Computer Graphics 2016

- 8. Hidden Surface Elimination




Visual Realism

- Achieved by correct rendering of :
- View (perspective)
- Field of view (Clip outside the window)
- Omit hidden parts
- Surface details like texture

- Light effects on surfaces like continuous shading, shadows,
and caustics.

- Volumetric effects like transparency and translucency
through participating media like water, steam, smoke, ...

- Dynamic effects like movement, elasticity, ...
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OpenGL functions

- glEnable / gIDisable (GL_CULL_FACE);
- glCullFace(mode)

- glutlnitDisplayMode( ... | GLUT _DEPTH )
- glEnable(GL_DEPTH_TEST)
- glEnable(GL_FOG) glFog*()
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Viewing Pipeline Review
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Projection

Orthographic Perspective
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Visible Line Drawing
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Visible Surface Determination

- Goal
- Given: a set of 3D objects and Viewing specification,

- Determine: those parts of the objects that are
visible when viewed along the direction of
projection

- Or, equivalently, elimination of hidden parts (hidden
lines and surfaces)

- Visible parts will be drawn/shown with proper colors
and shades
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HLHSR Algorithms

* Two Fundamental Approach
- Object space algorithm
- a.k.a.Object Precision ~

- hidden line remove

- Image space algorithm
- a.k.a.Image Precision ~

- z-buffer
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Object Precision Algorithm

foreach (object in the world) {

determine those parts of the object whose view is
unobstructed by other parts of it or any other object;

draw those parts in the appropriate color;
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Image Precision Algorithms

foreach (pixel in the image ) {

by the projector through the pixel;

draw the pixel in the appropriate color;

determine the object closest to the viewer that is pierced

projector
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Back-face Culling -

- In a closed polygonal surface \

- i.e.the surface of a polyhedral volume or a solid
polyhedron

- The faces whose outward normals point away from
the viewer are not visible

- Such back-facing faces can be eliminated from
further processing

- Elimination of back-faces is called back-face culling
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Back-Face Culling -

- Back Face: X

- Part of the object surface facing away from the
eye.

- i.e.surface whose normal points away from the
eye position.
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Back-Face Culling

Algorithm:
1. Find angle between the eye-vector & normal to face.
2. If between 0 to 90°, discard the face.
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Back-face Culling

 Determination of back-faces

A polygonal face with outward surface normal N is a back-
face if Ny oD, >0

where D, is the direction of projection

N; |

o LA

What happens when the projectors are along Z axis, i.e., (0,0,1)
IS the view direction.

Let N; = (nx,ny,nz), the dot product now equals n;. If this is +ve,
then this is a back-face!
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Back-Face Culling

Back-face culling does not solve all visibility problems
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Back-Face Culling

Back-face culling does not solve all visibility problems
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Back-face Culling

If the scene consists of a single convex closed
polygonal surface then back-face culling is
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Hidden Surface Removal

Painter's Algorithm

From back to Front
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Clipping
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Z-Buffer Algorithm

* Image precision algorithm

- Apart from a frame buffer F in which color values are
stored,

- it also needs a z-buffer, of the same size as the frame
buffer, to store depth (z) values
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A.K.A. depth-buffer method

Z-Buffer
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Polygon Scan Conversion
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Z-Buffer Pseudo-code

- for (j=0; j<SCREEN_HEIGHT;j++)
- for (i=0;i<SCREEN_WIDTH;i++) {
- WriteToFrameBuffer(i, j, BackgroundColor);
- WriteToZBuffer(i, j, MAX);

-}

- for ( each polygon )
- for ( each pixel in polygon's projection ) {
- z = polygon's z value at (i, ) ;
- if (z < ReadFromZBuffer(i,j) ) {
- WriteToFrameBuffer(i, j, polygon's color at (i, j));
- WriteToZBuffer(i, j, z);

-}
-}
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Z-buffer
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Calculate the z of the point
Ax+By+Cz+ D=0
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Question: how!?
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Ax+By+Cz+ D=0
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perspective project
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Perspective Transformation...

* We need to apply a perspective transformation to the
view volume and transform it into a rectangular
parallel-piped one

* This makes the final 3D view volume of a perspective
view the same as that of a parallel view, just before
projection
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Perspective Transformation

|
' :
[ |
[ |
[ |
[ |
I |
| |
) |
//\\ |
// N |
N
pd N |
N
N |
N |
\\ L
feooo o ——+———
/
/
/
/
/
|

* A perspective transformation preserves relative
depth, straight lines and planes
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Perspective Transformation
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A-buffer

- Accumulation buffer

- used in Lucasfilm REYES

- not only store depth but also other data

- support transparent surfaces
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Depth-sorting

- space-image space hybrid method
- space or image space:
- sort surface by depth :l

- Image space:

- do scan conversion from deepest surfaces
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Binary Space Partitioning Trees

- BSP Tree

- Very efficient for a static group of 3D polygons as
seen from an arbitrary viewpoint

- Correct order for Painter’s algorithm is

determined by a suitable traversal of the binary
tree of polygons

32
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BSP Tree
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BSP Tree
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BSP Tree

Draw BSP Tree

function draw(bsptree tree, point eye)

If tree.empty then
return
if ﬁtree.root(eye) < O

draw (tree.right)

rasterize(tree.root)

draw(tree.left)
else

draw (tree.left)

rasterize(tree.root)

draw(tree.right)

)
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BSP Tree

rasterize(C) rasterize(B)
rasterize(A) rasterize(A)
rasterize(B) rasterize(C)
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BSP Tree

* Code works for any view

* Tree can be pre-computed

* Requires evaluation of

f

plane of the triangle(eye)
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BSP Tree Construction

- The binary tree is constructed using
the following principle:

- For each polygon, we can divide the
set of other polygons into two
groups

- One group contains those lying in
front of the plane of the given

polygon

- The other group contains those in
the back

- The polygons intersecting the plane
of the given polygon are split by that
plane
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BSP Tree

* Split Triangle:

How to!
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Summary: BSP Trees

* Pros:
Simple, elegant scheme

Only writes to frame-buffer (i.e., painters algorithm)

Thus very popular for video games (but getting less so)

* Cons:
Computationally intense preprocess stage restricts algorithm to static scenes
Worst-case time to construct tree: O(n3)

Splitting increases polygon count

Again, O(n3) worst case
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Computational
Scan-line

expensive of
clipping Warnock:

A divide and conquer
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Warnock’s Area Subdivision (Image Precision)

Start with whole image

If one of the easy cases is satisfied, draw what’s in front

- front polygon covers the whole window or
- there is at most one polygon in the window.
- Otherwise, subdivide region into 4 windows and recurse

- If region is single pixel, choose surface with smallest depth

- Advantages:
- No over-rendering

- Anti-aliases well - just recurse deeper to get sub-pixel information

Disadvantage:

- Tests are quite complex and slow
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VWarnock’s Algorithm

* Regions labeled with
case used to classify
them:

One polygon in front

Empty

One polygon inside,
surrounding or
Intersecting

* Small regions not
labeled
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http://en.wikipedia.org/wiki/View_frustum_culling
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http://en.wikipedia.org/wiki/View_frustum_culling

Ray casting

-----

Rays B

view plane

Eye position
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Ray Casting

 For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance




Thank You



