

Digital Asset Management 数字媒体资源管理

6. Introduction to digital media retrieval

任课老师: 张宏鑫 2008-10-08

The workflow of digital media analysis and retrieval

3. Video retrieval techniques

Differences and relations between image and video

- Images are **static**, but video are **dynamic**.
- Video stream can be viewed as sequence of image frames.

CBVR

• Sample YouTube Video page:

*沖ジナ、*学计算机学院 数字媒体与网络技术

Main methods of digital media retrieval

Overview

• CBVR has two phases:

- -Database Population phase
 - Video shot boundary detection
 - Key Frames selection
 - Feature extraction
- -Video Retrieval phase
 - Similarity measure

Overview (cont.)

final results

[Wang, Li, Wiederhold, 2001]

Structuralizing video data

- semantic content layers, e.g., scenes and shots in a video program.
 - -These layers are erased when they are displayed for audience, which weakens the ability for user dealing with raw video data.

Fundamental definitions in video structurization

Fundamental definitions in video structurization

Proposal

- Analyze a video stream
- Segment the stream into shots
- Index shots using extracted features
 - Camera work characteristics
 - Color representations
- Browsing methods and user interfaces

Desired Video Interaction

- Focus on fast visual browsing.
- Ability to grasp idea of lengthy video in short time.
- Not simply fast forward.
- Challenge: find and manage essential visual cues, then present them visually in an effective way

Viewer-Video Interaction: Conceptual Model

a) Viewer Interaction

b) Video Computing

c) Video Production & Editing

Video Production

• Key Concepts:

- Take: continuous video
- Cut: separates takes
- Camera characteristics
 Pan, tilt, zoom, etc.
- Shot: edited takes

 Resulting video contains embedded info: cut points, camera characteristics

Video Computing

• Main Function: Make the implied video structure explicit.

Video Segmentation: Problems

- Traditional Cut Detection detect differences between frames using inter-frame comparisons (intensity, RGB, motion vectors).
- Misdetection due to rapid object motion, slow motion, animation, strobes, fading, wiping, dissolving, etc.
- Result: Low successful detection rate.

Basic video segmentation metrics

- Pair-wise comparison
 - Pixel-level
 - Sensitive to camera movement and motion
 - Block-level (Likelihood ratio)
 - Can tolerate small motion

$$\frac{\left[\frac{S_i + S_{i+1}}{2} + \left(\frac{m_i - m_{i+1}}{2}\right)^2\right]^2}{S_i * S_{i+1}} > t$$

 $DP_{i}(k,l) = \begin{cases} 1 & \text{if } |P_{i}(k,l) - P_{i+1}(k,l)| > t \\ 0 & \text{otherwise} \end{cases}$ $\frac{\sum_{k,l=1}^{M,N} DP_{i}(k,l)}{M*N} * 100 > T$

mi: mean intensity Si: corresponding variance

Basic video segmentation metrics

How to measure statistical property of video frames?

Color Histogram

Basic video segmentation metrics

- Histogram comparison
 - Basic
 - Tolerate motion better
 - χ 2-test
 - Color level can also be used but only the MSB to save the number of bins

$$SD_i = \sum_{j=1}^G |H_i(j) - H_{i+1}(j)|$$

$$SD_i = \sum_{j=1}^{G} \frac{|H_i(j) - H_{i+1}(j)|^2}{H_{i+1}(j)}$$

Sample of using histogram

Scene Cut

Gradual transition detection

Gradual transition detection

- Twin-comparison
 - Use two thresholds Tb and Ts to accommodate both short-term and long-term transitions
 - Differences of (F1, F2), (F2, F3), (F3, F4) are small, but difference of (F1, F4) is still big

- Twin-comparison
 - F_s— the potential beginning frame of the transition
 - F_e the ending frame of the transition

```
scan frame
if (Diff(F_i) \geq T_h)
    detect as camera break
else if (T_h > \text{Diff}(F_i) \ge T_s)
    F_{s} \leftarrow F_{i}
    i \leftarrow i + 1
    while (Diff(F_i) \geq T_a)
        i \leftarrow i + 1
    if (Diff(F_{s}, F_{i}) \geq T_{b})
        F_{e} \leftarrow F_{i}
```

