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* IR (Information retrieval)

—To retrieve information that users want based on
some keys or hints

—Support:
* daily life use
 authoring
» thinking and designing
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» Text-based digital media retrieval
—Boolean model
—Clustering model GOOS!,?
—Vector model
—Probability model
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» Content-based digital media retrieval
—Query By Examples
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* Query by example on multimedia-data

* Demo:

—The GNU Image-Finding Tool
—http://www.gnu.org/software/qift/
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http://www.gnu.org/software/gift/
http://www.gnu.org/software/gift/

The workflow of digital media analysis and
retrieval

Digital media

—>  Find features
Data stream

|
i

Digital media recognition
Data segmentation classification/clustering

|

Indexing and retrieval
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+ In this lesson, we will know ...
—Content-based image retrieval
—Content-based video retrieval
—Content-based audio retrieval
—Content-based graphics retrieval

—Merging and analysis of multiple media
—Development and challenging

1= S —————=—=—=——————~

W) A1) A s
wud BFRESPERZR

NE1THOHERA



@ AR AL
WFHRES M ERAR

1. Content-based image
retrieval

CBIR
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“Home ~ Papers  Reseach  Liks

Sample queries for individual classes:

Birds Flowers Textures
Bridges and Buildings Landscapes Transport
Bugs Mammals

Selected sample queries for all classes:

Plecase click on an image to start a query.

7~ CIRES

http://amazon.ece.utexas.edu/~qasim/
sample_queries.htm
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Multimedia Information Retrieva

o Content-based Image Retrieval
Image DB
J Feature metadata o Color
: &3 N
Extraction S Color histogram
Color Color moments
C/C++ o hire Color correlogram
Off.li % @ Texture
A \S\Tc_uje/ Tamura texture
Automatic Co-occurrence
_ matrices
Gabor features
Usar memo Wavelet moments
0 Interface Ri=haApe
(__ | T StFou:er descriptor
Visual weighting | © ructure
Cry Edge-based features
Similarity
ranking
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Workflow of CBIR

Images — Find features

|
i

L recognition
Similarity measurement e :
classification/clustering

|

1, X2, ... 1,v¥2, ..., . .
(x1,x2, ..., xn) I Y1, ¥2, .., yn) Indexing and retrieval

«}‘:f"-| IF/|: 10
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* Finding out features of image is a key step of image retrieval

— Image-based retrieval usually need to pre-construct feature database
of images for retrieval

* Major image features:
— Color features
— Texture features
— Shape features
— Space relation features

A AL Lilm
g BFHESMEHR

NE1THOHERA




including:
— Color histogram
— Color moments

» Color feature is a most widely used vision feature. It is
mainly used to analyze color distributions in an image,
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— Color set

— Color clustering vectors ™
— Color relation graph |
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Image histogram




 Color moments are %Iobal statistical features of an image,
which are proposed by Stricker and Orengo.

1 n
— First order moment (mean) W, = ; 2 L
e
— Second order moment (variance) 012 — l i (]ij B Mi)z
n 4
— Third order moment (skewness) N li (I -u)
I n & j

» Color moments are always applied with other image
features for efficiently shrinking seeking ranges.

T ——————
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color moments: example

1131631 mean =4.72
306|18|6]3

6|8|10/8]6 variance =6.52
316|863

1 1363 skewness =2.34
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Image texture features
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» Texture features are such vision features employed to
measure homogeneous phenomenon in images. They are

— Independent to color or illuminance,
— and are intrinsic features of object surfaces.

* Major texture features
— Tamura texture features
— Self-regression texture model

— Transform based texture features
« DWT, DFT, Garbor filter bank

— others
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Tamura texture features

|
~» a set of texture feature representation based on the

psychology research results on human vision
cognition of textures:

—coarseness (FHFEE)
—contrast (XJEE )
—directionality (J57a,
—line-likeness (ZME{LE)
—regularity (R,
—roughness  (fHAZ,
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Tamura — Coarseness

s Goal

present, or a small size when only fine texture

= Step 1: Compute averages at different scales at

1 x+251 -1 y+28 -1 -
every points 4= Y S 1G.j)/2?

