SCAN-LINE FILL ALGORITHMS
Acknowledgements

• Some of the material for the slides were adapted from College of Computer Information Science, Northeastern University

• Some of the images were taken from Hearn, Baker, and Carithers, “Computer Graphics with OpenGL”
Fill Algorithms

• Given the edges defining a polygon, and a color for the polygon, we need to fill all the pixels inside the polygon.

• Three different algorithms:
 – 1. Scan-line fill
 – 2. Boundary fill
 – 3. Flood fill
Filled Area Primitives

• Two basic approaches to area filling on raster systems:
 – Determine the overlap intervals for scan lines that cross the area (scan-line)
 – Start from an interior position and point outward from this point until the boundary condition reached (fill method)

• Scan-line: simple objects, polygons, circles,..

• Fill-method: complex objects, interactive fill.
Scan-line Polygon Fill

• For each scan-line:
 – Locate the intersection of the scan-line with the edges \(y = y_s \)
 – Sort the intersection points from left to right.
 – Draw the interiors intersection points pairwise. (a-b), (c-d)
• Problem with corners. Same point counted twice or not?
• **a, b, c** and **d** are intersected by 2 line segments each.

• **Count b, c** twice but **a** and **d** once. **Why?**

 • **Solution:**
 Make a clockwise or counter-clockwise traversal on edges.
 Check if y is monotonically increasing or decreasing.
 If direction changes, double intersection, otherwise single intersection.
Scan Line Fill Algorithm

• Basic algorithm:
 – Assume scan line start from the left and is outside the polygon.
 – When intersect an edge of polygon, start to color each pixel (because now we’re inside the polygon), when intersect another edge, stop coloring ...
 – Odd number of edges: inside
 – Even number of edges: outside

• Advantage of scan-line fill: It does fill in the same order as rendering, and so can be pipelined.
Scan-Line Polygon Fill Algorithm

• Odd-parity rule

Calculate span extrema (intersections) on each scan line

Using parity rule to determine whether or not a point is inside a region

Parity is initially even
→ each intersection encountered thus inverts the parity bit

parity is odd → interior point (draw)
parity is even → exterior point (do not draw)
Scan Line Fill: What happens at edge end-point?

- Edge endpoint is duplicated.
- In other words, when a scan line intersects an edge endpoint, it intersects two edges.
- Two cases:
 - Case A: edges are monotonically increasing or decreasing
 - Case B: edges reverse direction at endpoint
- In Case A, we should consider this as only ONE edge intersection
- In Case B, we should consider this as TWO edge intersections

![Diagram of Scan Line Fill with Case A and Case B examples]
Speeding up Scan-Line Algorithm

• 1. Parallel algorithm: process each scan line in one processor. Each scan line is independent
• 2. From edge intersection with one scan line, derive edge intersection with next scan line
• 3. Active edge list
Scan-Line Polygon Fill Algorithm

• Finding intersection pairs:

 Scan-line conversion method (for non-horizontal edges):

 ➔ Taking advantage of the edge *coherence* property:
 Incremental calculation between successive scan lines

 ➔ Or using Bresenham’s or mid-point scan line conversion algorithm on each edge
 and keep a table of span extrema for each scan line
Scan-Line Polygon Fill Algorithm

- Incremental scan line method:

\[
m = \frac{(y[k+1] - y[k])}{(x[k+1] - x[k])}
\]

\[
y[k+1] - y[k] = 1
\]

\[
x[k+1] = x[k] + \frac{1}{m} \Rightarrow x[k] = x[0] + \frac{k}{m}
\]
Derive next intersection

• Suppose that slope of the edge is
 \[m = \frac{D_y}{D_x} \]

• Let \(x_k \) be the x intercept of the current scan line, and \(x_{k+1} \) be the x intercept of the next scan line, then
 \[x_{k+1} = x_k + \frac{D_x}{D_y} \]

• Algorithm:
 – Suppose \(m = 7/3 \)
 – Initially, set counter to 0, and increment to 3 (which is \(D_x \)).
 – When move to next scan line, increment counter by increment
 – When counter is equal or greater than 7 (which is \(D_y \)), increment the x-intercept (in other words, the x-intercept for this scan line is one more than the previous scan line), and decrement counter by 7.
Line with slope $7/3$
Scan-Line Polygon Fill Algorithm

- **Incremental scan line method:**

 Bucket sorted edge table: containing all edges sorted by their smaller y coordinate.

 Each bucket: edges are recorded in order of increasing x coordinate of the endpoint.

