Computer Graphics 2015




Previous lessons

- Rasterization
- line
- circle /ellipse ? => homework

- OpenGL and its rendering pipeline

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



3 Stages in OpenGL

Define Objects in World Scene

Set Modeling and Viewing Transformations

Render the Scene

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Example Code

int main(int argc, char **argv)
{
glutlnit(&argc, argv);
glutInitDisplayMode (
GLUT _SINGLE | GLUT_RGB | GLUT _DEPTH);

glutInitWindowPosition(100,100);
glutInitWindowSize(300,300);
glutCreateWindow (''square');

glClearColor(0.0, 0.0, 0.0, 0.0);
glMatrixMode(GL_PROJECTION);
glL.oadldentity();

¢lOrtho(0.0, 10.0, 0.0, 10.0, -1.0, 1.0);

glutDisplayFunc(display);
glutMainLoop();
return 0;

void display(void)

d

glClear( GL. COLOR BUFFER BIT);

glColor31(0.0, 1.0, 0.0);

glBegin(GL. POLYGON);
glVertex31(2.0, 4.0, 0.0);
glVertex31(8.0, 4.0, 0.0);
glVertex31(8.0, 6.0, 0.0);
glVertex3£(2.0, 6.0, 0.0);

glEnd();
glFlush();

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016




Attribute parameters

- How to generate different display effects!?
- per primitive (C++)

- system owns states (OpenGlL)

- OpenGL is a state machine!

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



State parameters of OpenGL

- Attributes are assigned by OpenGL state functions:
- color, matrix mode, buffer positions, Light ...

- on state paras in this lesson

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Primitives

. GL_POINTS - GL_TRIANGLES

- GL_LINES - GL_QUADS

- GL_LINE_STRIP - GL POLYGON

- GL_LINE_LOOP . GL TRIANGLE STRIP

. GL TRIANGLE FAN
. GL QUAD STRIP

|.GL POLYGON and GL_TRIANGLE are the only ones in

common usage
2.valid OpenGL polygons are closed, convex, co-planar and
non-intersecting, which is always true for triangles!

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Examples

glBegin(GL_POLYGON);
glVertex2i(0,0);
glVertex2i(0,1);
glVertex2i(l, I);
glVertex2i(1,0);

glEnd() ;

glBegin(GL_POINTY);

glVertex2i(0,0);

glVertex2i(0, |);

glVertex2i(l,1);

glVertex2i(l,0);
glEnd() ;

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016



Examples

GLfloat Tist[6][2];
glBegin(GL LINES)
for (inti=0;i<6;it++)
glVertex2v(list[i]);
glEnd() ;

glBegin(GL LINE STRIP)
for (inti=0;i<6;it+)
glVertex2v(list[i]);
glEnd() ;

glBegin(GL LINE LOOP)
for (inti=0;i<6;it+)
glVertex2v(list[i]);
glEnd() ;

Computer Graphics @ ZJU

2§28

Hongxin Zhang, 2010-2016



Examples

GLfloat list[6][2] ;

glColor3f(0.0, 1.0, 0.0);
glBegin(GL TRIANGLES)
for (inti=0;i<6;it++)
glVertex2v(list][i]);

glEnd() ;

glBegin(GL TRIANGLES)
glColor3f(1.0, 0.0, 0.0);
for (i=0;i<3;it++)
glVertex2v(list][i]);
glColor3f(1.0, 1.0, 1.0);
for (i=3;i<6;it+)
glVertex2v(list][i]);
glEnd() ;

Computer Graphics @ ZJU

. i
N

.