= -] . h—-1
i=x=-2"" j=y=-2"

-~ i.'

”~ ~

D q

; .,--"' » S

f , , ‘e
‘41 443 ‘.1”
Window size Window size Window size
(‘\-‘ .‘. ) Ix3 5x5 2°+1
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Tamura — Coarseness (cont.)

= Step 2: compute neighborhood difference at
each scale on opposite sides of different

directions
E,,(x.y)=|4,(x=2"",y)— 4, (x+ 2, )‘)‘
-,k

AN f o
" £y (X, y) =14, — 4

ol
(x,) )D \/ Ek-b(‘\.“-\.) = A,'S - Ak;

4

‘.11( ‘4'° - 43 [ )
” (X, y)— .’lEI.a‘El.b‘El.a'El.b """ En.a‘En.b f
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Tamura — Coarseness (cont.)

= Step 3: select the scale with the largest variation

~ " - - -4 !
S (x,y)=2" [/ E, =maxi\kE,,E,...., E; i

= Step 4: compute the coarseness
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Tamura — Contrast

= Gaussian-like histogram distribution - low contrast

I\ VAN

= Histogram polarization. Is it Gaussian? How many peaks it has?

Where they are?
A A

S AN

—>

= Polarization can be estimated by the kurtosis (%)

_ Ha us = E[I*(z, y)]

8
4T A ot = E[(I(z,y) — )"
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Tamura — Contrast (cont.)

o P
4

4
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A
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= Contrast estimate is given by:

Mcontrast =

O

(044)%

two separate peaks

unimodal distribution
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Tamura — Orientation

= Building the histogram of local edges at different
orientations Hp(k)
= By deriving the edge magnltude at X and Y directions

£ ¥ v,
6=tg (V) /Vy)+= , #
2 '—1 O 1'| |' 1 1 1 '

. -1 0 1 0 0 0
+IV.1)/2
|\—H“ﬁ' ]—1 0 1) (-1 -1 -1

VG| =
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Tamura — Orientation (cont.)

= Compute the estimate from the sharpness of the peaks

= By summing the second moments around each peak
e.g., flat histogram
- large 2nd moment (variance)
- small orientation

Mgy =1=7-1,-3" 3 (¢=6,)" - Hp(9)

P @EW , Hp ’
n, = Number of peaks
(/7p = Position of peak, p, in H ,
H‘p = Points in peak p IR S Sy
C ¢ v, @, v,
;7 = Normalisation factor
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(MR)SAR

[IMao’92]

= Each pixel is a random variable whose value is estimated
from its neighboring pixels + noise ,
= A kid of Markov Random Field model

= SAR Model (Simultaneous Autoregressive)
= Describes each pixel in terms of its neighboring pixels.

= MRSAR Model (MultiResolution SAR)

= Describing granularities by representing textures at variety of
resolutions
= SAR applied at various image levels aN —> ISR e S

= Metric > parameter differences —p Mmodel

parameters

é. / — 4 /— 05—

image image pyramid
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Edge Histogram

Edge histogram (EHD)
Captures the spatial distribution of the edge in six statues: 0°,
45°, 90°, 135°, non direction and no edge.
= Utilizing the filters -
1 = 4 A Y
| | he
00° edge 0 ° edge 45 °© edge 135 ° edge non-directional edge
= Global EHD of an image: Concatenating 16 sub EHDs into a 96 bins

= Local EHD of a segment
= Grouping the edge histogram of the image-blocks fallen into the segment

oo E/ Macro-block

) )
I 3 - 1
N. e ! i
- < \“'. . b 4 ) ,’_
d o
g'_' . el
i o o /

- ¥

Image-block
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The Fourier Transform

= Represent function on a = In the expression, uandyv

new basis select the basis element,
= Think of functions as so a function of x and y
vectors, with many becomes a function of u
components and v

= We now apply a linear

transformation to transform
the basis form e

= dot product with each ‘,-;
basis element

F(g(x.y))u.v) = || g(x, y)e ™ dxdy
R?.

