Computer Graphics 2016

10. Spline and Surfaces

Hongxin Zhang
State Key Lab of CAD\&CG, Zhejiang University
2016-12-05

Outline

－Introduction
－Bézier curve and surface
－NURBS curve and surface
－subdivision curve and surface

classification of curves

$$
y=x^{2}+5 x+3 \xrightarrow[\text { (explicit curve) }]{ } y=f(x)
$$

$$
\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}-\mathrm{r}^{2}=0 \longrightarrow \mathrm{~g}(\mathrm{x}, \mathrm{y})=0
$$

(implicit curve)

$$
\begin{array}{r}
\boldsymbol{x}=\boldsymbol{x}_{\mathbf{c}}+\boldsymbol{r} \cdot \cos \boldsymbol{\theta} \\
\boldsymbol{y}=\boldsymbol{y}_{\mathbf{c}}+\boldsymbol{r} \cdot \sin \boldsymbol{\theta}
\end{array} \longrightarrow\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array}\right.
$$

(parametric curve)

Splines

Bézier curve

Pierre Étienne Bézier
an engineer at Renault

浙；未为䒚计算机学院数字媒体与网络技术

Bézier curve

Bézier curve

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

where， $\boldsymbol{P}_{\boldsymbol{i}}(\boldsymbol{i}=0,1, \ldots, n)$ are control points．

$$
B_{i, n}(t)=C_{n}^{i} t^{i}(1-t)^{n-i}, t \in[0,1] \quad \text { Bernstein basis }
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathbf{X}(\mathrm{t})=\sum_{i=0}^{n} x_{i} \boldsymbol{B}_{i, t}(t) \\
\mathbf{Y}(\mathrm{t})=\sum_{i=0}^{n} y_{i} \boldsymbol{B}_{i, t}(t)
\end{array}\right. \\
C(t)=\left(\begin{array}{l}
\mathbf{X}(\mathbf{t}) \\
\mathbf{Y}(\mathbf{t})
\end{array}{ }^{\frac{1}{j}}, P_{i}=\left(\begin{array}{l}
x_{i} \\
y_{i}
\end{array}{ }^{\frac{1}{j}}\right.\right.
\end{gathered}
$$

浙；大来多计算机学院数字媒体与网络技术

Bézier curve

津；友罧计算机学院数字媒体与网络技术

General spline curves

parametric curve

$t \in\left[t_{0}, t_{1}\right)$
basis functions
!

i
control pints

$\uparrow_{\text {ol pints }}$
P_{2}

Bézier curve

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \mathbf { X } (\mathrm { t }) = \sum _ { i = 0 } ^ { n } x _ { i } B _ { i , t } (t) } \\
{ \mathbf { Y } (\mathrm { t }) = \sum _ { i = 0 } ^ { n } y _ { i } B _ { i , t } (t) }
\end{array} \quad \left\{\begin{array}{l}
\mathbf{X}(\mathrm{t})=\sum_{i=0}^{n} a_{i} t^{i} \\
\mathbf{Y}(\mathrm{t})=\sum_{i=0}^{n} b_{i} t^{i}
\end{array}\right.\right. \\
& B_{i, n}(t)=C_{n}^{i} t^{i}(1-t)^{n-i}, t \in[0,1] \\
& C(t)=\binom{\mathbf{X}(\mathbf{t})}{\mathbf{Y}(\mathbf{t})} \quad \boldsymbol{P}_{i}^{\dot{j}}=\binom{x_{i}}{y_{i}}
\end{aligned}
$$

Bézier curve

Properties of Bernstein basis $B_{i, n}(t)=C_{n}^{i t i}(1-t)^{n-i}, t \in[0,1]$
1．$B_{i, n}(t) \geq 0, i=0,1, \mathrm{~L}, n, t \in[0,1]$ ．
2．$\quad \sum_{t=0}^{n} B_{l, n}(t)=1, t \in[0,1]$ ．

$$
B_{i, n}(t)=B_{n-i, n}(1-t),
$$

3.