Hongxin Zhang, 2010-2016



Examples

3 5,

GL TRIANGLE STRIP < ;_/-E
2° 4
GL TRIANGLE FAN

GL QUAD STRIP

Pl P3 P5

3
| t
Must be
— planar convex
PO P2 P4 P7

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Command Syntax

- All command names begin with gl
- Ex.:glVertex3f( 0.0, 1.0, 1.0 );

- Constant names are in all uppercase
- Ex.:GL_COLOR BUFFER_BIT

- Data types begin with GL
- Ex.: GLfloat onevertex| 3 |;

- Most commands end in two characters that determine
the data type of expected arguments

- Ex.:glVertex3f( ... ) => 3 GLfloat arguments

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



glVertex

- All primitives are defined in terms of vertices
- glVertex2f( x,y );
- glVertex3f( x,y,z );
- glVertex4f( x,y,z, w );
- glVertex3fv(a); // with a[0],a[l], a[2]

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Building Objects From Vertices

- Specify a primitive mode, and enclose a set of
vertices in a glBegin / glEnd block

. glBegin( GL_POLYGON );
- glVertex3f( 1.0, 2.0,0.0);
- glVertex3f( 0.0, 0.0,0.0 );
- glVertex3f( 3.0,0.0,0.0 );
- glVertex3f( 3.0, 2.0,0.0 );
- glEnd();

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Example

void drawOneCubeface (size)

{

static Glfloat v[8][3]

v[0] [O]
v[1][O]
v[0][1]
v[2] [1]
v[0] [2]
v[4] [2]

glBegin (GL _

= v[3][O]
v[2] [0]
v[1l][1]
v[3][1]
v[l][2]
v[3][2]

POLYGON) ;

glVertex3£fv(v[0]) ;
glVertex3fv(vI[1l]) ;
glVertex3fv(v[2]);
glVertex3fv(v[3]);

glEnd() ;
}

Computer Graphics @ ZJU

v[4] [0]
v[5][0]
v[4][1]
v[6][1]
v[2] [2]
v[6] [2]

v[7][0]
v[6] [0]
v[5][1]
v[7][1]
v[3][2]
v[7][2]

-size/2.
size/2.
-size/2.
size/2.
-size/2.
size/2.

V4

V5

Hongxin Zhang, 2010-2016

olololoNoNe)

Ne Noe Noe No No N



Real examples in OpenGL|ES

float afVertices [ ={...};

glEnableVertexAttribArray(0);

glVertexAttribPointer(VERTEX ARRAY,GL_FLOAT, GL_ FALSE,afVertices);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Note: there is NO glBegin/glVertex/glEnd in OpenGL|ES

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Colors

- OpenGL colors are typically defined as RGB components

- each of which is a float in the range [0.0, |.0]

- For the screen’s background:

- glClearColor( 0.0,0.0,0.0 );// black color
- glClear( GL_COLOR BUFFER BIT );

- For objects:

- glColor3f( 1.0, 1.0, 1.0); // white color

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Other Commands in glBegin / glEnd blocks

- Not every OpenGL command can be located in
such a block. Those that can include, among others:

- glColor
- gINormal (to define a normal vector)
- glTexCoord (to define texture coordinates)

- glMaterial (to set material properties)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Example

glBegin( GL_POLYGON );
glColor3f( 1.0, 1.0, 0.0 ); glVertex3f( 0.0,0.0, 0.0 );
glColor3f( 0.0, 1.0, 1.0 ); glVertex3f( 5.0,0.0,0.0 );
glColor3f( 1.0,0.0, 1.0 ); glVertex3f( 0.0,5.0, 0.0 );
glEnd();

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Polygon Display Modes

glPolygonMode( GLenum face, GLenum mode );
- Faces: GL_ FRONT, GL BACK, GL FRONT AND_ BACK
- Modes: GL_FILL, GL_LINE, GL_POINT

- By default, both the front and back face are drawn filled

glFrontFace( GLenum mode );

- Mode is either GL_CCW (default) or GL_CW

glCullFace( Glenum mode );
- Mode is either GL_FRONT, GL_BACK, GL_FRONT_AND_BACK;

You must enable and disable culling with

- glEnable( GL_CULL_FACE) or glDisable( GL_CULL FACE );