= basis elements have the

—i2m(ux+vy)
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Discrete

Fourier Transform

e 2D DFT
F(k, 1) = ! z—:l\Z:lf(ab —2n ()

e 2D IDFT

f(a,b) = \l Z ZF(PZ 2 (F+¥)
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Fourier
Transform

phase transform
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Fourier
Transform

phase transform
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s phase

Leo’
+ Zebra’s mag

s phase

Zebra’
+ Leo’s mag
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Natural Images and Their FT
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(a) structured

(b) oriented

(c) granular

(d) random

What happened to the FT patterns when the texture scale and
orientation are changed?
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Frequency Domain Features

Fourier domain energy distribution
= Angular features (directionality)

9(1”02 //|F(u v) |2 dudv

where,

01 < tan_l[gl < 0>

= Radial features (coarseness)

o i

where,

| dudv

P S u? + 02 < )

Uniform division may not be the best!! |
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Gabor Texture

= Fourier coefficients depend on the entire image (Global) = we lose
spatial information

= Objective: local spatial frequency analysis

= Gabor kernels: looks like Fourier basis multiplied by a Gaussian
= The product of a symmetric (even) Gaussian with an oriented sinusoid
= Gabor filters come in pairs: symmetric and anti-symmetric (odd)

= Each pair recover symmetric and anti-symmetric components in a
particular direction

= (ky, k,): the spatial frequency to which the filter responds strongly
= O :the scale of the filter. When ¢ = infinity, similar to FT

= We need to apply a number of Gabor filters are different scales,
orientations, and spatial frequencies

. b | | 242
<4 (Ts;ur7znzc-t.ric.(73-. y) = cos(kxx + kyy) exp — 552

( | 5 i 5
? : <+ y
l J { * Gonti: -symnwtric(mr y) = sin(kyx+kyy) €xXp — 55?2
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Example — Gabor Kernel

/Zebra stripes at different scales and orientations and convolved with
the Gabor kernel

The response falls off when the stripes are larger or smaller

The response is large when the spatial frequency of the bars
roughly matches the windowed by the Gaussian in the Gabor kernel

Local spatial frequency analysis

77

Gabor kernel

P

magnitude of
the filtered image
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Gabor Texture (cont.) \\\\\\ ’/II’

= Image /(x,y) convoluted with Gabor filters h
(totally M x N)

Wrmz(i’?ay) — /I(ivlayl)hmn(l”—mlay—yl)dl’ld@/l

= Using first and 2nd moments for each scale and
orientations

Umn = //|Wmn(a: y)|dxdy

Imn — \/ / / (“/V?'rm(fﬂ ; y)l - H-m;n)QdiEdy

= Features: e.qg., 4 scales, 6 orientations
- 48 dimensions

v = 100,000, 101 ---s 1435, O35]
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Gabor Texture (cont.)

----------
----------
.........
..........
..........
----------
----------

structured oriented granular random e
= Arranging the mean energy in a 2D form —»
= structured: localized pattern T
= oriented (or directional): column pattern | L
SC

= granular: row pattern
= random: random pattern
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Wavelet Features (PWT, TWT)

= \Wavelet

= Decomposition of signal with a family of basis functions with
recursive filtering and sub-sampling

= Each level, decomposes 2D signal into 4 subbands, LL LH, HL,

HH (L=low, H=high)

= PWT: pyramid-structured wavelet transform

= Recursively decomposes the LL band
= Feature dimension (3x3x1+1)x2 = 20

= [WT: pyramid-structured wavelet transform
= Some information in the middle frequency channels
= Feature dimension 40x2 = 80

l‘lll lllll MR
il'l!l‘! Ll . l Ii.il LA

lnm -ui-

lli nnuhuuu
I'I!l l l l LU

I i "N omlm.mu

mu lllllllll h ooooooo Niminn

MR LTI "I

L, NIRRT R

LI AT Y iR i

R iR IR IR

L T T ‘

L g L ‘ ot

NIRRT LU

U TN T »

original image PWT TWT
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Texture Comparisons

[Ma’98]

= Retrieval performance of different texture features according to the
number of relevant images retrieved at various scopes using Corel