$$
i=0,1, \mathrm{~L}, n, t \in[0,1] .
$$

4.

$$
B_{i, n}(0)=\left\{\begin{array}{l}
1, i=0, \\
0, \text { else } ;
\end{array} \quad B_{i, n}(1)=\left\{\begin{array}{l}
1, i=n, \\
0, \text { else. }
\end{array}\right.\right.
$$

Bézier curve

Properties of Bernstein basis

5.

$$
B_{i, n}(t)=(1-t) B_{i, n-1}(t)+t B_{i-1, n-1}(t), i=0,1, \ldots, n .
$$

6.

$$
B_{i, n}^{\prime}(t)=n\left[B_{i-1, n-1}(t)-B_{i, n-1}(t)\right], i=0,1, \ldots, n .
$$

7.

$$
\begin{aligned}
& (1-t) B_{i, n}(t)=\left(1-\frac{i}{n+1}\right) B_{i, n+1}(t) \\
& t B_{i, n}(t)=\frac{i+1}{n+1} B_{i+1, n+1}(t) \\
& B_{i, n}(t)=\left(1-\frac{i}{n+1}\right) B_{i, n+1}(t)+\frac{i+1}{n+1} B_{i+1, n+1}(t)
\end{aligned}
$$

Bézier curve

properties of Bézier curves

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

I．Endpoint Interpolation：interpolating two end points

$$
\boldsymbol{C}(0)=\boldsymbol{P}_{0}, \boldsymbol{C}(1)=\boldsymbol{P}_{n} .
$$

2．tangent direction of $\boldsymbol{P}_{0}: \boldsymbol{P}_{0} \boldsymbol{P}_{1}$ ，tangent direction of $\boldsymbol{P}_{n}: \boldsymbol{P}_{n-1} \boldsymbol{P}_{n}$ ．

$$
\boldsymbol{C}^{\prime}(t)=n \sum_{i=0}^{n-1}\left(\boldsymbol{P}_{i+1}-\boldsymbol{P}_{i}\right) B_{i, n-1}(t), t \in[0,1] ; \quad \boldsymbol{C}^{\prime}(0)=n\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{0}\right), \boldsymbol{C}^{\prime}(1)=n\left(\boldsymbol{P}_{n}-\boldsymbol{P}_{n-1}\right) .
$$

3．Symmetry：Let two Bezier curves be generated by ordered Bezier （control）points labelled by $\{\mathrm{p} 0, \mathrm{pI}, \ldots, \mathrm{pn}\}$ and $\{\mathrm{pn}, \mathrm{pn}-\mathrm{I}, \ldots, \mathrm{p} 0\}$ respectively，then the curves corresponding to the two different orderings of control points look the same；they differ only in the direction in which they are traversed．

Bézier curve

properties of Bézier curves

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

4．Affine Invariance－
the following two procedures yield the same result：
（I）first，from starting control points $\{\mathrm{p} 0, \mathrm{pI}, \ldots, \mathrm{pn}\}$
compute the curve and then apply an affine map to it； （2）first apply an affine map to the control points \｛p0， $\mathrm{pl}, \ldots, \mathrm{pn}\}$ to obtain new control points $\{\mathrm{F}(\mathrm{p} 0), \ldots, \mathrm{F}(\mathrm{pn})\}$ and then find the curve with these new control points．

Bézier curve

properties of Bézier curves

5．Convex hull property ：Bézier curve $\boldsymbol{C}(t)$ lies in the convex hull of the control points $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$ ；

6．Variation diminishing property．Informally this means that the Bezier curve will not＂wiggle＂any more than the control polygon does．．

Bézier curve

Bézier curves

1．linear： $\boldsymbol{C}(t)=(1-t) \boldsymbol{P}_{0}+t \boldsymbol{P}_{1}, t \in[0,1]$ ，

$$
\boldsymbol{C}(t)=[t, 1]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{P}_{0} \\
\boldsymbol{P}_{1}
\end{array}\right]
$$

