
Computer Graphics 2016

13. Texture Mapping
Hongxin Zhang

State Key Lab of CAD&CG, Zhejiang University

2016-12-26

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Mapping
• So far, every object has been drawn either in a solid color, or smoothly shaded

between the colors at its vertices.

–Similar to painting

• Texture Mapping applies a variation to the surface properties of the object instead

–Similar to surface finishing, example like wallpaper on a wall surface or
sticking a label onto a bottle.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture mapping
AD: Genetica - a texture generation tool

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture mapping
AD: Genetica - a texture generation tool

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture mapping
AD: Genetica - a texture generation tool

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture mapping
AD: Genetica - a texture generation tool

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture mapping
AD: Genetica - a texture generation tool

Computer Graphics @ ZJU Hongxin Zhang, 2016

Why Texture mapping
• Texture is variation in the surface attributes

• like color, surface normals, specularity, transparency,
surface displacement etc.

• Computer generated images look more realistic if they are
able to capture these complex details

• It is difficult to represent these details using geometric
modeling because they heavily increase computational
requirements

• Texture mapping is an effective method of “faking” surface
details at a relatively low cost

Computer Graphics @ ZJU Hongxin Zhang, 2016

What is texture mapping
- Texture mapping is the process of transforming a

texture on to a surface of a 3D object.

- It is like mapping a function on to a surface in 3D

- the domain of the function could be 1D, 2D or 3D

- the function could be represented by either an
array or it could be an algebraic function.

Computer Graphics @ ZJU Hongxin Zhang, 2016
9

Bump Mapping Environment
Mapping

Image Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

For what kind of objects?
• In general Texture mapping for arbitrary 3D objects is

difficult

–E.g. Distortion (try mapping a planer texture onto
sphere)

• It is easiest for polygons and parametric surfaces

• We limit our discussion to Texture mapping polygons

Computer Graphics @ ZJU Hongxin Zhang, 2016

What is a typical 2D texture?
• A 2D function represented as rectangular array of data

–Color data

–Luminance data

–Color and alpha data

• Each data element in a texture is called a texel; on screen, a
texel may be mapped to

–A single pixel

–Part of a pixel (for small polygons)

–Several pixels (if the texture is too small or the polygon is
viewed from very close)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Assigning Texture Coordinates
• You must provide texture coordinates for each vertex

• The texture image itself covers a coordinate space between 0 and 1 in two
dimensions usually called s and t to distinguish them from the x, y and z coordinates
of 3D space.

• A vertex’s texture coordinates determine which texel(s) are mapped to the vertex.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Assigning Texture Coordinates
• Texture coordinates for each vertex determine a portion of

the texture to use on the polygon.

• The texture subset will be stretched and squeezed to fit the
dimensions of the polygon.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Interpolation

• Specify where the vertices in world
space are mapped to in texture space

• Linearly interpolate the mapping for
other points in world space

– Straight lines in world space go to
straight lines in texture space

– But …

Texture map
s

t

Triangle in
world
space

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Polygonal texture mapping
1. Establish correspondences

2. Find compound 2D-2D mapping

3. Use this mapping during polygon scan conversion to
update desired attribute (e.g. color)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Establish Correspondences
• Usually we specify texture coordinates at each vertex

• These texture coordinates establish the required mapping
between image and polygon

Computer Graphics @ ZJU Hongxin Zhang, 2016

Find compound 2D-2D mapping
• Since the texture is finally seen on screen which is 2D, it makes sense to

combine two mappings (from image to 3D space and then from 3D to screen
space) into single 2D-2D mapping

• This avoids texture calculations in 3D completely

• This simplifies hardware implementation of graphics pipeline.

Screen(2D)Object(3D)Texture(2D)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Crude texture mapping code
// for each vertex we have x,y,z and u,v

for (x=xleft; x < xright; x++) {

 if (z < zbuffer[x][y]){

z[x][y] = z;

raster[x][y] = texture[u][v]; // replacing color

 }

 z=z+dz;

 u=u+dv;

 v=v+dv;

}

Computer Graphics @ ZJU Hongxin Zhang, 2016

Artifacts

Such distortion may be reduced with subdivision

Computer Graphics @ ZJU Hongxin Zhang, 2016

Extensions to code
• Note that instead of replacing color as done in code, you can also

modulate the color

• Instead of color, you can of course choose to modify some other
property of surface

Computer Graphics @ ZJU Hongxin Zhang, 2016

Attributes modulated for texture
• Surface color (diffuse reflection coefficients)

–most commonly used parameter for texture mapping. It is used
like wrapping an image on to a surface, like a label on a bottle.

