6. Introduction to digital media retrieval
The workflow of digital media analysis and retrieval

1. Digital media
2. Data stream
3. Find features
4. Recognition, classification/clustering
5. Indexing and retrieval
6. Data segmentation
3. Video retrieval techniques
Differences and relations between image and video

- Images are **static**, but video are **dynamic**.
- Video stream can be viewed as sequence of image frames.
CBVR

• Sample YouTube Video page:
Main methods of digital media retrieval

• **Text-based** digital media retrieval

• **Content-based** digital media retrieval
Why we need video shots?

a. **Text Retrieval**: Keyword Extraction

- Diagram showing the process of indexing and document storage related to text retrieval.
Why we need video shots?

b. **Database Query**: Entity Extraction

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>login</th>
<th>age</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>53666</td>
<td>Jones</td>
<td>jones@cs</td>
<td>18</td>
<td>3.4</td>
</tr>
<tr>
<td>53688</td>
<td>Smith</td>
<td>smith@eecs</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>53650</td>
<td>Smith</td>
<td>smith@math</td>
<td>19</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Why we need video shots?

Video Shots in Storage

Indexing

Shot Indexing

???
Video shot == keyword in video?

Shot is used as basic unit for video indexing!

Storage Database

Query Processing Server
Overview

• CBVR has two phases:
 – Database Population phase
 • Video shot boundary detection
 • Key Frames selection
 • Feature extraction
 – Video Retrieval phase
 • Similarity measure
Overview (cont.)

[Wang, Li, Wiederhold, 2001]
Structuralizing video data

- **semantic content layers**, e.g., scenes and shots in a video program.
 - These layers are erased when they are displayed for audience, which weakens the ability for user dealing with raw video data.
Fundamental definitions in video structurization

• Frame (帧)
• Shot (镜头)
• Key frame (关键帧)
• Scene (场景)
• Group (组)
Fundamental definitions in video structurization

- Frame (帧)
- Shot (镜头)
- Key frame (关键帧)
- Scene (场景)
- Group (组)
a. Scene Cuts:

Sudden change of video content or focus
Proposal

- Analyze a video stream
- Segment the stream into shots
- Index shots using extracted features
 - Camera work characteristics
 - Color representations
- Browsing methods and user interfaces
Desired Video Interaction

• Focus on fast visual browsing.

• Ability to grasp idea of lengthy video in short time.

• Not simply fast forward.

• Challenge: find and manage essential visual cues, then present them visually in an effective way.
Viewer-Video Interaction: Conceptual Model

a) Viewer Interaction

b) Video Computing

c) Video Production & Editing
Video Production

- **Key Concepts:**
 - **Take:** continuous video
 - **Cut:** separates takes
 - **Camera characteristics**
 - Pan, tilt, zoom, etc.
 - **Shot:** edited takes

- **Resulting video contains embedded info:** cut points, camera characteristics
Main Function: Make the implied video structure explicit.
Video Segmentation: Problems

- Traditional Cut Detection – detect differences between frames using inter-frame comparisons (intensity, RGB, motion vectors).
- Misdetection due to rapid object motion, slow motion, animation, strobes, fading, wiping, dissolving, etc.
- Result: Low successful detection rate.
Basic video segmentation metrics

- Pair-wise comparison
 - Pixel-level
 - Sensitive to camera movement and motion
 - Block-level (Likelihood ratio)
 - Can tolerate small motion

\[DP_i(k, l) = \begin{cases}
 1 & \text{if } |P_i(k, l) - P_{i+1}(k, l)| > t \\
 0 & \text{otherwise}
\end{cases} \]

\[
\frac{\sum_{k,l=1}^{M,N} DP_i(k, l)}{M \times N} * 100 > T
\]

\[
\frac{\left[\frac{S_i + S_{i+1}}{2} + \frac{(m_i - m_{i+1})^2}{2} \right]^2}{S_i \times S_{i+1}} > t
\]

mi: mean intensity
Si: corresponding variance
Basic video segmentation metrics

How to measure statistical property of video frames?