2．quadratic

$$
\boldsymbol{C}(t)=(1-t)^{2} \boldsymbol{P}_{0}+2 t(1-t) \boldsymbol{P}_{1}+t^{2} \boldsymbol{P}_{2}
$$

Degree 2

$$
C(t)=\left[\begin{array}{lll}
t^{2} & t & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 2 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2}
\end{array}\right]
$$

Bézier curve

3．cubic：

$$
\boldsymbol{C}(t)=(1-t)^{3} \boldsymbol{P}_{0}+3 t(1-t)^{2} \boldsymbol{P}_{1}+3 t^{2}(1-t) \boldsymbol{P}_{2}+t^{3} \boldsymbol{P}_{3}
$$

$$
\boldsymbol{C}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{P}_{0} \\
\boldsymbol{P}_{1} \\
\boldsymbol{P}_{2} \\
\boldsymbol{P}_{3}
\end{array}\right]
$$

Bezier Curve

Bezier Curve in OpenGL

- gIMapI*(GL_MAPI_VERTEX_3, uMin, uMax, stride, nPts, *ctrlPts);
- gIEnable/gIDisable(GL_MAPI_VERTEX_3);
- gIBegin(GL_LINE_STRIP); for (...) \{
glEvalCoordI*(uValue);
\}
gIEnd();

Bezier Curve in OpenGL

```
GLfloat ctrlpoints[4][3] = {
    {-4.0,-4.0, 0.0}, {-2.0, 4.0, 0.0},
    {2.0,-4.0, 0.0}, {4.0, 4.0, 0.0}};
void init(void)
{
    g|ClearColor(0.0, 0.0, 0.0, 0.0);
    glShadeModel(GL_FLAT);
    gIMapIf(GL_MAPI_VERTEX_3,
0.0, I.0, 3, 4, &ctrlpoints[0][0]);
    g|Enable(GL_MAPI_VERTEX_3);
}
```



```
void display(void)
```

void display(void)
{
{
int i;
int i;
glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_COLOR_BUFFER_BIT);
g|Color3f(I.0, I.0, I.0);
g|Color3f(I.0, I.0, I.0);
glBegin(GL_LINE_STRIP);
glBegin(GL_LINE_STRIP);
for (i = 0; i <= 30; i++)
for (i = 0; i <= 30; i++)
glEvalCoordIf((GLfloat) i/30.0);
glEvalCoordIf((GLfloat) i/30.0);
glEnd();
glEnd();
/*The following code displays the control points as dots. */
/*The following code displays the control points as dots. */
glPointSize(5.0);
glPointSize(5.0);
glColor3f(I.0, I.0, 0.0);
glColor3f(I.0, I.0, 0.0);
g|Begin(GL_POINTS);
g|Begin(GL_POINTS);
for (i = 0; i < 4; i++)
for (i = 0; i < 4; i++)
glVertex3fv(\&ctrlpoints[i][0]);
glVertex3fv(\&ctrlpoints[i][0]);
glEnd();
glEnd();
gIFlush();
gIFlush();
}

```
}
```


Bézier curve

de Casteljau algorithm

given the control points $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$ ，and t of Bézier curve，let：

$$
\boldsymbol{P}_{i}^{r}(t)=(1-t) \boldsymbol{P}_{i}^{r-1}(t)+t \boldsymbol{P}_{i+1}^{r-1}(t), \quad\left\{\begin{array}{c}
r=1, \ldots, n ; i=0, \ldots, n-r \\
P_{i}^{0}(u)=P_{i}
\end{array}\right.
$$

then

$$
\boldsymbol{P}_{0}^{n}(t)=\mathrm{C}(t) .
$$

Consider Three Points

Insert Point Using Linear Interpolation

$$
\mathbf{P}_{\mathbf{0}}^{1}=(1-t) \mathbf{P}_{\mathbf{0}}+t \mathbf{P}_{\mathbf{1}}
$$

