Computer Graphics 2016

9. Splines and Curves

Hongxin Zhang
State Key Lab of CAD\&CG, Zhejiang University
2016-II-28

About homework 3

- an alternative solution with WebGL
- links:
- WebGL lessons http://learningwebgl.com/blog/?page_id=12|7
- My simple test https://github.com/hongxin/PonyGL
- Please use google’s browser: chrome

classification of curves

$$
y=x^{2}+5 x+3 \xrightarrow[\text { (explicit curve) }]{ } \quad y=f(x)
$$

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2} r^{2}=0 \longrightarrow g(x, y)=0
$$

(implicit curve)

$$
\begin{array}{r}
\boldsymbol{x}=\boldsymbol{x}_{\mathrm{c}}+\boldsymbol{r} \cdot \cos \boldsymbol{\theta} \\
\boldsymbol{y}=\boldsymbol{y}_{\mathrm{c}}+\boldsymbol{r} \cdot \sin \boldsymbol{\theta}
\end{array} \longrightarrow\left\{\begin{array}{l}
x=x(t) \\
y=y(t)
\end{array}\right.
$$

(parametric curve)

classification of curves

implicit curve

- planar: $f(x, y)=0$: $x^{2}+y^{2}-36=0$

- 3D curves

$$
\left\{\begin{array}{l}
f(x, y, z)=0 \\
g(x, y, z)=0
\end{array}\right.
$$

implicit curves

advantage of implicit curve：
To a point (x, y) ，it is easy to detect whether $f(x, y)$ is

$$
>0,<0 \text { or }=0 \text {. }
$$

disadvantage of implicit curve：
To a curve $f(x, y)=0$ ，it is difficult to find the point on it．．

implicit curves

Display of implicit curves－－－chain coding

implicit curves

Display of implicit curves－－－subdivision

Parametric curves

- variable is a scalar, and function is a vector:

$$
\boldsymbol{C}=\boldsymbol{C}(u)=[x(u), y(u), z(u)],
$$

- Every element of the vector is a function of the variable(the parameter)

Parametric curves

given a curve $\mathbf{C}(u)$ ，its tangent is $\mathbf{T}^{\prime} \boldsymbol{C}^{\prime}(u)$ ．
difference of arc length：

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}+(d z)^{2}=\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}\right) d^{2} u
$$

－Arc length：$s=\int_{u_{0}}^{u} d s=\int_{u_{0}}^{u} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}} d u$

Parametric curves and splines

- Cubic Hermite interpolation
- Catmull-Rom interpolation
- Bezier curves

Cubic Hermite interpolation

Goal: Interpolate Values

Nearest Neighbor Interpolation

Problem: values not continuous

Linear Interpolation

Problem: derivatives not continuous

Smooth Interpolation?

Cubic Hermite Interpolation

Given: values and derivatives at 2 points

Cubic Polynomial Interpolation

Assume cubic polynomial

$$
P(t)=a t^{3}+b t^{2}+c t+d
$$

Why? $\mathbf{4}$ constraints => need $\mathbf{4}$ degrees of freedom

Cubic Hermite Interpolation

Assume cubic polynomial

$$
\begin{aligned}
& P(t)=a t^{3}+b t^{2}+c t+d \\
& P^{\prime}(t)=3 a t^{2}+2 b t+c
\end{aligned}
$$

Solve for coefficients:

$$
\begin{aligned}
& P(0)=h_{0}=d \\
& P(1)=h_{1}=a+b+c+d \\
& P^{\prime}(0)=h_{2}=c \\
& P^{\prime}(1)=h_{3}=3 a+2 b+c
\end{aligned}
$$

Matrix Representation

$$
\begin{aligned}
& h_{0}=d \\
& h_{1}=a+b+c+d \\
& h_{2}=c \\
& h_{3}=3 a+2 b+c
\end{aligned}
$$

$$
\left[\begin{array}{l}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Matrix Representation of Polynomials

$$
P(t)=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
$$

Hermite Basis Functions

$$
\begin{aligned}
{\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] } & =\left[\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3}
\end{array}\right]\left[\begin{array}{l}
H_{0}(t) \\
H_{1}(t) \\
H_{2}(t) \\
H_{3}(t)
\end{array}\right] \\
P(t) & =\sum_{i=0}^{3} h_{i} H_{i}(t)
\end{aligned}
$$

Matrix Representation

$$
\left[\begin{array}{l}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Solve for $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}$

