Computer Graphics 2016

9. Splines and Curves

Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University

2016-11-28

About homework 3

- an alternative solution with WebGL

- links:
 - WebGL lessons
 http://learningwebgl.com/blog/?page_id=1217
 - My simple test https://github.com/hongxin/PonyGL

- Please use google's browser: chrome

classification of curves

 $y = x^{2} + 5x + 3 \qquad \longrightarrow \qquad y = f(x)$ (explicit curve)

 $(x-x_c)^2 + (y-y_c)^2 - r^2 = 0 \longrightarrow g(x,y) = 0$ (implicit curve)

 $\begin{array}{l} \mathbf{x} = \mathbf{x}_{c} + \mathbf{r} \cdot \cos\theta \\ \mathbf{y} = \mathbf{y}_{c} + \mathbf{r} \cdot \sin\theta \end{array} \xrightarrow{\qquad} \begin{cases} x = x(t) \\ y = y(t) \end{cases}$

(parametric curve)

classification of curves

implicit curve

• planar: f(x,y)=0: $x^{2}+y^{2}-36=0$

• 3D curves

$$\begin{cases} f(x, y, z) = 0, \\ g(x, y, z) = 0. \end{cases}$$

implicit curves

advantage of implicit curve:
To a point (x,y), it is easy to detect whether f(x,y) is >0 ,<0 or =0.</p>

disadvantage of implicit curve:

To a curve f(x,y)=0, it is difficult to find the point on it..

implicit curves

Display of implicit curves---chain coding

implicit curves

Display of implicit curves---subdivision

Parametric curves

• variable is a scalar, and function is a vector:

C=C(u)=[x(u), y(u), z(u)],

 Every element of the vector is a function of the variable(the parameter)

Parametric curves

given a curve C(u), its tangent is T=C'(u).

difference of arc length: $(ds)^2 = (dx)^2 + (dy)^2 + (dz)^2 = ((x')^2 + (y')^2 + (z')^2)d^2u$

Parametric curves and splines

- Cubic Hermite interpolation
- Catmull-Rom interpolation
- Bezier curves

Goal: Interpolate Values

C5148 Lecture 8

Pat Hanrahan, Fall 2010

Cubic Hermite Interpolation

Assume cubic polynomial

$$P(t) = a t^{3} + b t^{2} + c t + d$$
$$P'(t) = 3a t^{2} + 2b t + c$$

Solve for coefficients:

$$P(0) = h_0 = d$$

 $P(1) = h_1 = a + b + c + d$
 $P'(0) = h_2 = c$
 $P'(1) = h_3 = 3a + 2b + c$
Pat Hanrahan, Fall 2010

Matrix Representation

Hermite Basis Functions

$$\begin{bmatrix} H_0(t) \\ H_1(t) \\ H_2(t) \\ H_3(t) \end{bmatrix} = \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$
$$H_0(t) = 2t^3 - 3t^2 + 1$$

$$H_1(t) = -2t^3 + 3t^2$$

$$H_2(t) = t^3 - 2t^2 + t$$

$$H_3(t) = t^3 - t^2$$

CS148 Lecture 8

Pat Hanrahan, Fall 2010

Catmull-Rom interpolation

How to use c-r curve?

N control points yield N-I curve segments

How to choose tangent condition at two end points?

Video ^ ^

- http://v.youku.com/v_show/id_XNTgyNjMwMjM2.html
- 计算机中的数学(2) 参变量函数

Pierre Étienne Bézier an engineer at Renault

Bézier curve

$$C(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), t \in [0,1]$$

where, P_i (*i*=0,1,...,n) are control points.

$$B_{i,n}(t) = C_n^i t^i (1-t)^{n-i}, t \in [0,1]$$

Bernstein basis

$$\begin{cases} \mathbf{X}(\mathbf{t}) = \sum_{i=0}^{n} x_{i} B_{i,t}(t) \\ \mathbf{Y}(\mathbf{t}) = \sum_{i=0}^{n} y_{i} B_{i,t}(t) \end{cases}$$

$$C(t) = \begin{pmatrix} \mathbf{X}(t) \\ \frac{1}{2} \\ \mathbf{Y}(t) \end{pmatrix}, \quad P_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$$

$$\begin{cases} \mathbf{X}(\mathbf{t}) = \sum_{i=0}^{n} x_{i} B_{i,t}(t) \\ \mathbf{Y}(\mathbf{t}) = \sum_{i=0}^{n} y_{i} B_{i,t}(t) \end{cases} \qquad \begin{cases} \mathbf{X}(\mathbf{t}) = \sum_{i=0}^{n} a_{i} t^{i} \\ \mathbf{Y}(\mathbf{t}) = \sum_{i=0}^{n} b_{i} t^{i} \end{cases}$$

$$B_{i,n}(t) = C_n^i t^i (1-t)^{n-i}, t \in [0,1]$$

$$C(t) = \begin{pmatrix} \mathbf{X}(t) \\ \mathbf{Y}(t) \end{pmatrix}, \quad P_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$$

Properties of Bernstein basis

$$B_{i,n}(t) = C_n^i t^i (1-t)^{n-i}, t \in [0,1]$$

1.
$$B_{i,n}(t) \ge 0, \ i = 0, 1, L, n, \ t \in [0, 1].$$

2. $\sum_{i=0}^{n} B_{i,n}(t) = 1, \ t \in [0, 1].$
3. $B_{i,n}(t) = B_{n-i,n}(1-t),$
4. $i = 0, 1, L, n, \ t \in [0, 1].$
4. $B_{i,n}(0) = \begin{cases} 1, \ i = 0, \\ 0, \ else; \end{cases} B_{i,n}(1) = \begin{cases} 1, \ i = n, \\ 0, \ else. \end{cases}$

7.