Insert Points on Both Edges

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{0}}^{\mathbf{1}}=(1-t) \mathbf{P}_{\mathbf{0}}+t \mathbf{P}_{\mathbf{1}} \\
& \mathbf{P}_{\mathbf{1}}^{1}=(1-t) \mathbf{P}_{\mathbf{1}}+t \mathbf{P}_{\mathbf{2}}
\end{aligned}
$$

Repeat Recursively

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{0}}^{\mathbf{1}}=(1-t) \mathbf{P}_{\mathbf{0}}+t \mathbf{P}_{\mathbf{1}} \\
& \mathbf{P}_{\mathbf{1}}^{1}=(1-t) \mathbf{P}_{\mathbf{1}}+t \mathbf{P}_{\mathbf{2}} \\
& \mathbf{P}_{\mathbf{0}}^{\mathbf{2}}=(1-t) \mathbf{P}_{\mathbf{0}}^{1}+t \mathbf{P}_{\mathbf{1}}^{1}
\end{aligned}
$$

$$
{ }_{\mathbf{P}_{0}^{1}}
$$

Algorithm Defines Curve

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{0}}^{\mathbf{1}}=(1-t) \mathbf{P}_{\mathbf{0}}+t \mathbf{P}_{\mathbf{1}} \\
& \mathbf{P}_{\mathbf{1}}^{1}=(1-t) \mathbf{P}_{\mathbf{1}}+t \mathbf{P}_{\mathbf{2}}
\end{aligned}
$$

$$
\mathbf{P}_{\mathbf{0}}^{2}=(1-t) \mathbf{P}_{\mathbf{0}}^{1}+t \mathbf{P}_{\mathbf{1}}^{1}
$$

Resulting point $\mathbf{P}(t)=\mathbf{P}_{\mathbf{0}}^{\mathbf{2}}$

Consider Four Points

Linear Interpolation

On All Edge Segments

Repeat Recursively

Algorithm Defines Curve

Pyramid Algorithm

Pyramid Algorithm

Pyramid Algorithm

Path

$(1-t)^{3} \mathbf{P}_{\mathbf{0}}$

Pyramid Algorithm

Pyramid Algorithm

Pyramid Algorithm

Three paths total

$$
3 t(1-t)^{2} \mathbf{P}_{0}^{1}
$$

Leads to a Cubic Polynomial Curve

Bernstein polynomials $B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$ CS148 Lecture 8

Bézier curve

Rational Bézier Curve

$$
\boldsymbol{R}(t)=\frac{\sum_{i=0}^{n} B_{i, n}(t) \omega_{i} \boldsymbol{P}_{i}}{\sum_{i=0}^{n} B_{i, n}(t)_{\omega_{i}}}=\sum_{i=0}^{n} R_{i, n}(t) \boldsymbol{P}_{i}
$$

Figure 2．19：Circle ns Degree 5 Tational Bezier Curve．
where $B_{i, n}(t)$ is Bernstein basis，ω_{i} is the weight at p_{i} ．

It＇s a generalization of Bézier curve，which can express more curves，such as circle．

Bézier curve

Properties of rational Bézier curve：

1．endpoints： $\boldsymbol{R}(0)=\boldsymbol{P}_{0} ; \boldsymbol{R}(1)=\boldsymbol{P}_{n}$
2．tangent of endpoints：

$$
\boldsymbol{R}^{\prime}(0)=n \frac{\omega_{1}}{\omega_{0}}\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{0}\right) ; \boldsymbol{R}^{\prime}(1)=n \underline{\omega_{n-1}}\left(\boldsymbol{P}_{n}-\boldsymbol{P}_{n-1}\right)
$$

3．Convex Hull Property 5.