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Drawing Other Objects

* GLU contains calls to draw cylinders, cones and more
complex surfaces called NURBS

* GLUT contains calls to draw spheres and cubes

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Compiling OpenGL Programs

* To use GLUT :
* #include <GL/glut.h>
* This takes care of every other include you need

* Make sure that glut.lib (or glut32.lib) is in your
compiler’s library directory, and that the object
module or DLL is also available

* See OpenGL Game Programming or online tutorials
for details

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Structure of GLUT-Assisted Programs

- GLUT relies on user-defined callback functions,
which it calls whenever some event occurs

- Function to display the screen
- Function to resize the viewport

- Functions to handle keyboard and mouse events

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Event Driven Programming

Display
Handler

Keyboard
Handler

Main
Event
Loop

Mouse
Handler

T
-

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016



Simple GLUT Example

Displaying a square

int main (int argc, char *argv(])

{
glutlnit(&argc, argv);
glutinitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);

int windowHandle
= glutCreateWindow("Simple GLUT App");

glutDisplayFunc(redraw);
glutMainLoop();

return 0;

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Display Callback

Called when window is redrawn

void redraw()

1
glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_QUADS);
glColor3f(1, 0, 0);

glVertex3f(-0.5, 0.5, 0.5);
glVertex3f( 0.5, 0.5, 0.5);
glVertex3f( 0.5, -0.5, 0.5);
glVertex3f(-0.5, -0.5, 0.5);

glEnd(); // GL_QUADS

glutSwapBuffers();
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



More GLUT

Additional GLUT functions

glutPositionWindow(int x,int y);
glutReshapeWindow(int w, int h);

Additional callback functions

glutReshapeFunction(reshape);
glutMouseFunction(mousebutton);
glutMotionFunction(motion);
glutKeyboardFunction(keyboardCB);
glutSpecialFunction(special);
glutlidleFunction(animate);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Reshape Callback

Called when the window is resized

void reshape(int w, int h)

{
glViewport(0.0,0.0,w,h);

glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0.0,w,0.0,h, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Mouse Callbacks

Called when the mouse button is pressed

void mousebutton(int button, int state, int x, int y)

{
if (button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)

{

rx = X; ry = winHeight - y;
)
;

Called when the mouse is moved with button down

void motion(int x, int y)

{

rX = x; ry = winHeight - y;

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Keyboard Callbacks

Called when a button is pressed

void keyboardCB(unsigned char key, int x, int y)

{
switch(key)

{ case 'a": cout<<"a Pressed"<<endl; break; }

}

Called when a special button is pressed

void special(int key, int x, int y)

{
switch(key)

{ case GLUT_F1_KEY:
cout<<"F1 Pressed"<<endl; break; }

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL — GLUT Example

#include <gl/glut.h> void display( void )

#include <stdlib.h> {

static GLfloat spin = 0.0; glClear( GL_COLOR_BUFFER_BIT );

void init( void ) glPushMatrix():

{ glRotatef( spin, 0.0, 0.0, 1.0 );
glClearColor( 0.0, 0.0, 0.0, 0.0 );
glShadeModel( GL_FLAT ); glColor3f(1.0,1.0,1.0);

} glRectf( -25.0, -25.0, 25.0, 25.0 );

glPopMatrix();

glutSwapBuffers();
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL — GLUT Example

void spinDisplay( void )
{
spin += 2.0;
if( spin > 360.0)
spin -= 360.0;

glutPostRedisplay();

Computer Graphics @ ZJU

void reshape( int w, int h)

{

glViewport( 0, 0, (GLsizei) w, (GLsizei)
h);

glMatrixMode( GL_PROJECTION );
glLoadldentity();

glOrtho( -50.0, 50.0, -50.0, 50.0, -1.0, 1.0 );
glMatrixMode( GL_MODELVIEW );

glLoadldentity();

Hongxin Zhang, 2010-2016



OpenGL — GLUT Example

void mouse( int button, int state, int x, inty)