• Specular and diffuse reflection (environment mapping)

–used to capture reflection of the environment on to a surface.
Commonly used in exhibiting shiny metallic surfaces.

• Normal vector perturbations (bump mapping)

–used to generate a rough surfaces like that of an orange.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Attributes modulated for texture

• Specularity

–used to generate a surface with variable shine.

• Transparency

–used to generate object with varying transparencies, like
clouds. Used more to generate a complete object rather
than just mapping the texture on the surface.

• Other than environment mapping the texture on the object
is independent of the position of the object in the world. So
environment mapping is distinct from texture mapping.

Computer Graphics @ ZJU Hongxin Zhang, 2016
24

Problems
• Aliasing artifacts

–Due to point sampling

• Perspective distortions

–Since we did not take into account perspective
transformation

Computer Graphics @ ZJU Hongxin Zhang, 2016
25

Computing Color in Texture mapping

1. Associate texture with polygon

2. Map pixel onto polygon and then into texture map

3. Use weighted average of covered texture to compute color

Computer Graphics @ ZJU Hongxin Zhang, 2016

Computer Graphics @ ZJU Hongxin Zhang, 2016

Computer Graphics @ ZJU Hongxin Zhang, 2016
26

Taking care of aliasing
• What causes aliasing artifacts

–High frequency signals

• Typical solutions

–Sample at higher rates

–Pre-filter textures using low pass filters

Computer Graphics @ ZJU Hongxin Zhang, 2016

Optimization
• Since most of the times, textures are known a priori,

we can create various levels of these prefiltered
textures in a preprocess.

• Then at run time, we fetch the required level of
mipmap and apply that texture

• This is known as mipmapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Mipmapping
• Like any other object, a texture mapped object can be

viewed from many distances.

• Sometimes, that causes problems.

–A low-resolution texture (say, 32x32) applied to a big
polygon (say, one that occupies a 512x512 area on
screen) will appear blocky.

–Conversely, if you apply a high-resolution texture to
a small polygon, how do you decide which texels to
show and which to ignore?

Computer Graphics @ ZJU Hongxin Zhang, 2016

Mipmapping (continued)
• One solution is to provide multiple levels of detail for

the same texture and use the one that best matches
the polygon’s apparent size on screen.

• This technique is called Mipmapping, and each texture
in the hierarchy is called a mipmap.

• OpenGL can compute mipmaps automatically, and it
can also accept mipmaps provided from different files.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Mipmapping Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Filtering
• When the texture is mapped to a polygon, a single

texel rarely matches a single pixel exactly.

• If a pixel matches only a portion of a texel, the texel
must be magnified.

• If a pixel matches more than one texel, the texels must
be minified.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Filtering Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Texture Matrix
• Loading a texture onto the graphics card is very expensive

• But once there, a texture matrix can be used to
“transform” the texture

–For example, changing the translation can select different
parts of the texture

• If the texture matrix is changed from frame to frame, the
texture will appear to move on the object

• This is particularly useful for things like flame, or swirling
vortices, …

Computer Graphics @ ZJU Hongxin Zhang, 2016
34

Multi-texturing
• It is sometimes possible to apply more than one texture to a polygon

• Examples: Light Maps, Texture Blending

• NOTE: implementations of OpenGL support multitexturing

Computer Graphics @ ZJU Hongxin Zhang, 2016
35

Light Maps
• Instead of wallpapering a polygon with the texture’s

colors, we can blend the texture with the existing
colors.

• A “light map” is such a black-and-white texture; white
texels will cause the underlying pixels to appear
brighter and shinier, and vice versa.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Light Map Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Light Map Example

Computer Graphics @ ZJU Hongxin Zhang, 2016

Animated Textures
• Instead of a fixed image, it is sometimes possible to

apply an animated clip (say, a Flash animation) as a
texture.

• In this case, the actual frame of animation that is
applied to the polygon as a texture changes with time.