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{rrrr}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right]
$$

Inverse Matrix

Matrix Inverse

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{rrrr}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Change Basis

$$
\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrrr}
2 & -3 & 0 & 1 \\
-2 & 3 & 0 & 0 \\
1 & -2 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Change Basis

$\left[\begin{array}{llll}a & b & c & d\end{array}\right]\left[\begin{array}{llll}0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{rrrr}2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0\end{array}\right]\left[\begin{array}{c}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$

$$
\left[\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3}
\end{array}\right]
$$

Matrix Transpose

Transpose $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

$$
\left(\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right)^{T}=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Change Basis

$$
\underbrace{\left[\begin{array}{lll}
a & c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]}_{\left[\begin{array}{llll}
h_{0} & h_{1} & h_{2} & h_{3}
\end{array}\right]} \underbrace{\left[\begin{array}{rrrr}
2 & -3 & 0 & 1 \\
-2 & 3 & 0 & 0 \\
1 & -2 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]}_{\left[\begin{array}{l}
H_{0}(t) \\
H_{1}(t) \\
H_{2}(t) \\
H_{3}(t)
\end{array}\right]}
$$

Hermite Basis Functions

$$
\begin{aligned}
{\left[\begin{array}{l}
H_{0}(t) \\
H_{1}(t) \\
H_{2}(t) \\
H_{3}(t)
\end{array}\right] } & =\left[\begin{array}{rrrr}
2 & -3 & 0 & 1 \\
-2 & 3 & 0 & 0 \\
1 & -2 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \\
H_{0}(t) & =2 t^{3}-3 t^{2}+1 \\
H_{1}(t) & =-2 t^{3}+3 t^{2} \\
H_{2}(t) & =t^{3}-2 t^{2}+t \\
H_{3}(t) & =t^{3}-t^{2}
\end{aligned}
$$

Hermite Basis Functions

Ease

A very useful function

In animation, start and stop slowly (zero velocity)

$$
H_{1}(t)=-2 t^{3}+3 t^{2}=t^{2}(3-2 t)
$$

Catmull-Rom interpolation

We can interpolate points as easily as values

Catmull-Rom Interpolation

How to use c-r curve?

P2

N control points yield
N -I curve segments

How to choose tangent condition at two end points?

Video＾＾＾

－http：／／v．youku．com／v＿show／id＿XNTgyNjMwMjM2．html
－计算机中的数学（2）－参变量函数

Bézier curve

Pierre Étienne Bézier
an engineer at Renault

浙；未为䒚计算机学院数字媒体与网络技术

Bézier curve

Bézier curve

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

where， $\boldsymbol{P}_{\boldsymbol{i}}(\boldsymbol{i}=0,1, \ldots, n)$ are control points．

$$
B_{i, n}(t)=C_{n}^{i} t^{i}(1-t)^{n-i}, t \in[0,1] \quad \text { Bernstein basis }
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathbf{X}(\mathrm{t})=\sum_{i=0}^{n} x_{i} \boldsymbol{B}_{i, t}(t) \\
\mathbf{Y}(\mathrm{t})=\sum_{i=0}^{n} y_{i} \boldsymbol{B}_{i, t}(t)
\end{array}\right. \\
C(t)=\left(\begin{array}{l}
\mathbf{X}(\mathbf{t}) \\
\mathbf{Y}(\mathbf{t})
\end{array}{ }^{\frac{1}{j}}, P_{i}=\left(\begin{array}{l}
x_{i} \\
y_{i}
\end{array}{ }^{\frac{1}{j}}\right.\right.
\end{gathered}
$$

浙；大来多计算机学院数字媒体与网络技术

Bézier curve

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \mathbf { X } (\mathrm { t }) = \sum _ { i = 0 } ^ { n } x _ { i } B _ { i , t } (t) } \\
{ \mathbf { Y } (\mathrm { t }) = \sum _ { i = 0 } ^ { n } y _ { i } B _ { i , t } (t) }
\end{array} \quad \left\{\begin{array}{l}
\mathbf{X}(\mathrm{t})=\sum_{i=0}^{n} a_{i} t^{i} \\
\mathbf{Y}(\mathrm{t})=\sum_{i=0}^{n} b_{i} t^{i}
\end{array}\right.\right. \\
& B_{i, n}(t)=C_{n}^{i} t^{i}(1-t)^{n-i}, t \in[0,1] \\
& C(t)=\binom{\mathbf{X}(\mathbf{t})}{\mathbf{Y}(\mathbf{t})} \quad \boldsymbol{P}_{i}^{\dot{j}}=\binom{x_{i}}{y_{i}}
\end{aligned}
$$