{

switch( button )
{
case GLUT_LEFT_BUTTON:
if( state == GLUT_DOWN )
glutldleFunc( spinDisplay );
break;
case GLUT_RIGHT_BUTTON:
if( state == GLUT_DOWN )
glutidleFunc( NULL );
break;

default: break;
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL — GLUT Example

int main( int argc, char ** argv )

{
glutlnit( &argc, argv );
glutinitDisplayMode( GLUT_DOUBLE | GLUT_RGB );
glutinitWindowsSize( 250, 250 );
glutinitWindowPosition( 100, 100 );
glutCreateWindow( argv[ 0] );

init();

glutDisplayFunc( display );
glutReshapeFunc( reshape );
glutMouseFunc( mouse );
glutMainLoop();

return 0;

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Web Resources

http://www.opengl.org
http://nehe.gamedev.net

http://www.xmission.com/~nate/glut.html

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016


http://www.opengl.org/
http://nehe.gamedev.net/
http://www.xmission.com/~nate/glut.html

Color and greyscale

- Color is a fundamental primitive attribute

- RGB color model

- Color lookup table / Color map

- Greyscale

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Why RGB?

-
+
i

Computer Graphics @ ZJU

\

o/

Upper
__ " Polarizer

7 Color Filter
Substrate

ITO Electrode
: TFT
F e Substrate

ower
Polarizer

. -
s X0z LCD 4

Hongxin Zhang, 2010-2016



Color Model

sclera _retina
— G R
o 0.2 - N\ cornea - 4
"58 ' crystallm
U o lens [58
Y A
= pupil central
=«

Qﬁg aqueous" -
- humor ,s I
iris” A
ciliary N
muscles e
e blind |©optic
vitreous spot nerve

humor

1.35mm from retina centre

-9
__10000x10 m

dgmm from retina centre

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Color perception

- Three types of cones:

S M L
Blue Green Red roughly approximate
430nm  560nm 610nm peak sensitivities

- Colorblindness results from a deficiency of one
cone type.

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Color function

- GLUT RGB and
- GLUT_RGBA with alpha channel

- glColor3f (1.0, 1.0, 1.0);

- glColor3i (0, 255, 255);
- glColor3fv (colorArray);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Color function

- Color index mode
- glindexi (196);

- Color blending function
- glEnable (GL_BLEND);
- glDisable (GL_BLEND);

- glBlendFunc (sFactor, dFactor);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



OpenGL Color Array

- Defined in the latest OpenGL standard
- glEnableClientState (GL _COLOR ARRAY);

- glColorPointer ( ...);

- glEnableClientState (GL_VERTEX_ARRAY);

- glVertexPointer ( ...);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Attributes of

- Point

- Size and Color
- Line

- line width

- line style

- brush

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Region attributes

- defined by a planar polygon
- filling style:
- wireframe,

- fill,

- tiling pattern

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Polygon filling

- Polygon representation

- By vertex By lattice
- Polygon filling:

- vertex representation vs lattice representation

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Polygon filling

* fill a polygonal area > test every pixel in the raster to
see if it lies inside the polygon.

even-odd test winding number test

Question>: How to Judge...?

22

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Inside check

n-1
Wh = %Zﬂ: B,
=L S arccos / PV, P \
o =0 '\‘Pv'z‘ IP‘?HI ‘ y.

23

Question6: How to improve ...!

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Inside check

even-odd test

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Scan Line Methods

* Makes use of the coherence properties

—Spatial coherence : Except at the boundary edges,
adjacent pixels are likely to have the same
characteristics

—Scan line coherence : Pixels in the adjacent scan
lines are likely to have the same characteristics

* Uses intersections between area boundaries and scan
lines to identify pixels that are inside the area

24
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Scan Line Method

- Proceeding from left to right the intersections are paired and intervening
pixels are set to the specified intensity

- Algorithm
- Find the intersections of the scan line with all the edges in the polygon
- Sort the intersections by increasing X-coordinates

- Fill the pixels between pair of intersections

From top to down /AR S S

\4

Discussion 5 : How to speed up, or how to avoid

calculating intersection
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016

25



Efficiency Issues in Scan Line Method

* Intersections could be found using edge coherence

the X-intersection value x;,, of the lower scan line can be computed from the
X-intersection value x; of the preceeding scanline as

— | . E—

[+ ] !