6．Influence of the weights

Figure 2．16：Rational Bézier curve．

Bézier surface

Bézier surface

Bézier surface：

$$
\boldsymbol{S}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} \boldsymbol{P}_{i j} B_{i, n}(u) B_{j, m}(v), \quad 0 \leq u, v \leq 1
$$

where $B_{i, n}(u)$ 和 $B_{j, m}(v)$ Bernstein basis with n degree and m degree，respectively， $(n+I) \times(m+I) \boldsymbol{P}_{i j}(i=0, I, \ldots, n ; j=0, I, \ldots, m)$ construct the control meshes．

浙；大䒚计算机学院数字媒体与网络技术

Bezier Surface in OpenGL

- glMap2*(GL_MAP2_VERTEX_3, uMin, uMax, uStride, nuPts, vMin, vMax, vStride, nvPts,*ctrIPts);
- g|Enable/gIDisable(GL_MAP2_VERTEX_3);
- gIBegin(GL_LINE_STRIP);/ GL_QUAD_STRIP for (...) \{
gIEvalCoord2*(uValue, vValue);
\}
glEnd();

Bezier Surface in OpenGL

- g|Begin(GL_LINE_STRIP);/ GL_QUAD_STRIP

```
for (...) {
g|EvalCoord2*(uValue, vValue);
}
glEnd();
```

$$
\begin{gathered}
\text { GLfloat ctrlpoints[4][4][3] = \{ } \\
\{\{-1.5,-1.5,4.0\},\{-0.5,-1.5,2.0\}, \\
\{0.5,-1.5,-1.0\},\{1.5,-1.5,2.0\}\}, \\
\{\{-1.5,-0.5, I .0\},\{-0.5,-0.5,3.0\}, \\
\{0.5,-0.5,0.0\},\{1.5,-0.5,-1.0\}\}, \\
\{\{-1.5,0.5,4.0\},\{-0.5,0.5,0.0\}, \\
\{0.5,0.5,3.0\},\{1.5,0.5,4.0\}\}, \\
\{\{-1.5,1.5,-2.0\},\{-0.5,1.5,-2.0\}, \\
\{0.5,1.5,0.0\},\{1.5,1.5,-1.0\}\}
\end{gathered}
$$

$$
\}
$$

Bézier surface

normal vector of Bézier surface

partial derivation of Bézier surface $\mathbf{S}(u, v)$ ：

$$
\begin{aligned}
& \frac{\partial}{\partial u} \boldsymbol{S}(u, v)=\frac{\partial}{\partial u} \sum_{i=0}^{n} \sum_{j=0}^{m} \boldsymbol{P}_{i j} B_{i, n}(u) B_{j, m}(v)=n \sum_{i=0}^{n-1} \sum_{j=0}^{m}\left(\boldsymbol{P}_{i+1, j}-\boldsymbol{P}_{i j}\right) B_{i, n-1}(u) B_{j, m}(v) \\
& \frac{\partial}{\partial v} \boldsymbol{S}(u, v)=\frac{\partial}{\partial v} \sum_{i=0}^{n} \sum_{j=0}^{m} \boldsymbol{P}_{i j} B_{i, n}(u) B_{j, m}(v)=m \sum_{i=0}^{n} \sum_{j=0}^{m-1}\left(\boldsymbol{P}_{i, j+1}-\boldsymbol{P}_{i j}\right) B_{i, n}(u) B_{j, m-1}(v)
\end{aligned}
$$

normal $\mathbf{N}(u, v)$ ：

$$
\boldsymbol{N}(u, v)=\frac{\partial \boldsymbol{S}(u, v)}{\partial u} \times \frac{\partial \boldsymbol{S}(u, v)}{\partial v}
$$

浙；大多计算机学院数字媒体与网络技术

NURBS curve

Disadvantages of Bézier curve：

I．control points determine the degree of the curve；many control points means high degree．
2．It＇s global．A control point influences the whole curve．

Degree 2

Corner Cutting Algorithm

Chaiken (1974)

Procedural Curve

Repeatedly cutting corners generates a limit curve 1. Interpolates midpoints
 2. Tangent preserved at midpoints