Bézier curve

津；友罧计算机学院数字媒体与网络技术

Bézier curve

Properties of Bernstein basis

$$
B_{i, n}(t)=C_{n}^{i} t^{i}(1-t)^{n-i}, t \in[0,1]
$$

1．$B_{i, n}(t) \geq 0, i=0,1, \mathrm{~L}, n, t \in[0,1]$ ．
2．$\quad \sum_{i=0}^{n} B_{i, n}(t)=1, t \in[0,1]$ ．

$$
B_{i, n}(t)=B_{n-i, n}(1-t),
$$

3.

$$
i=0,1, \mathrm{~L}, n, t \in[0,1] .
$$

4.

$$
B_{i, n}(0)=\left\{\begin{array}{l}
1, i=0, \\
0, \text { else } ;
\end{array} \quad B_{i, n}(1)=\left\{\begin{array}{l}
1, i=n \\
0, \text { else }
\end{array}\right.\right.
$$

Bézier curve

Properties of Bernstein basis

5.

$$
B_{i, n}(t)=(1-t) B_{i, n-1}(t)+t B_{i-1, n-1}(t), i=0,1, \ldots, n .
$$

6.

$$
B_{i, n}^{\prime}(t)=n\left[B_{i-1, n-1}(t)-B_{i, n-1}(t)\right], i=0,1, \ldots, n .
$$

7.

$$
\begin{aligned}
& (1-t) B_{i, n}(t)=\left(1-\frac{i}{n+1}\right) B_{i, n+1}(t) \\
& t B_{i, n}(t)=\frac{i+1}{n+1} B_{i+1, n+1}(t) \\
& B_{i, n}(t)=\left(1-\frac{i}{n+1}\right) B_{i, n+1}(t)+\frac{i+1}{n+1} B_{i+1, n+1}(t)
\end{aligned}
$$

Bézier curve

properties of Bézier curves

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

I．Endpoint Interpolation：interpolating two end points

$$
\boldsymbol{C}(0)=\boldsymbol{P}_{0}, \boldsymbol{C}(1)=\boldsymbol{P}_{n} .
$$

2．tangent direction of $\boldsymbol{P}_{0}: \boldsymbol{P}_{0} \boldsymbol{P}_{1}$ ，tangent direction of $\boldsymbol{P}_{n}: \boldsymbol{P}_{n-1} \boldsymbol{P}_{n}$ ．

$$
\boldsymbol{C}^{\prime}(t)=n \sum_{i=0}^{n-1}\left(\boldsymbol{P}_{i+1}-\boldsymbol{P}_{i}\right) B_{i, n-1}(t), t \in[0,1] ; \boldsymbol{C}^{\prime}(0)=n\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{0}\right), \boldsymbol{C}^{\prime}(1)=n\left(\boldsymbol{P}_{n}-\boldsymbol{P}_{n-1}\right) .
$$

3．Symmetry：Let two Bezier curves be generated by ordered Bezier （control）points labelled by $\{\mathrm{p} 0, \mathrm{pI}, \ldots, \mathrm{pn}\}$ and $\{\mathrm{pn}, \mathrm{pn}-\mathrm{I}, \ldots, \mathrm{p} 0\}$ respectively，then the curves corresponding to the two different orderings of control points look the same；they differ only in the direction in which they are traversed．

Bézier curve

3．Symmetry：Let two Bezier curves be generated by ordered Bezier（control） points labelled by $\{\mathrm{p} 0, \mathrm{p} 1, \ldots, \mathrm{pn}\}$ and $\{\mathrm{pn}, \mathrm{pn}-1, \ldots, \mathrm{p} 0\}$ respectively，then the curves corresponding to the two different orderings of control points look the same；they differ only in the direction in which they are traversed．

Bézier curve

properties of Bézier curves

$$
\boldsymbol{C}(t)=\sum_{i=0}^{n} \boldsymbol{P}_{i} B_{i, n}(t), \quad t \in[0,1]
$$

4．Affine Invariance－
the following two procedures yield the same result：
（I）first，from starting control points $\{\mathrm{p} 0, \mathrm{pI}, \ldots, \mathrm{pn}\}$
compute the curve and then apply an affine map to it； （2）first apply an affine map to the control points \｛p0， $\mathrm{pl}, \ldots, \mathrm{pn}\}$ to obtain new control points $\{\mathrm{F}(\mathrm{p} 0), \ldots, \mathrm{F}(\mathrm{pn})\}$ and then find the curve with these new control points．

Bézier curve

properties of Bézier curves

5. Convex Hull Property: Bézier curve $\boldsymbol{C}(t)$ lies in the convex hull of the control points $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$;
6. variation diminishing property. Informally this means that the Bezier curve will not "wiggle" any more than the control polygon does..