* List of active edges could be maintained to increase efficiency

* Efficiency could be further improved if polygons are convex, much better if they
are only triangles

26
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Special cases for Scan Line Method

* Overall topology should be
considered for intersection I,
at the vertices

 Intersections like /; and I,

should be considered as two
Intersections

* Intersections like /; should

be considered as one 1
intersection E —
.l
-

* Horizontal edges like £ need
not be considered

27
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Advantages of Scan Line method

* The algorithm is efficient
* Each pixel is visited only once

* Shading algorithms could be easily integrated with
this method to obtain shaded area

28
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Seed Fill Algorithms

* Assumes that at least one pixel interior to the
polygon is known

* |t is a recursive algorithm

* Useful in interactive paint packages

[ ]
HEEN L T B
[ ] (T T T e T T
oy
[ ] HEE
eed 4-connected I 8 - connected | ]
[ ] HEE

29
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Aliasing

* Aliasing is caused due to the discrete nature of the display
device

» Rasterizing primitives is like sampling a continuous signal by a
finite set of values (point sampling)

* Information is lost if the rate of sampling is not sufficient. This
sampling error is called aliasing.

* Effects of aliasing are

—Jagged edges

T
—Incorrectly rendered fine details

—Small objects might miss

30
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Aliasing(examples)

I

i
Original Rendered

It

Jagged profiles

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Aliasing(examples)

Disintegrating textures

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Aliasing(examples)

Original Rendered

Loss of detail

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Antialiasing

* Application of techniques to reduce/eliminate aliasing
artifacts

e Some of the methods are

—averaging methods (post processing). Intensity of a
pixel is set as the weighted average of its own intensity
and the intensity of the surrounding pixels

—Area sampling, more popular

34
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Antialiasing(postfiltering)

How should one supersample?

Jittered Regular

Taking 9 samples per pixel

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Area Sampling

* A scan converted primitive occupies finite area on
the screen

* Intensity of the boundary pixels is adjusted
depending on the percent of the pixel area covered
by the primitive. This is called weighted area sampling

36
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Area Sampling

* Methods to estimate percent of pixel covered by the
primitive
—subdivide pixel into sub-pixels and determine how
many sub-pixels are inside the boundary

—Incremental line algorithm can be extended, with
area calculated as y+0.5

Area=mxx—y+c+0.5

filled area g
x-0.5 Xx )c+0.357

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Clipping

* Clipping of primitives is done usually before scan
converting the primitives

* Reasons being

—scan conversion needs to deal only with the clipped
version of the primitive, which might be much
smaller than its unclipped version

—Primitives are usually defined in the real world, and
their mapping from the real to the integer domain
of the display might result in the overflowing of the
integer values resulting in unnecessary artifacts

38
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Clipping

* Why Clipping!?

* How Clipping!?
—Lines

—Polygons

* Note: Content from chapter 4.

—Lots of stuff about rendering systems and
mathematics in that chapter.

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Definition

* Clipping — Removal of content that is not going to be
displayed

—Behind camera

— Too close

—Too far

— Off sides of
the screen

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



How would we clip!?

 Points?
 Lines!?
* Polygons?