Threshold selection (Tb, Ts)

- The distribution of frame-to-frame differences has a high and sharp peak near the small value, which is caused by noise instead of transition and assumed to follow Gaussian distribution (μ, σ).
 - Choose Tb = μ + $\alpha\sigma$, $\alpha \in [5, 6]$
 - Choose Ts to be greater than the mean difference and on the right slope of M
 Ts ∈ [8, 10], constant over samples

Multi-pass approach

- Scanning all frames could be computationally hard
- Temporal skipping is more useful
 - e.g. one out of every 10 frames
 - Better for detecting gradual transition
 - May miss camera break
 - May get false detection (distance increased)
- Multi-pass approach
 - First pass, use either pair-wise or histogram with large skip factor and smaller Tb to collect the potential regions.
 - Second pass, two methods may be applied together (hybrid) to search the candidate regions while increasing the confidence.

Distinguish camera movement

- To distinguish gradual transitions from changes made by camera movements
- Basic approach— observing optical flow via motion vectors

Fig. 6a-c. Motion vector patterns resulting from camera panning and zooming. a / Camera panning direction. b Camera zoom-out. c Camera zoom-in

Distinguish camera movement

• Panning

Distribution of motion vectors has a single modal value (θm) that corresponds to the panning direction.

$$\sum_{k}^{N} |\theta_k - \theta_m| \le \Theta_p$$

- Zooming
 - The vertical components of top and bottom motion vectors have different signs.
 - Similarly for horizontal components of left and right motion vectors.

Yet Another Video Segmentation

V = image difference

Video Segmentation: Solution

 92-98% success rate over 4.5 hours of video (news, movies, documentaries)

 90% success when 1/3 of all cuts were via special affects

Shot Analysis

 Shot is simply sequence of frames capturing a scene's spatial and temporal context.

• Extract this information:

- Camera work yields spatial situation
- Color info yields object information

Camera Work Information Extraction

- Camera movement causes global change in objects.
- Resulting point traces = motion vectors
- Motion vectors yield camera work parameters
- Computationally complex, not robust

Camera Work Information Extraction

Camera Work Information Extraction

- Parallel to time = fixed camera
- Slant = camera pan
- Degree of slant = speed of pan
- Line spread = zoom
- No information present for track and dolly

New Video Interfaces

VideoScope
VideoSpaceIcon
ViewSpaceMonitor
PaperVideo

PaperVideo

- Photo albums and video indexing.
- Shows potential simplicity of structured video apps.

VideoScope

Possible use as video engineering tool.

Shows potential complexity of structured video apps.

Related Work

Importance of visual interface

- Must activate user's visual sense
- Must stimulate user's ability to manipulate video

• What can be done in video production stage?

Notable Reference

Cut Detection

K. Otsuji, Y. Tonomura, "Projection Detecting Filter for Video Cut Detection," *Proc. ACM Multimedia 93*, ACM Press, New York, 1993.

Keyframe extraction

Reference

• Key Frame Extraction

<u>http://www.cs.ust.hk/~rossiter/mm_projects/</u> <u>video_key_frame/key_frame_index.html</u>

Reference

• Key Frame Extraction

<u>http://www.cs.ust.hk/~rossiter/mm_projects/</u> <u>video_key_frame/key_frame_index.html</u>

关键帧提取技术

• 镜头边界法

- 选取镜头中的首帧和末帧
- 颜色特征法
 - 首帧为关键帧,其后比较与前面关键帧的颜
 色差异
- 运动分析法
 - 分析相机的运动
- 聚类分析法

- 设一个镜头 $S = \{f_1, f_2, ..., f_m\}$
 - 找关键帧 $[F_1, F_2, ..., F_n]$
 - 定义帧间距离 $d(f_i, f_j)$

Step 0. 设定阈值,选定初始n个关键帧位置 Step I. 按照到关键帧的最小距离重新划分

Step 2. 指定每一聚类的中心帧为新的关键帧。

如果与上次划分区别不大则停止,否则重复 Step I和Step 2.