Color Histogram
Basic video segmentation metrics

- Histogram comparison
 - Basic
 - Tolerate motion better
 - \(\chi^2 \)-test
- Color level can also be used but only the MSB to save the number of bins

\[
SD_i = \sum_{j=1}^{G} |H_i(j) - H_{i+1}(j)|
\]

\[
SD_i = \sum_{j=1}^{G} \frac{|H_i(j) - H_{i+1}(j)|^2}{H_{i+1}(j)}
\]
Sample of using histogram
Scene Cut
Gradual transition detection
Gradual transition detection

- Twin-comparison

- Use two thresholds T_b and T_s to accommodate both short-term and long-term transitions

- Differences of (F_1, F_2), (F_2, F_3), (F_3, F_4) are small, but difference of (F_1, F_4) is still big
Twin-comparison

- F_s — the potential beginning frame of the transition
- F_e — the ending frame of the transition

```plaintext
scan frame
if (Diff($F_i$) ≥ $T_b$)
    detect as camera break
else if ($T_b$ > Diff($F_i$) ≥ $T_s$)
    $F_s$ ← $F_i$
    $i$ ← $i$ + 1
    while (Diff($F_i$) ≥ $T_s$)
        $i$ ← $i$ + 1
    if (Diff($F_s$, $F_i$) ≥ $T_b$)
        $F_e$ ← $F_i$
```
Threshold selection (Tb, Ts)

- The distribution of frame-to-frame differences has a high and sharp peak near the small value, which is caused by noise instead of transition and assumed to follow Gaussian distribution \((\mu, \sigma)\).
- Choose \(Tb = \mu + \alpha \sigma, \alpha \in [5, 6]\)
- Choose \(Ts\) to be greater than the mean difference and on the right slope of \(M\)
- \(Ts \in [8, 10]\), constant over samples
Multi-pass approach

- Scanning all frames could be computationally hard
- Temporal skipping is more useful
 - e.g. one out of every 10 frames
 - Better for detecting gradual transition
 - May miss camera break
 - May get false detection (distance increased)
- Multi-pass approach
 - First pass, use either pair-wise or histogram with large skip factor and smaller Tb to collect the potential regions.
 - Second pass, two methods may be applied together (hybrid) to search the candidate regions while increasing the confidence.
Distinguish camera movement

- To distinguish gradual transitions from changes made by camera movements

- Basic approach—observing **optical flow** via motion vectors

Fig. 6a–c. Motion vector patterns resulting from camera panning and zooming. a / Camera panning direction. b Camera zoom-out. c Camera zoom-in
Distinguish camera movement

- **Panning**
 - Distribution of motion vectors has a single modal value (θ_m) that corresponds to the panning direction.

- **Zooming**
 - The vertical components of top and bottom motion vectors have different signs.
 - Similarly for horizontal components of left and right motion vectors.

\[
\sum_{k}^{N} |\theta_k - \theta_m| \leq \Theta_p
\]
Yet Another Video Segmentation

\(V = \text{image difference} \)

Video frames

\[V(1), V(2), V(3), \ldots \]

Image difference

Filter

\[F(V(1)), F(V(2)), F(V(3)), \ldots \]
Video Segmentation: Solution

- 92-98% success rate over 4.5 hours of video (news, movies, documentaries)
- 90% success when 1/3 of all cuts were via special effects
Shot Analysis

- Shot is simply sequence of frames capturing a scene’s spatial and temporal context.
- Extract this information:
 - Camera work yields spatial situation
 - Color info yields object information
Camera Work Information Extraction

- Camera movement causes global change in objects.
- Resulting point traces = motion vectors
- Motion vectors yield camera work parameters
- Computationally complex, not robust
Camera Work Information Extraction

- Proposal based on video x-ray imaging.
- Easy calculations, robust
Camera Work Information Extraction

- Parallel to time = fixed camera
- Slant = camera pan
- Degree of slant = speed of pan
- Line spread = zoom
- No information present for track and dolly
New Video Interfaces

- VideoScope
- VideoSpaceIcon
- ViewSpaceMonitor
- PaperVideo
PaperVideo

- Photo albums and video indexing.
- Shows potential simplicity of structured video apps.
VideoScope