Bézier curve

Bézier curves

1．linear： $\boldsymbol{C}(t)=(1-t) \boldsymbol{P}_{0}+t \boldsymbol{P}_{1}, t \in[0,1]$ ，

$$
\boldsymbol{C}(t)=[t, 1]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{P}_{0} \\
\boldsymbol{P}_{1}
\end{array}\right]
$$

2．quadratic

$$
\boldsymbol{C}(t)=(1-t)^{2} \boldsymbol{P}_{0}+2 t(1-t) \boldsymbol{P}_{1}+t^{2} \boldsymbol{P}_{2}
$$

Degree 2

$$
C(t)=\left[\begin{array}{lll}
t^{2} & t & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 2 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2}
\end{array}\right]
$$

Bézier curve

3．cubic：

$$
\boldsymbol{C}(t)=(1-t)^{3} \boldsymbol{P}_{0}+3 t(1-t)^{2} \boldsymbol{P}_{1}+3 t^{2}(1-t) \boldsymbol{P}_{2}+t^{3} \boldsymbol{P}_{3}
$$

$$
\boldsymbol{C}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{P}_{0} \\
\boldsymbol{P}_{1} \\
\boldsymbol{P}_{2} \\
\boldsymbol{P}_{3}
\end{array}\right]
$$

Bézier curve

De Casteljau algorithm

given the control points $\boldsymbol{P}_{0}, \boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$ ，and t of Bézier curve，let：

$$
\boldsymbol{P}_{i}^{r}(t)=(1-t) \boldsymbol{P}_{i}^{r-1}(t)+t \boldsymbol{P}_{i+1}^{r-1}(t), \text { Æä }\left\{\begin{array}{c}
r=1, \ldots, n ; i=0, \ldots, n-r \\
P_{i}^{0}(u)=P_{i}
\end{array}\right.
$$

then

$$
\boldsymbol{P}_{0}^{n}(t)=\mathrm{C}(t) .
$$

Bézier curve

Rational Bézier Curve

$$
\boldsymbol{R}(t)=\frac{\sum_{i=0}^{n} B_{i, n}(t) \omega_{i} \boldsymbol{P}_{i}}{\sum_{i=0}^{n} B_{i, n}(t) \omega_{i}}=\sum_{i=0}^{n} R_{i, n}(t) \boldsymbol{P}_{i}
$$

Figure 2．19：Circle as Degroe 5 Tational Bezier Curve．
where $B_{i, n}(t)$ is Bernstein basis，ω_{i} is the weight at p_{i} ．

It＇s a generalization of Bézier curve，which can express more curves，such as circle．

Bézier curve

Properties of rational Bézier curve：

1．endpoints： $\boldsymbol{R}(0)=\boldsymbol{P}_{0} ; \boldsymbol{R}(1)=\boldsymbol{P}_{n}$
2．tangent of endpoints：

$$
\boldsymbol{R}^{\prime}(0)=n \frac{\omega_{1}}{\omega_{0}}\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{0}\right) ; \boldsymbol{R}^{\prime}(1)=n \frac{\omega_{n-1}}{\omega_{n}}\left(\boldsymbol{P}_{n}-\boldsymbol{P}_{n-1}\right)
$$

3．Convex Hull Property

5.

6．Influence of the weights

Figure 2．16：Rational Bézier curve．

Bézier surface

Bézier surface

Bézier surface：

$$
\boldsymbol{S}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} \boldsymbol{P}_{i j} B_{i, n}(u) B_{j, m}(v), \quad 0 \leq u, v \leq 1
$$

where $B_{i, n}(u)$ 和 $B_{j, m}(v)$ Bernstein basis with n degree and m degree，respectively， $(n+1) \times(m+1) \boldsymbol{P}_{i, j}(i=0,1, \ldots, \mathrm{n} ; j=0,1, \ldots, \mathrm{~m})$ construct the control meshes．