Brain storm

Brain storm

<u>更多相关专辑>></u>

<u>强殖装甲</u> 1:31:28 强殖装甲强殖装甲强殖装甲 <u>强殖装甲</u> <u>malinkof</u> 3个月前 播放: 17,361 | 评论: 21 | 收藏: 21 <u>2条相似结果</u>

Brain storm

更多相关专辑>>

专辑:<u>强殖装甲</u> 视频:26 时长:10:10:51 播放:42,021 专辑:<u>强殖装甲</u> 视频:26 时长:10:00:23 播放:2,400 专辑:<u>强殖装甲</u>

视频:27 时长:10:11:26 播放:1,982

<u>强殖装甲</u> 1:31:28 强殖装甲强殖装甲强殖装甲 <u>强殖装甲</u> <u>malinkof</u> 3个月前 播放: 17,361 | 评论: 21 | 收藏: 21 <u>2条相似结果</u>

4. Graphics retrieval techniques

3D Model Similarity Search

http://infovis.uni-konstanz.de/research/projects/SimSearch3D/

Elements of polygonal mesh modeling

Triangle mesh

Winged-Edge Meshes

-	1000	
1.20	CO	List
1.0		LINU

fO	489
f1	0 10 9
f2	5 10 11
f3	1 12 11
f4	6 12 13
f5	2 14 13
f6	7 14 15
f7	3 8 15
f8	4 16 19
f9	5 17 16
f10	6 18 17
f11	7 19 18
f12	0 23 20
f13	1 20 21
f14	2 21 22
f15	3 22 23

	Edge L	ist	
eO	v0 v1	f1 f12	9 23 10 20
e1	v1 v2	f3 f13	11 20 12 21
e2	v2 v3	f5 f14	13 21 14 22
e3	V3 V0	f7 f15	15 22 8 23
e4	v4 v5	f0 f8	19 8 16 9
e5	v5 v6	f2 f9	16 10 17 11
e6	v6 v7	f4 f10	17 12 18 13
e7	v7 v4	f6 f11	18 14 19 15
e8	v0 v4	f7 f0	3974
e9	v0 v5	f0 f1	8 0 4 10
e10	v1 v5	f1 f2	0 11 9 5
e11	v1 v6	f2 f3	10 1 5 12
e12	v2 v6	f3 f4	1 13 11 6
e13	v2 v7	f4 f5	12 2 6 14
e14	V3 V7	f5 f6	2 15 13 7
e15	v3 v4	f6 f7	14 3 7 15
e16	v5 v8	f8 f9	4 5 19 17
e17	V6 V8	f9 f10	5 6 16 18
e18	v7 v8	f10 f11	6 7 17 19
e19	v4 v8	f11 f8	7 4 18 16
e20	v1 v9	f12 f13	0 1 23 21
e21	v2 v9	f13f14	1 2 20 22
e22	V3 V9	f14f15	2 3 21 23
e23	V0 V9	f15f12	3 0 22 20

v1

Vertex List

vO	0,0,0	8 9 0 23 3
v1	1,0,0	10 11 1 20 0
v2	1,1,0	12 13 2 21 1
v3	0,1,0	14 15 3 22 2
v4	0,0,1	8 15 7 19 4
v5	1,0,1	10 9 4 16 5
v6	1,1,1	12 11 5 17 6
٧7	0,1,1	14 13 6 18 7
v8	.5,.5,0	16 17 18 19
v9	.5,.5,1	20 21 22 23

Main idea

Feature vectors

- geometry based
- image based

Feature vectors

• Geometry based

Ray-based scanning after principal axes transformation

Multi-resolution spherical harmonics representation

Feature vectors

Image based

Flat 2D silhouettes with Fourier coefficients

Depth buffer maps from 6 directions

What's good?

Self-organizing map of a 3D database