* Other objects!?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



We'll start in 2D

* Assume a 2D upright rectangle we are clipping
against

—Common in windowing systems
—Points are trivial

 >= minx and <= maxx and >= miny and <= maxy

+b

TC
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016




Line Segments

* What can happen when a line segment is clipped!?

e ///

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016




Cohen-Sutherland Line Clipping

* WEe’'ll assign the ends of a line “outcodes”, 4 bit values that
indicate if they are inside or outside the clip area.

y < ymin X > Xmax
y > ymax\\ /X < Xmin
1001 1000 1010
ymax
0001 0000 0010
ymin
0101 0100 0110

Computer Graphics @ ZJU XIIliIl Xmax Hongxin Zhang, 2010-2016



Outcode cases

 We'll call the two endpoint outcodes o, and o,.

—If o, = 0, = 0, both endpoints are inside.

—else if (0, & 0,) != 0, both ends points are on the

same side, the edge is discarded.

1001 1000 1010
0001 0000 0010
0101 0100 0110

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016



More cases

o else if (0, !'=0) and (0, = 0), (or vice versa), one end

is inside, other is outside.

—Clip and recompute one that’s outside until

inside.

—Clip edges with bits set...

M : 1001 1000 1010
—May require two
clip computations
0001 0000 0010
0101 0100 0110

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016



Last case...

—else if (ol & 02) = 0, end points are on different

sides.

* Clip and recompute.

* May have some inside part or may not...

* May require up to 4 clips!

Computer Graphics @ ZJU

1001 1000 1010
0001 0000 0010
0101 0100 0110

Hongxin Zhang, 2010-2016



Cohen-Sutherland Line-Clipping Algorithm

To do the clipping find the
end point that lies outside

Test the outcode to find
the edge that is crossed
and determine the
corresponding intersection
point

Replace the outside end-
point by intersection-point

Repeat the above steps for
the new line

Computer Graphics @ ZJU

48
Hongxin Zhang, 2010-2016



typedef int OutCode;

const int INSIDE =
const int LEFT 1; // 0001
const int RIGHT = 2; // 0010
const int BOTTOM 4; // 0100
const int TOP = 8; // 1000

0; // 0000

// Compute the bit code for a point (x, y) using the clip rectangle
// bounded diagonally by (xmin, ymin), and (xmax, ymax)

// ASSUME THAT xmax, xmin, ymax and ymin are global constants.

OutCode ComputeOutCode(double x, double y)

{
OutCode code;
code = INSIDE; // initialised as being inside of [[clip window]]
if (x < xmin) // to the left of clip window
code |= LEFT;
else if (x > xmax) // to the right of clip window
code |= RIGHT;
if (y < ymin) // below the clip window
code |= BOTTOM;
else if (y > ymax) // above the clip window
code |= TOP;
return code;
}

// Cohen—Sutherland clipping algorithm clips a line from
// PO = (x0, y0) to P1 = (x1, yl) against a rectangle with
// diagonal from (xmin, ymin) to (xmax, ymax).
void CohenSutherlandLineClipAndDraw(double x0, double y0, double x1, double yl)
{
// compute outcodes for P0, P1l, and whatever point lies outside the clip rectangle
OutCode outcodeO0 = ComputeOutCode(x0, yO0);
OutCode outcodel = ComputeOutCode(xl, yl);
bool accept = false;

while (true) {
if (! (outcode0 | outcodel)) { // Bitwise OR is 0. Trivially accept and get out of loop
accent = true-



// Cohen—Sutherland clipping algorithm clips a line from

// PO

// diagonal from (xmin, ymin) to (xXmax, ymax).
void CohenSutherlandLineClipAndDraw(double x0, double y0, double x1, double yl)

{

(x0, y0) to P1 = (x1, yl) against a rectangle with

// compute outcodes for P0, P1l, and whatever point lies outside the clip rectangle
OutCode outcode0 = ComputeOutCode(x0, yO0);
OutCode outcodel = ComputeOutCode(x1l, yl);
bool accept = false;

while (true) {

accept = true;
break;

break;

} else {

if (! (outcode0 | outcodel)) { // Bitwise OR is 0. Trivially accept and get out of loop

} else if (outcode0 & outcodel) { // Bitwise AND is not 0. Trivially reject and get out of loop

// failed both tests, so calculate the line segment to clip
// from an outside point to an intersection with clip edge

double x, y;

// At least one endpoint is outside the clip rectangle; pick it.