- Possible use as video engineering tool.
- Shows potential complexity of structured video apps.
Related Work

- **Importance of visual interface**
 - Must activate user’s visual sense
 - Must stimulate user’s ability to manipulate video

- **What can be done in video production stage?**
Notable Reference

Cut Detection

Keyframe extraction
Reference

- Key Frame Extraction

http://www.cs.ust.hk/~rossiter/mm_projects/video_key_frame/key_frame_index.html
Reference

• Key Frame Extraction

http://www.cs.ust.hk/~rossiter/mm_projects/video_key_frame/key_frame_index.html
关键帧提取技术

- 镜头边界法
 - 选取镜头中的首帧和末帧
- 颜色特征法
 - 首帧为关键帧，其后比较与前面关键帧的颜色差异
- 运动分析法
 - 分析相机的运动
- 聚类分析法
聚类分析法

• 设一个镜头 \(S = \{ f_1, f_2, \ldots, f_m \} \)
• 找关键帧 \([F_1, F_2, \ldots, F_n] \)
• 定义帧间距离 \(d(f_i, f_j) \)

Step 0. 设定阈值，选定初始n个关键帧位置
Step 1. 按照到关键帧的最小距离重新划分
Step 2. 指定每一聚类的中心帧为新的关键帧。

如果与上次划分区别不大则停止，否则重复Step 1和Step 2。
Brain storm
Brain storm
Brain storm
4. Graphics retrieval techniques
3D Model Similarity Search

http://infovis.uni-konstanz.de/research/projects/SimSearch3D/
Elements of polygonal mesh modeling
Triangle mesh
Winged-Edge Meshes

Face List
f0	4 8 9
f1	0 10 9
f2	5 10 11
f3	1 12 11
f4	6 12 13
f5	2 14 13
f6	7 14 15
f7	3 8 15
f8	4 16 19
f9	5 17 16
f10	6 18 17
f11	7 19 18
f12	0 23 20
f13	1 20 21
f14	2 21 22
f15	3 22 23

Edge List
e0	v0 v1 f1 f12
e1	v1 v2 f3 f13
e2	v2 v3 f5 f14
e3	v3 v0 f7 f15
e4	v4 v5 f8 f16
e5	v5 v6 f9 f17
e6	v6 v7 f4 f18
e7	v7 v4 f19
e8	v0 v6 f7 f10
e9	v0 v5 f10 f1
e10	v1 v2 f3 f13
e11	v1 v6 f2 f13
e12	v2 v6 f3 f4
e13	v2 v7 f5 f4
e14	v3 v7 f6 f5
e15	v3 v8 f6 f7
e16	v6 v8 f8 f9
e17	v6 v9 f9 f10
e18	v7 v8 f10 f11
e19	v4 v8 f11 f8
e20	v1 v9 f12 f13
e21	v2 v9 f13 f14
e22	v3 v9 f14 f15
e23	v0 v9 f15 f12

Vertex List
v0	0,0,0 8 9 0 23 3
v1	1,0,0 10 11 1 20 0
v2	1,1,0 12 13 2 21 1
v3	0,1,0 14 15 3 22 2
v4	0,0,1 8 15 7 19 4
v5	1,0,1 10 9 4 16 5
v6	1,1,1 12 11 5 17 6
v7	0,1,1 14 13 6 18 7
v8	5,5,0 16 17 18 19
v9	5,5,1 20 21 22 23

Winged Edge Structure
- **Back CCW Edge**: v1 to v2
- **Front CCW Edge**: v2 to v1
- **Other Outgoing Edges**: v1 to v6, v2 to v6
- **Back CW Edge**: v2 to v1
- **Front CW Edge**: v1 to v2
Main idea

3D model → feature extraction → high dimensional feature vector → insert → ε-search
NN-search
Feature vectors

- geometry based
- image based
Feature vectors

- Geometry based

Ray-based scanning after principal axes transformation

Multi-resolution spherical harmonics representation
Feature vectors

- Image based

Flat 2D silhouettes with Fourier coefficients

Depth buffer maps from 6 directions
What’s good?

Self-organizing map of a 3D database