 Each entry of a bucket: y[max] of the edge, x[min] of lower endpoint and 1/m (x increment)

 Active-edge table (or list): keep track of the set of edges that the scan line intersects and the intersection points in a data structure
Scan-Line Polygon Fill Algorithm

- Example:

Sorted edge table (ET)
Scan-Line Polygon Fill Algorithm

- Example:

Active edge table (AET)
Active Edge List

• Start with the sorted edge table.
 – In this table, there is an entry for each scan-line.
 – Add only the non-horizontal edges into the table.
 • For each edge, we add it to the scan-line that it begins with (that is, the scan-line equal to its lowest y-value).
 • For each edge entry, store (1) the x-intercept with the scan-line, (2) the largest y-value of the edge, and (3) the inverse of the slope.
 – Each scan-line entry thus contains a sorted list of edges. The edges are sorted left to right. (To maintain sorted order, just use insertion based on their x value.)

• Next, we process the scan lines from bottom to top.
 – We maintain an active edge list for the current scan-line.
 – The active edge list contains all the edges crossed by that scan line. As we move up, update the active edge list by the sorted edge table if necessary.
 – Use iterative coherence calculations to obtain edge intersections quickly.
Polygon Data Structure after preprocessing

Edge Table (ET) has a list of edges for each scan line.
The Algorithm

1. Start with smallest nonempty y value in ET.
2. Initialize SLB (Scan Line Bucket) to nil.
3. While current $y \leq$ top y value:
 a. Merge y bucket from ET into SLB; sort on xmin.
 b. Fill pixels between rounded pairs of x values in SLB.
 c. Remove edges from SLB whose $y_{top} =$ current y.
 d. Increment xmin by $1/m$ for edges in SLB.
 e. Increment y by 1.
Running the Algorithm

ET

13
12
11 → e6
10
9
8
7 → e3 → e4 → e5
6 → e7 → e8
5
4
3
2
1 → e2 → e11
0 → e10 → e9

<table>
<thead>
<tr>
<th></th>
<th>xmin</th>
<th>ymax</th>
<th>1/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2</td>
<td>2</td>
<td>6</td>
<td>-2/5</td>
</tr>
<tr>
<td>e3</td>
<td>1/3</td>
<td>12</td>
<td>1/3</td>
</tr>
<tr>
<td>e4</td>
<td>4</td>
<td>12</td>
<td>-2/5</td>
</tr>
<tr>
<td>e5</td>
<td>4</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>e6</td>
<td>6 2/3</td>
<td>13</td>
<td>-4/3</td>
</tr>
<tr>
<td>e7</td>
<td>10</td>
<td>10</td>
<td>-1/2</td>
</tr>
<tr>
<td>e8</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>e9</td>
<td>11</td>
<td>8</td>
<td>3/8</td>
</tr>
<tr>
<td>e10</td>
<td>11</td>
<td>4</td>
<td>-3/4</td>
</tr>
<tr>
<td>e11</td>
<td>6</td>
<td>4</td>
<td>2/3</td>
</tr>
</tbody>
</table>
Running the Algorithm

y = 0

SCB →

10 1/4 4 -3/4

→

11 3/8 8 3/8
Running the Algorithm

y = 1
SLB →

1 3/5 6 -2/5

6 2/3 4 2/3

9 1/2 4 -3/4

11 6/8 8 3/8

Graph showing the algorithm's execution with points marked at each step.
Running the Algorithm

y = 2

SLB →

1 1/5 6 -2/5

7 1/3 4 2/3

8 3/4 4 -3/4

12 1/8 8 3/8

•
Running the Algorithm

SLB →

\[
\begin{array}{ccc}
4/5 & 6 & -2/5 \\
8 & 4 & 2/3 \\
8 & 4 & -3/4 \\
12 & 4/8 & 8 & 3/8
\end{array}
\]

\[y=3\]
Running the Algorithm

SLB →

\[
\begin{array}{ccc}
4/5 & 6 & -2/5 \\
8 & 4 & 2/3 \\
8 & 4 & -3/4 \\
12 & 4/8 & 8 & 3/8 \\
\end{array}
\]

y = 4

Remove these edges.
Running the Algorithm

e11 and e10 are removed.
Running the Algorithm

y=5
SLB →

<table>
<thead>
<tr>
<th>0</th>
<th>6</th>
<th>-2/5</th>
<th>e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 2/8</td>
<td>8</td>
<td>3/8</td>
<td>e9</td>
</tr>
</tbody>
</table>

Diagram:
- e2
- e3
- e4
- e5
- e6
- e7
- e8
- e9
- e10
- e11
Running the Algorithm

Remove this edge.

\[
\begin{array}{ccc}
0 & 6 & -2/5 \\
9 \ 1/2 & 10 & -1/2 \\
12 & 8 & 2 \\
13 \ 5/8 & 8 & 3/8 \\
\end{array}
\]
Running the Algorithm

Add these edges.

y = 7
SLB

1/3 12 1/3
4 12 -2/5
4 13 0
9 1/2 10 -1/2
12 8 2
13 5/8 8 3/8