OutCode outcodeOut = outcodel0 ? outcodel

// Now find the intersection point;

outcodel;

// use formulas y = y0 + slope * (x - x0), x = x0 + (1 / slope) * (y - y0)

if (outcodeOut & TOP) { // point
x = x0 + (x1 - x0) * (ymax - y0) / (yl
y = ymax;

} else if (outcodeOut & BOTTOM) { // point
x = x0 + (x1 - x0) * (ymin - y0) / (yl
y = ymin;

} else if (outcodeOut & RIGHT) { // point
y = y0 + (yl - y0) * (xmax - x0) / (x1
X = Xmax;

} else if (outcodeOut & LEFT) { // point
y = y0 + (yl - y0) * (xmin - x0) / (x1
X = Xmin;

}

is above the clip rectangle
- y0);

is below the clip rectangle
- Y0);

is to the right of clip rectangle
- x0);

is to the left of clip rectangle
- x0);

// Now we move outside point to intersection point to clip

// and get ready for next pass.
if (outcodeOut == outcodel) {
x0 = x;

x7() — <x7e



break;

} else {
// failed both tests, so calculate the line segment to clip
// from an outside point to an intersection with clip edge
double x, y;

// At least one endpoint is outside the clip rectangle; pick 1it.
OutCode outcodeOut = outcodel0 ? outcodel : outcodel;

// Now find the intersection point;
// use formulas y = y0 + slope * (x - x0), x = x0 + (1 / slope) * (y - yO0)
if (outcodeOut & TOP) { // point is above the clip rectangle
x = x0 + (x1 - x0) * (ymax - y0) / (yl - y0);
y = ymax;
} else if (outcodeOut & BOTTOM) { // point is below the clip rectangle
x = x0 + (x1 - x0) * (ymin - y0) / (yl - yO0);
y = ymin;
} else if (outcodeOut & RIGHT) { // point is to the right of clip rectangle
y = y0 + (yl - y0) * (xmax - x0) / (x1 - x0);
X = Xmax;
} else if (outcodeOut & LEFT) { // point is to the left of clip rectangle
y = y0 + (yl - y0) * (xmin - x0) / (x1 - x0);
X = Xmin;

}

// Now we move outside point to intersection point to clip
// and get ready for next pass.
if (outcodeOut == outcodel) {
x0 = x;
yo0 = y;
outcode0 = ComputeOutCode(x0, yO0);
} else {
xl = x;
yl = vy;
outcodel

ComputeOutCode(x1, yl);

}
}
if (accept) {
// Following functions are left for implementation by user based on
// their platform (OpenGL/graphics.h etc.)
DrawRectangle(xmin, ymin, xmax, ymax);
LineSegment(x0, y0, x1, yl);



Liang—Barsky algorithm

Consider first the usual parametric form of a straight line:
T = To+ u(xr) — T9) = 9 + uAx
Y = Yo+ u(Y1 — Yo) = Yo + uly

A point is in the clip window, if
Tmin < To + UAT < Tpax

and

Ymin < Yo+ UAY < Ynmax

which can be expressed as the 4 inequalities
upr < qx, k=1,2,3,4,

where
p1 = —Ax, 1 = rg — Ty (eft)
p2 = AT, g2 = Tmax — Tp (right)

Pa = —AY,q3 = Yo — Ymin (bottom)
P1 = AY, @4 = Ymax — Yo (top)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Liang—Barsky algorithm

To compute the final line segment:

1. Aline parallel to a clipping window edge has p;. = () for that boundary.

2. If for that J, gg. << (), the line is completely outside and can be eliminated.

3. When py. < () the line proceeds outside to inside the clip window and when Pr = (), the line proceeds inside to outside.
4.

