Computer Graphics 2016

2. 2D Graphics Algorithms

Hongxin Zhang
State Key Lab of CAD\&CG, Zhejiang University
20 16-09-26

Screen - Linear Structure

Computer Graphics @ ZJU
Nikon D40 Sensors

RGBW Camera Sensor

(a) Vertical stripes

(d) Complementary colors

(b) Bayer

(e) "Panchromatic", or CFA2.0 (Kodak)

(c) Pseudo-random

(f) "Burtoni" CFA

RGBW Camera Sensor

Rasterization

Rasterization

- The task of displaying a world modeled using primitives like lines, polygons, filled / patterned areas, etc. can be carried out in two steps
- determine the pixels through which the primitive is visible, a process called Rasterization or scan conversion
- determine the color value to be assigned to each such pixel.

Raster Graphics Packages

- The efficiency of these steps forms the main criteria to determine the performance of a display
- The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives
- High performance graphics workstations have most of these algorithms implemented in hardware

- Google's New AR OS: Fuchsia

Esher

LunarG ... SDK

Vulkan

Graphics Hardware

Why Study these Algorithms?

- Some of these algorithms are very good examples of clever algorithmic optimization done to dramatically improve performance using minimal hardware facilities
- Mobile graphics
- Inspiration

Scan Converting a Line Segment

- The line is a powerful element used since the days of Euclid to model the edges in the world.

Given a line segment defined by its endpoints determine the pixels and color which best model the line segment.

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

$\left(x_{1}, y_{1}\right)$

Scan converting lines

－Requirements
－理想：chosen pixels should lie as close to the ideal line as possible

- 精确：the sequence of pixels should be as straight as possible
- 亮度：all lines should appear to be of constant brightness independent of their length and orientation
- 端点：should start and end accurately
- 快速：should be drawn as rapidly as possible
- 变化：should be possible to draw lines with different width and line styles

Question I:How?

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)
$$

$y=m x+b$

$x_{1}+1 \Rightarrow y=$?, rounding

$x_{1}+2 \Rightarrow y=$?, rounding
$x_{1}+i \Rightarrow y=$?, rounding
Question 2: How to speed up?

Equation of a Line

- Equation of a line is $y-m \cdot x+c=0$
- For a line segment joining points
- $\boldsymbol{P}\left(x_{1}, y_{1}\right)$ and $\boldsymbol{Q}\left(x_{2}, y_{2}\right) \quad$ slope $\quad m=\frac{y 2-y 1}{x 2-x 1}=\frac{\Delta y}{\Delta x}$
- Slope m means that for every unit increment in x the increment in y is m units

Digital Differential Analyzer (DDA)

- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y^{2}-y 1}{x 2-x 1}
\end{aligned}
$$

- Incrementing X -coordinate by I

$$
\begin{aligned}
& x_{i}=x_{i _p r e v}+1 \\
& y_{i}=y_{i _ \text {prev }}+\mathrm{m}
\end{aligned}
$$

- Illuminate the pixel $\left[x_{i}, \operatorname{round}\left(y_{i}\right)\right]$

Discussion I:What technique makes it fast?
Discussion2: Is there any problem in the algorithm?

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m ;
$$

Divide and conquer!

Digital Differential Analyzer

- Digital Differential Analyzer algorithm (a.k.a. DDA)
- Incremental algorithm: at each step it makes incremental calculations based on the calculations done during the preceding step
- The algorithm uses floating point operations.
- An algorithm to avoid this problem is first proposed by J. Bresenham (1937~) of IBM.
- The algorithm is well known as Bresenham's Line Drawing Algorithm (1962, when he was 25).

Bresenham Line Drawing

$$
x_{i} \quad x_{i}+1
$$

$$
y_{i}=m x_{i}+c
$$

$$
\begin{align*}
& d_{1}>d_{2} ? \Rightarrow y_{i+1}=y_{i} \text { or } y_{i+1}=y_{i}+1 \\
& y=m\left(x_{i}+1\right)+b \tag{2.1}\\
& d_{1}=y-y_{i} \tag{2.2}\\
& d_{2}=y_{i}+1-y \tag{2.3}
\end{align*}
$$

If $d_{1}-d_{2}>0$, then $y_{i+1}=y_{i}+1$, else $y_{i+1}=y_{i}$
substitute (2.1), (2.2), (2.3) into $d_{1}-d_{2}$,

$$
d_{1}-d_{2}=2 y-2 y_{i}-1=2 d y / d x^{*} x_{i}+2 d y / d x+2 b-2 y_{i}-1
$$

on each side of the equation, * $d x$, denote $\left(d_{1}-d_{2}\right) d x$ as P_{i}, we have

$$
\begin{equation*}
P_{i}=2 x_{i} \mathrm{~d} y-2 y_{i} \mathrm{~d} x+2 \mathrm{~d} y+(2 b-1) \mathrm{d} x \tag{2.4}
\end{equation*}
$$

Because in first octant $d x>0$, we have $\operatorname{sign}\left(d_{1}-d_{2}\right)=\operatorname{sign}\left(P_{i}\right)$