NURBS curve

B－spline curve

－disadvantages of Bézier curve：
I．control points determine the degree of the curve．many control points means high degree．
2．It＇s global．A control point influences the whole curve．

de Boor et al．replaced Bernstein basis with B －spline basis to generate B－spline curve．

NURBS curve

B－spline curve：

$$
C(u)=\sum_{i=0}^{n} P_{i} N_{i, p}(u) \quad a \leq u \leq b
$$

Where $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$ are control points， $\mathbf{u}=\left[u_{0}=\mathrm{a}, u_{1}, \ldots, u_{j}, \ldots, u_{n+k+1}=\mathrm{b}\right]$ ．

$$
\begin{aligned}
& N_{i, 0}(u)=\left\{\begin{array}{cc}
1 \quad u_{i} \leq u<u_{i+1} \\
0 & \text { otherwise }
\end{array}\right. \\
& N_{i, p}(u)=\frac{u-u_{i}}{u_{i+p}-u_{i}} N_{i, p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u),
\end{aligned}
$$

$$
\frac{0}{0}=0
$$

B-spline basis

Computer Graphics @ ZJU
$\frac{0}{0}=0$
Hongxin Zhang, 2016

B-spline basis v.s. Bernstein

$$
N_{i, 0}(u)=\left\{\begin{array}{cc}
1 & u_{i} \leq u<u_{i+1} \\
0 & \text { else }
\end{array}\right.
$$

$U=\left\{u_{i}\right\}_{i=-\infty}^{\infty} \quad N_{i, p}(u)=\frac{u-u_{i}}{u_{i+p}-u_{i}} N_{i, p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u)$,

$$
\frac{0}{0}=0
$$

Computer Graphics @ ZJU

NURBS curve

properties of B－spline basis

I．localization：$N_{i, p}(u)>0$ only when $u \in\left[u_{i}, u_{i+p+1}\right]$ ．

$$
N_{i, p}(u)=\left\{\begin{array}{cc}
>0, & u_{i} \leq u<u_{i+p+1} \\
=0, & u<u_{i} \gg \text { ò } u>u_{i+p+1}
\end{array}\right.
$$

2．normalization：

$$
\sum_{j=-\infty}^{\infty} N_{j, p}(u)=\sum_{j=i-p}^{i} N_{j, p}(u)=1, u \in\left[u_{i}, u_{i+1}\right)
$$

3．piecewise polynomial：$N_{i, p}(u)$ is a polynomial with degree $<p$ ，in every $\left[u_{j}, u_{j+1}\right)$

$$
N_{i, p}^{\prime}(u)=\frac{p}{u_{i+p}-u_{i}} N_{i, p-1}(u)-\frac{p}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u)
$$

NURBS curve

Properties of B－spline curve：
I．Convex Hull Property
2．variation diminishing property．
3．Affine Invariance

4．local
5．piecewise polynomial

汫江夫少计算机学院数字媒体与网络技术

NURBS curve

B-spline---de Boor algorithm

to calculate the point of B-spline curve $\mathbf{C}(u)$ at u :

1. find the interval where u lies in: $u \in\left[u_{j} u_{j+1}\right)$;
2. curve in $u \in\left[u_{j} u_{j+1}\right)$ is only determined by $\boldsymbol{P}_{j-p}, \boldsymbol{P}_{j-p+1}, \ldots, \boldsymbol{P}_{j}$;
3. calculate

$$
\boldsymbol{P}_{i}^{r}(u)= \begin{cases}\boldsymbol{P}_{i} & r=0, i=j-p ; j-p+1, \mathrm{~L}, j ; \\ \frac{u-u_{i}}{u_{i+k-r}-u_{i}} \boldsymbol{P}_{i}^{r-1}(u)+\frac{u_{i+k-r}-u}{u_{i+k-r}-u_{i}} \boldsymbol{P}_{i-1}^{r-1}(u), \quad r=1,2, \mathrm{~L} k-1 ; i=j-p+r, j-p+r+1, \mathrm{~L}, j .\end{cases}
$$