Properties of Bernstein basis

^{5.}
$$B_{i,n}(t) = (1-t)B_{i,n-1}(t) + tB_{i-1,n-1}(t), i = 0, 1, ..., n.$$

^{6.}
$$B'_{i,n}(t) = n[B_{i-1,n-1}(t) - B_{i,n-1}(t)], \ i = 0, 1, ..., n.$$

$$(1-t)B_{i,n}(t) = (1 - \frac{i}{n+1})B_{i,n+1}(t);$$

$$tB_{i,n}(t) = \frac{i+1}{n+1}B_{i+1,n+1}(t);$$

$$B_{i,n}(t) = (1 - \frac{i}{n+1})B_{i,n+1}(t) + \frac{i+1}{n+1}B_{i+1,n+1}(t).$$

$$\lim_{i \to i} J = J = J$$

properties of Bézier curves

$$C(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), t \in [0,1]$$

I. Endpoint Interpolation: interpolating two end points

$$C(0) = P_0, C(1) = P_n.$$

2. tangent direction of $P_0: P_0P_1$, tangent direction of $P_n: P_{n-1}P_n$.

$$C'(t) = n \sum_{i=0}^{n-1} (P_{i+1} - P_i) B_{i,n-1}(t), \ t \in [0,1]; \ C'(0) = n (P_1 - P_0), C'(1) = n (P_n - P_{n-1}).$$

3. Symmetry: Let two Bezier curves be generated by ordered Bezier (control) points labelled by {p0,p1,...,pn} and {pn, pn-1,..., p0} respectively, then the curves corresponding to the two different orderings of control points look the same; they differ only in the direction in which they are traversed.

3. Symmetry: Let two Bezier curves be generated by ordered Bezier (control) points labelled by {p0,p1,...,pn} and {pn, pn-1,..., p0} respectively, then the curves corresponding to the two different orderings of control points look the same; they differ only in the direction in which they are traversed.

properties of Bézier curves

$$C(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), \quad t \in [0,1]$$

4. Affine Invariance –

the following two procedures yield the same result: (1) first, from starting control points {p0, p1,..., pn} compute the curve and then apply an affine map to it; (2) first apply an affine map to the control points {p0, p1,..., pn} to obtain new control points {F(p0),...,F(pn)} and then find the curve with these new control points.

properties of Bézier curves

5. Convex Hull Property : Bézier curve C(t) lies in the convex hull of the control points $P_0, P_1, ..., P_n$;

6. *variation diminishing* property. Informally this means that the Bezier curve will not "wiggle" any more than the control polygon does..

Bézier curves

1. linear: $C(t) = (1-t)P_0 + tP_1, t \in [0,1],$

$$\boldsymbol{C}(t) = \begin{bmatrix} t, 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{P}_0 \\ \boldsymbol{P}_1 \end{bmatrix}$$

2. quadratic

$$\boldsymbol{C}(t) = (1-t)^2 \boldsymbol{P}_0 + 2t(1-t)\boldsymbol{P}_1 + t^2 \boldsymbol{P}_2$$

Degree 2

$$C(t) = \begin{bmatrix} t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \end{bmatrix}$$

3. cubic:

$$\boldsymbol{C}(t) = (1-t)^{3} \boldsymbol{P}_{0} + 3t(1-t)^{2} \boldsymbol{P}_{1} + 3t^{2}(1-t)\boldsymbol{P}_{2} + t^{3} \boldsymbol{P}_{3}$$

De Casteljau algorithm

given the control points $P_0, P_1, ..., P_n$, and t of Bézier curve, let:

$$\boldsymbol{P}_{i}^{r}(t) = (1-t)\boldsymbol{P}_{i}^{r-1}(t) + t\boldsymbol{P}_{i+1}^{r-1}(t), \text{ Æä } \begin{cases} r = 1, ..., n; \ i = 0, ..., n-r \\ P_{i}^{0}(u) = P_{i} \end{cases}$$

then $P_0^n(t) = C(t)$.

Rational Bézier Curve

Figure 2.19: Circle as Degree 5 Rational Bézier Curve.

where $B_{i,n}(t)$ is Bernstein basis, ω_i is the weight at p_i .

It's a generalization of Bézier curve, which can express more curves, such as circle.

Properties of rational Bézier curve:

1. endpoints: $R(0) = P_0$; $R(1) = P_n$

2. tangent of endpoints:

$$\boldsymbol{R}'(0) = n \frac{\omega_1}{\omega_0} (\boldsymbol{P}_1 - \boldsymbol{P}_0); \ \boldsymbol{R}'(1) = n \frac{\omega_{n-1}}{\omega_n} (\boldsymbol{P}_n - \boldsymbol{P}_{n-1})$$

3. Convex Hull Property

5.6. Influence of the weights

Bézier surface

Bézier surface

Bézier surface:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} P_{ij} B_{i,n}(u) B_{j,m}(v), \quad 0 \le u, v \le 1$$

where $B_{i,n}(u)$ $\exists B_{j,m}(v)$ Bernstein basis with n degree and m degree, respectively, $(n+1) \times (m+1) P_{i,j}(i=0,1,...,n; j=0,1,...,m)$ construct the control meshes.