If $P_{i}>0$, then $y_{i+1}=y_{i}+1$, else $y_{i+1}=y_{i}$

$$
\begin{array}{cc}
P_{i+1}=2 x_{i+1} \mathrm{~d} y-2 y_{i+1} \mathrm{~d} x+2 \mathrm{~d} y+(2 b-1) \mathrm{d} x, & \text { note that } x_{i+1}=x_{i}+1 \\
P_{i+1}=P_{i}+2 \mathrm{~d} y-2\left(y_{i+1}-y_{i}\right) \mathrm{d} x \tag{2.5}
\end{array}
$$

Bresenham algorithm in first octant

| . Initialization $P_{0}=2 d y-d x$
2.draw $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \quad \mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}, \quad \mathrm{dy}=\mathrm{y}_{2}-\mathrm{y}_{1}$,
Calculate $P_{1}=2 \mathrm{~d} y-\mathrm{d} x, \quad i=1$;
3. $x_{i+1}=x_{i}+1$
if $P_{i}>0$, then $\mathrm{y}_{i+1}=\mathrm{y}_{i}+1$, else $\mathrm{y}_{i+1}=\mathrm{y}_{i}$;
4. draw $\left(x_{i+1}, y_{i+1}\right)$;
5.calculate P_{i+1} :

$$
\begin{aligned}
& \text { if } P_{i}>0 \text { then } P_{i+1}=P_{i}+2 d y-2 d x \\
& \text { else } \quad P_{i+1}=P_{i}+2 d y
\end{aligned}
$$

6. $i=i+1$; if $i<d x+1$ then goto 3 ; else end

Question 3: Is it faster than DDA? Question 4:What technique?

3D DDA and 3D Bresenham

3D DDA and 3D Bresenham algorithm

Scan converting circles

A circle with center $\left(x_{\mathrm{c}}, y_{\mathrm{c}}\right)$ and radius r :

$$
\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}=r^{2}
$$

orthogonar coordinate

$$
y=y_{y} . \pm \sqrt{r^{2}-\left(x-x_{\mathrm{c}}\right)^{2}}
$$

polar coordinates
$x=x_{\mathrm{c}}+r \cdot \cos \theta$
$y=y_{\mathrm{c}}+r \cdot \sin \theta$
$x_{i}=x_{\mathrm{c}}+r \cdot \cos \left(\mathrm{i}^{*} \Delta \theta\right)$
$y_{i}=y_{\mathrm{c}}+r \cdot \sin \left(\mathrm{i}^{*} \Delta \theta\right)$
Can be accelerated by symmetrical characteristic

$$
\theta=i^{*} \Delta \theta, \quad i=0,1,2,3, \ldots
$$

Discussion 3 : How to speed up?

$$
\begin{aligned}
x_{i} & =r \cos \theta_{i} \\
y_{i} & =r \sin \theta_{i}
\end{aligned}
$$

$$
\begin{aligned}
x_{i+1} & =r \cos \left(\theta_{i}+\Delta \theta\right) \\
& =r \cos \theta_{i} \cos \Delta \theta-r \sin \theta_{i} \sin \Delta \theta \\
& =x_{i} \cos \Delta \theta-y_{i} \sin \Delta \theta
\end{aligned}
$$

Bresenham Algorithm

Homework

- Bresenham algorithm for drawing circle (deadline: 2016-10-08)
- Please write down your answer in A4 papers (physical or digital format are bot acceptable),
- and capture it/them by mobile phone camera,
- finally submit to TA via email (baidu yunpan link, recommended)

Different representations

$$
\begin{aligned}
& y=y_{\mathrm{c}} \pm \sqrt{r^{2}-\left(x-x_{\mathrm{c}}\right)^{2}} \quad \begin{array}{l}
y=f(x) \\
\text { (explicit curve) }
\end{array} \\
& \begin{array}{l}
x=x_{\mathrm{c}}+r \cdot \cos \theta \\
y=y_{\mathrm{c}}+r \cdot \sin \theta
\end{array} \quad \longrightarrow \begin{cases}x=x(t) \\
y=y(t)\end{cases} \\
& y \in\left(t_{0}, t_{l}\right)
\end{aligned}
$$

(parametric curve)

$$
\begin{gathered}
\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}=r^{2} \quad g(\mathrm{x}, \mathrm{y})=0 \\
(\text { implicit curve })
\end{gathered}
$$

Discussion 4 : How to display an explicit curve, How to display a parametric curve

Polygon filling

- Polygon representation

- Polygon filling:
vertex representation \rightarrow lattice representation

Polygon filling

- fill a polygonal area \rightarrow test every pixel in the raster to see if it lies inside the polygon.

even-odd test

winding number test

Question5: How to Judge...?

Inside check

$\mathbf{w n}=\frac{1}{2 \pi} \sum_{i=0}^{n-1} \theta_{i}$

$$
=\frac{1}{2 \pi} \sum_{i=0}^{n-1} \arccos \left(\frac{\mathbf{P} V_{i} \cdot \mathbf{P} V_{i+1}}{\left|\mathbf{P} V_{i}\right|\left|\mathbf{P} V_{i+1}\right|}\right)
$$

