

- **Zooming**
 - The vertical components of top and bottom motion vectors have different signs.
 - Similarly for horizontal components of left and right motion vectors.
Yet Another Video Segmentation

\[V = \text{image difference} \]
Video Segmentation: Solution

- 92-98% success rate over 4.5 hours of video (news, movies, documentaries)
- 90% success when 1/3 of all cuts were via special affects
Shot Analysis

- Shot is simply sequence of frames capturing a scene’s spatial and temporal context.
- Extract this information:
 - Camera work yields spatial situation
 - Color info yields object information
Camera Work Information Extraction

- Camera movement causes global change in objects.
- Resulting point traces = motion vectors
- Motion vectors yield camera work parameters
- Computationally complex, not robust
Camera Work Information Extraction

- Proposal based on video x-ray imaging.
- Easy calculations, robust
Camera Work Information Extraction

- Parallel to time = fixed camera
- Slant = camera pan
- Degree of slant = speed of pan
- Line spread = zoom
- No information present for track and dolly
New Video Interfaces

- VideoScope
- VideoSpaceIcon
- ViewSpaceMonitor
- PaperVideo
PaperVideo

- Photo albums and video indexing.
- Shows potential simplicity of structured video apps.
VideoScope

- Oscilloscope used in television/video production.
- Measures the level or voltage of video signal over time.
- Video level corresponds to brightness / luminance of video image.
- Reduces subjectivity from assessing brightness.
- Safe range: NTSC black should be 7.5 IRE, white should be 100 IRE.
VideoScope

- Possible use as video engineering tool.
- Shows potential complexity of structured video apps.
Related Work

- **Importance of visual interface**
 - Must activate user’s visual sense
 - Must stimulate user’s ability to manipulate video

- What can be done in video production stage?
Notable Reference

Cut Detection

Keyframe extraction
Original video

Start of video

shot boundary detection

End of video

Camera shot

Keyframe Extraction
Reference

• Key Frame Extraction

http://www.cs.ust.hk/~rossiter/mm_projects/video_key_frame/key_frame_index.html
关键帧提取技术

- 镜头边界法
 - 选取镜头中的首帧和末帧
- 颜色特征法
 - 首帧为关键帧，其后比较与前面关键帧的颜色差异
- 运动分析法
 - 分析相机的运动
- 聚类分析法
聚类分析法

• 设一个镜头 \(S = \{f_1, f_2, \ldots, f_m\} \)
• 找关键帧 \([F_1, F_2, \ldots, F_n]\)
• 定义帧间距离 \(d(f_i, f_j)\)

Step 0. 设定阈值，选定初始n个关键帧位置
Step 1. 按照到关键帧的最小距离重新划分

Step 2. 指定每一聚类的中心帧为新的关键帧。

如果与上次划分区别不大则停止，否则重复Step 1和Step 2.
Brain storm
BriefCam

• Making a long videoshort: Dynamic video synopsis
• http://www.vision.huji.ac.il/video-synthesis/
4. Graphics retrieval techniques
3D Model Similarity Search

http://infovis.uni-konstanz.de/research/projects/SimSearch3D/
Elements of polygonal mesh modeling
Triangle mesh
Main idea

3D model → feature extraction → high dimensional feature vector → insert

ε-search
NN-search

high dimensional index structure
Feature vectors

- geometry based
- image based
Feature vectors

• Geometry based

Ray-based scanning after principal axes transformation

Multi-resolution spherical harmonics representation
Feature vectors

- Image based

Flat 2D silhouettes with Fourier coefficients

Depth buffer maps from 6 directions
What’s good?

Self-organizing map of a 3D database
About the final examination
About the final examination

- 6~8 道题，基本概念、基础算法、系统架构
- 开卷

- 时间：2013 年 11 月 13 日 (08:00-10:00)
- 地点：玉泉教 4-406 (多)
未来？！

数字媒体资源管理
Digital Asset Management
Two applications

- Game design and film production
 - course note #16
- Digital library
 - course note #17
Possible DAM future

• Challenges on:
 • Techniques
 • Business
 • Culture
Possible DAM future

• Techniques
 • cloud computing / mobile computing
 • (super) large scale storage
 • new games or new UI (brain interface?)
 • new applications, new standards and new protocols
Possible DAM future

- New business models
 - What will be the next giant after MicroSoft, Google, Apple, Facebook, Oracle, Intel and IBM?
- Information always has large value
Possible DAM future

- Culture and philosophy
 - to explore new dimensions of our world
 - immortal information (forever?)
 - complicated or simple live
并非结语

• 做我们自己的开发系统！
This is NOT the dam end
You are the future!