Photo galleries

9 " £ :
# of relevant Dashdot: MRSAR (M) . | MRSAR (M)
ImageS 8% - Sohd: Gabor . : i
Dashed: TWT _ et
i Douted: PWT ' : =
Pll.B MRSAR . : piiah e § Gabor
Diamond: Tamura (improved) AN TWT
o 6} Tnangle: coarsenass histogram PP A4 PWT
% Circle: directionality e
¢ Star: edge histogram p
§ Sr Square: Tamura (traditional) of ,4++* % MRSAR
-
[ o+t vt
54 RV e o
2 4 o< | Tamura (improved)
g ~ < OC'
Z 4 00000”" AR— o _
| Coarseness histogram
iy A " directionality
; ) '..Qﬁ!sgﬁg‘g =*# edge histogram
gREARETCOEY Tamura
1 2
o )
0 S0 100 150

# of top matches considered
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Texture directionality

 Gradient:

b o
' . s © . At LM AL et
~ M )2 BB 5

W MRS R A
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» Shape features are computed out based on object
segments or regions, mainly including

—contour features
—and regions features.

 Typical approaches include
—Fourier shape description
—Moment invariants

A AL Lilm
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Region-based vs. Contour-based Descriptor

= Columns indicate contour similarity
= Outline of contours

= Rows Indicate region similarity
= Distribution of pixels
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Region-based Descriptor

Express pixel distribution within a 2D object region

Employs a complex 2D Angular Radial Transformation
(ART)
= 395 fields each of 4 bits

Rotational and scale invariance
Robust to some non-rigid transformation
L, metric on transformed coefficients

Advantages
= Describing complex shapes with disconnected regions
= Robust to segmentation noise
= Small size

=« Fast extraction and matching ':?:.. j * ' x
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= It's based on Curvature (%) Scale-Space (CSS)
= Zernike moments
Wavelets
= Rotational and scale invariance % 1? 33@
= Applicable to (a)

representation
s ART % “i "
= Robust to some non-rigid transformations
= Discriminating differences in (b) ‘ ‘ «
(e)

Contour-based Descriptor
= Found to be superior to
T 9—-—1—-0—
= For example .A -‘7(:) ﬁ
= Finding similarities in (c)-(e)

1FETTR6EEHH



Problems in Shape-based Indexing

Many existing approaches assume

= Segmentation is given

= Human operator circle object of interest
= Lack of clutter and shadows

= Objects are rigid

= Planar (2-D) shape models

= Models are known in advance

1FETTR6EEHH



In image retrieval system, increasing feature dimension can enhance
precision of retrieval greatly. However, high feature dimension will
lead to high computation cost. Hence it is Important to reduce the
redundant in feature data.

* Image feature space reduction
— Linear dimensional reduction techniques: PCA ...
— Nonlinear dimensional reduction techniques: Isomap, LLE ...
— Clustering based feature reduction methods

« High-dimensional feature indexing
— Database oriented high-dimensional data indexing
» Bucketing grouping searching techniques, K-d tree, R tree ...
— Clustering methods
— SOM

22 B
J BFRES MR A
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* How to measure similarity of different images base
on features?

—Image features always form into a fixed-length feature
vector.

—The similarity therefore can be measure by
 Euclidian distance
» Histogram intersection
« Quadratic distance
- Mahalanobis distance (S K =)
* Non-geometrical similarity

A L ilm
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* Similarity:

e distance:

W) A1) A s
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1
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Practical image retrieval systems

QBIC (Query By Image Content)

® http://www.gbic.almaden.ibm.com/

Virage

® http://wwwyvirage.com/cgi-bin/query-e

RetrievalVVare

® http://vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat

Photobook

MARS

® http://jadzia.ifp.uiuc.edu:8000
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* Most existing image retrieval systems have
one or more of following functions features:

—Random browsing
—Classified browsing

—Example based retrieval
—Sketch based retrieval
—Texture based retrieval

Vage?) AT A EH R
ot BFRES A
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Future of image retrieval

Human-computer ® |mage feature mapping
Interaction
® Standards of
Semantic speech performance
measurements

Web-oriented
® Construction of test
High dimensional data sets

Perspective

Multiple media
channels
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