Computer Graphics @ ZJU Hongxin Zhang, 2016

OpenGL Texture mapping (Ref: Red book)

• Create texture objects

–1D, 2D, 3D

–Specify what does texture contain: say, color, depth,
etc.

• Specify how the texture is applied

–Replace, modulate, or blend

• Enable texture mapping

• Specify scene with both geometric coordinates as well
as texture coordinates

Computer Graphics @ ZJU Hongxin Zhang, 2016

Specify Texture

• E.g.:

– target: GL_TEXTURE_2D

– Level : 0 (for no mip maps)

– Internalformat: GL_RGB

– Width,height: 2^m+2*b, 256 by 256 with b=0

– Border b: 0

– Format: GL_RGB

– Type: GL_INT

– texels: actual texture image

glTexImage2D (target, level, internalformat, width, height, border, format, type, *texels);

Computer Graphics @ ZJU Hongxin Zhang, 2016

Specifying mipmaps

• You need to specify the levels for which mipmapping is being used.

• You can also specify scale factor (between the texture image and size of
polygon).

• You also need to supply images for all levels.

• You use glTexParameteri() and glTexImage2D()

– glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 2);

– glTexImage2D(..,2,…)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Automatic mipmap generation
• If you have highest resolution image, OpenGL can

generate low level prefiltered images automatically.

• gluBuild2DMipmaps()

• gluBuild2DMipmapsLevels()

–To build only a subset

• See book for detailed description of parameters

Computer Graphics @ ZJU Hongxin Zhang, 2016

OpenGL filtering
• We can specify the kind of filter to be applied

• OpenGL filtering is crude but fast

• Specify filter using glParameteri() with

• GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER

• filters :

• GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_LINEAR (for
minification)

• glParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);

Computer Graphics @ ZJU Hongxin Zhang, 2016

Other calls
• glGenTextures();

–To generate unique names

• glBindTexture();

–Creates if texture object not already created

–Activates the texture object if already created

–Pass 0 to stop using texture objects

• glEnable(GL_TEXTURE_2D);

–Enables texture mapping

• glTexCoord2i(texcoordinate);

Computer Graphics @ ZJU Hongxin Zhang, 2016

Modulating surface properties
• Instead of replacing color, you can also modulate color or some other property of

polygon.

• glTexEnv(GL_TEXTURE_ENV, pname, param);

• Pname and param specfiy how texture affects surface

• E.g.
glTexEnv(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE);

Computer Graphics @ ZJU Hongxin Zhang, 2016

Tricks with Textures
- If the texture is not large enough to cover a polygon, you can tile it using the

GL_REPEAT parameter

- glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

- You can also clamp the texture (i.e., stretch the last pixel to cover everything)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Boundaries
- You can control what happens if a point maps to a texture coordinate outside

of the texture image

- All textures are assumed to go from (0,0) to (1,1) in texture space

- Repeat: Assume the texture is tiled

- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT)

- Clamp: Clamp to Edge: the texture coordinates are truncated to valid values,
and then used

- glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP)

- Can specify a special border color:

- glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR,
R,G,B,A)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Repeat Border

(0,0)

(1,1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Clamp Border

(0,0)

(1,1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Border Color

(0,0)

(1,1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Other Texture Stuff
- Texture must be in fast memory - it is accessed for every pixel

drawn

- If you exceed it, performance will degrade horribly

- There are functions for managing texture memory

- Skilled artists can pack textures for different objects into
one map

- Texture memory is typically limited, so a range of functions are
available to manage it

- Specifying texture coordinates can be annoying, so there are
functions to automate it for specific shapes, say quadrics,
NURBS

Computer Graphics @ ZJU Hongxin Zhang, 2016

Yet More Texture Stuff
• There is a 4x4 texture matrix: apply a matrix

transformation to texture coordinates before indexing
texture

• There are “image processing” operations that can be
applied to the pixels coming out of the texture

Computer Graphics @ ZJU Hongxin Zhang, 2016

Environment Mapping
• Environment mapping produces

reflections on shiny objects

• Texture is transferred in the
direction of the reflected ray
from the environment map
onto the object

• Reflected ray:  
 R=2(N·V)N-V Object

Viewer
Reflected ray

Environment Map

Computer Graphics @ ZJU Hongxin Zhang, 2016

Environment Maps

Computer Graphics @ ZJU Hongxin Zhang, 2016

Environment Maps

• We use the direction of the reflected ray to index a texture map.