4. $\quad \boldsymbol{P}_{j}^{k-1}(u)=C(u)$

NURBS curve

Catmull－Clark and Doo－Sabin subdivision

Start from

$$
P^{i}=\left(\mathrm{L}, p_{-1}^{i}, p_{0}^{i}, p_{1}^{i}, p_{2}^{i}, \mathrm{~L}\right)
$$

Catmull－Clark rules

$$
\begin{aligned}
& p_{2 j}^{i+1}=\frac{1}{8} p_{j-1}^{i}+\frac{6}{8} p_{j}^{i}+\frac{1}{8} p_{j+1}^{i} \\
& p_{2 j+1}^{i+1}=\frac{4}{8} p_{j}^{i}+\frac{4}{8} p_{j+1}^{i}
\end{aligned}
$$

Doo－Sabin rules：

$$
\begin{aligned}
& p_{2 j}^{i+1}=\frac{3}{4} p_{j}^{i}+\frac{1}{4} p_{j+1}^{i} \\
& p_{2 j+1}^{i+1}=\frac{1}{4} p_{j}^{i}+\frac{3}{4} p_{j+1}^{i}
\end{aligned}
$$

Figure 3：Sutdividing an initial set of centrol points（upper，rec）results in additional control points（lower，black），that more closely approximate a curve．

B-spline surface

$(\mathrm{n}+\mathrm{I}) \times(\mathrm{m}+\mathrm{I})$ control points: $\boldsymbol{P}_{i, j}$ (Degrees of $\left.u, v: p, q\right)$; nodes: $U=\left[u_{0}, u_{1}, \ldots, u_{n+p+1}\right], V=\left[v_{0}, v_{1}, \ldots, v_{m+q+1}\right]$,
Then a tensor B-spline surface with degree $p \times q$:

$$
\boldsymbol{S}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, p}(u) N_{j, q}(v) \boldsymbol{P}_{i, j}
$$

NURBS surface

NURBS（Non－uniform Rational B－spline）

NURBS curves：

$$
\begin{aligned}
& C(u)=\frac{\sum_{i=0}^{n} N_{i, p}(u) \omega_{i} \boldsymbol{P}_{i}}{\sum_{i=0}^{n} N_{i, p}(u) \omega_{i}}, \quad a \leq u \leq b \\
& U=\{\underbrace{a, \ldots, a}_{p+1}, w_{p-1}, \ldots, u_{m-p-1}, \underbrace{b, \ldots, b}_{p+1}\}
\end{aligned}
$$

NURBS surface

NURBS surface

$$
\begin{array}{ll}
\boldsymbol{S}(u, v)=\frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, p}(u) N_{j, q}(v) \omega_{i, j} \boldsymbol{P}_{i, j}}{\sum_{i=0}^{n} \sum_{j=0}^{m} N_{i, p}(u) N_{j, q}(v) \omega_{i, j}} \quad 0 \leq u, v \leq 1 \\
U=\left\{0, \ldots, 0, u_{\left.p+1, \ldots, u_{r-p-1}, 1, \ldots, 1\right\}}\right. & \omega_{p+1} \\
{ }_{p+1} \text { weights } \\
V=\left\{0, \ldots, 0, v_{\left.q+1, \ldots, v_{s-q-1}, 1, \ldots, 1\right\}}{ }_{q+1} \quad\right.
\end{array}
$$

NURBS in OpenGL

- curveName = gluNewNurbsRenderer(); gluBeginCurve (curveName);
gluNurbsCurve(curveName, nknots, *knotVector, stride,*ctrIPts, order, GL_MAPI_VERTEX_3);
gluEndCurve(curveName);

Surface trimming

Sweeping

subdivision surface

subdivision curves：

－starting from a set of points，generate new points in every step under some rules，when such step goes on infinitely，the points will be convergent to a smooth curve．

subdivision surface

浙江夫楽计算机学院数字媒体与网络技术