k
For nonzero Pg, U — p_ gives the intersection paint.
k

5. For each line, calculate 11 and U2. For Uy, look at boundaries for which py. < () (i.e. outside to inside). Take 11 to be the

largest among {O, q—k . For U2, look at boundaries for which p;. > () (i.e. inside to outside). Take U2 to be the minimum of
Pk

{ 1, q—k} If 11y > U9, the line is outside and therefore rejected.
Pk

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Liang—Barsky algorithm

1. ¥R EEREINSE: u1=0, ux=1; ,
2. TELEET®RELFENp. qfE; §

3. 1R{Ep. QRN ReBARTRNERENSY. NS
(1) SHp<Oit, SErATEFus; (ur=max{u, ..., rc}) 1 l
(2) Hp>08Y, SErBATFEFu, (uz=min{uz, ..., r«}) 1 L
(3) MIEEH TS, Fui>uz, NEEZLE. i
(4) Lp=0BEq<08, RNERFFTHRABMTORIN, NSEXAER. o0 Hacomi L

4. p. g MEZAIERE, WRIXGERAEEF, NFE %R R ELIREHZ U1 uRY
BEIRTE.

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Sutherland-Hodgeman Polygon-Clipping Algorithm

/ :
7 e

* Polygons can be clipped against each edge of the window one edge at a time.
Window/edge intersections, if any, are easy to find since the X orY coordinates

are already known.

* Vertices which are kept after clipping against one window edge are saved for
clipping against the remaining edges.

49
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Pipelined Polygon Clipping

* Because polygon clipping does not depend on any other polygons, it is possible to
arrange the clipping stages in a pipeline. the input polygon is clipped against one
edge and any points that are kept are passed on as input to the next stage of the

pipeline.

* This way four polygons can be at different stages of the clipping process
simultaneously. This is often implemented in hardware.

Clip Clip Clip Clip
Right Top Left Bottom

50
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Sutherland-Hodgeman Polygon Clipping Algorithm

* Polygon clipping is similar to line clipping except we
have to keep track of inside/outside relationships

—Consider a polygon as a list of vertices

—Note that clipping v:
can increase the Vv,
number of vertices!

— Typically clip one
edge at a time... >V3

51
Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



Sutherland-Hodgeman algorithm

* Present the vertices in pairs

—(V,V ) (Vs Vo), (VouV3)s oy (V. 0V)

—For each pair, what are the possibilities?

—Consider v,, v,

Inside | Outside Inside | Outside Inside | Outside Inside | Outside
/ / / 'z .
/ V2 /V1

V2/ output Vo Vv N\ ot _— no output " output i

1 outputs and V5
52

Computer Graphics @ ZJU

Hongxin Zhang, 2010-2016



Example: vs, v

Insid
SV5 Side

P Vi

Vs

Outside

\Z!

Inside, Inside
Output v,

Computer Graphics @ ZJU

Inside | Outside

Current
Output

53
Hongxin Zhang, 2010-2016



Vi,V2

Inside
Vs

\D)
P

Outside

\Z!

Inside, Inside
Output v,

Computer Graphics @ ZJU

Inside | Outside

Current
Output

54
Hongxin Zhang, 2010-2016



V2, V3

Inside | Outside
Vs
\Z!
Vi
V2 11
S

Inside, Outside
Output 1,

Computer Graphics @ ZJU

Inside

Outside

Current
Output

55

Hongxin Zhang, 2010-2016



V3, V4

Ve Inside | Outside

v, P

Vs

Outside, Outside
No output

Computer Graphics @ ZJU

Inside | Outside

Current
Output

56
Hongxin Zhang, 2010-2016



V4, V5 — last edge...

P . - Inside | Outside
Ve Inside f)ut&de Vs
1 .
V4 S 1>
\4 Vi
3 i
\'%%) Vs
Outside, Inside Current
Output 1,, Vs Output
Y

Computer Graphics @ ZJU Hongxin Zhang, 2010-2016