• We can simulate reflections. This approach is not completely accurate. It
assumes that all reflected rays begin from the same point, and that all objects
in the scene are the same distance from that point.

Computer Graphics @ ZJU Hongxin Zhang, 2016

• The map lives on a sphere, but now
the coordinate mapping is simplified

• We use latitude and longitude as (u,v)

Sphere Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Cube Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2016

Cube Mapping
- The map resides on the surfaces of a cube around the object

- Typically, align the faces of the cube with the coordinate axes

- To generate the map:

- For each face of the cube, render the world from the center of the object with the cube
face as the image plane

- Rendering can be arbitrarily complex (it’s off-line)

- Or, take 6 photos of a real environment with a camera in the object’s position

- Assume the cube’s faces are aligned with the coordinate axes, and have texture coordinates
in [0,1]x[0,1]. Main issue is to decide

- which face to use, and

- decide which texture coordinates to use.

- Use a ray from the centre; only cube corners and edges will need special attention

Computer Graphics @ ZJU Hongxin Zhang, 2016
57

Bump Mapping
Bump Mapping assumes that the Illumination model is

applied at every pixel
(as in Phong Shading or ray tracing).

Sphere w/Diffuse Texture

Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping

REF： http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping

REF： http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

REF： http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

New_Normal = Normal + (U * x_gradient) + (V * y_gradient)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bump mapping
- Before lighting a calculation is performed for each visible point (or pixel) on the object's

surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference
method.

3. Combine the surface normal from step two with the true ("geometric") surface
normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,
for example, the Phong reflection model.

x_gradient = pixel(x-1, y) - pixel(x+1, y)
y_gradient = pixel(x, y-1) - pixel(x, y+1)

New_Normal = Normal + (U * x_gradient) + (V * y_gradient)

Computer Graphics @ ZJU Hongxin Zhang, 2016

Normal map
- Simple Bump mapping

- http://www.paulsprojects.net/tutorials/simplebump/
simplebump.html

http://www.paulsprojects.net/tutorials/simplebump/simplebump.html
http://www.paulsprojects.net/tutorials/simplebump/simplebump.html

Computer Graphics @ ZJU Hongxin Zhang, 2016

Normal map

Computer Graphics @ ZJU Hongxin Zhang, 2016

Displacement Mapping
• use the texture map to actually move the surface point

• [Cook 1984]

• How is this fundamentally different than bump mapping?

The geometry must be displaced before visibility is determined.

Computer Graphics @ ZJU Hongxin Zhang, 2016

Displacement Mapping
• use the texture map to actually move the surface point

• [Cook 1984]

Computer Graphics @ ZJU Hongxin Zhang, 2016

Procedural Texture Mapping
- Instead of looking up an image, pass the texture coordinates to a function that computes

the texture value on the fly

- Renderman, the Pixar rendering language, does this

- Available in a limited form with vertex shaders on current generation hardware

- Advantages:

- Near-infinite resolution with small storage cost

- Idea works for many other things

- Has the disadvantage of being slow in many cases

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bidirectional texture function

60

Computer Graphics @ ZJU Hongxin Zhang, 2016

Bidirectional texture function

Computer Graphics @ ZJU Hongxin Zhang, 2016

THANK YOU
- REF:

- CMU: SURVEY OF TEXTURE MAPPING

- http://cg.informatik.uni-freiburg.de/course_notes/
graphics_06_texturing.pdf

http://www.google.com.hk/url?sa=t&rct=j&q=Texture+Mapping&source=web&cd=6&cad=rja&ved=0CEAQFjAF&url=http%3A%2F%2Fwww.cs.cmu.edu%2F~ph%2Ftexsurv.pdf&ei=ivqPUJ_mHaSUiQe12IHIBg&usg=AFQjCNHElfQB51CZs0mosD6yZSZ5QBWjow
http://cg.informatik.uni-freiburg.de/course_notes/graphics_06_texturing.pdf
http://cg.informatik.uni-freiburg.de/course_notes/graphics_06_texturing.pdf

