
!

Computer Graphics 2014
!

5. Geometry and Transform
Hongxin Zhang	

State Key Lab of CAD&CG, Zhejiang University 	

!

2014-10-11

Computer Graphics 2014, ZJU

Today outline

• Triangle rasterization 	

• Basic vector algebra ~ geometry	

!

• Antialiasing revisit	

• Clipping	

• Transforms (I)

Computer Graphics 2014, ZJU

Previous lesson

• Primitive attributes	

• Rasterization and scan line algorithm	

• line, 	

• general polygon

Computer Graphics 2014, ZJU

Seed Fill Algorithms
• Assumes that at least one pixel interior to the

polygon is known	

• It is a recursive algorithm	

• Useful in interactive paint packages

Seed 4-connected 8 - connected

Computer Graphics 2014, ZJU

Polygon filling
• Polygon representation	

!

!

• 	

!

• By vertex By lattice	

• Polygon filling: 	

• vertex representation vs lattice representation

Computer Graphics 2014, ZJU

Scan Line Method 

• Proceeding from left to right 	
the
intersections are paired and intervening pixels
are set to the specified intensity	

• Algorithm	

• Find the intersections of the scan line with
all the edges in the polygon	

• Sort the intersections by increasing X-
coordinates	

• Fill the pixels between pair of intersections

From top to down

http://www.cecs.csulb.edu/~pnguyen/cecs449/
lectures/fillalgorithm.pdf

http://www.cecs.csulb.edu/~pnguyen/cecs449/lectures/fillalgorithm.pdf

• Intersections could be found using edge coherence
the X-intersection value xi+1 of the lower scan line can be

computed from the X-intersection value xi of the proceeding
scan line as

!
!

!
• List of active edges could be maintained to increase efficiency

Efficiency Issues in Scan Line Method

Computer Graphics 2014, ZJU

Advantages of Scan Line
method

• The algorithm is efficient	

• Each pixel is visited only once	

• Shading algorithms could be easily integrated with
this method to obtain shaded area	

!

• Efficiency could be further improved if polygons
are convex, 	

• much better if they are only triangles

Computer Graphics 2014, ZJU

Convex?

A set C in S is said to be convex if, for all x and y in
C and all t in the interval [0,1], the point 	

(1 − t) x + t y	

is in C.

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Interval_(mathematics)

Computer Graphics 2014, ZJU

Convex?

A set C in S is said to be convex if, for all x and y in
C and all t in the interval [0,1], the point 	

(1 − t) x + t y	

is in C.

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Interval_(mathematics)

Computer Graphics 2014, ZJU

Convex?

A set C in S is said to be convex if, for all x and y in
C and all t in the interval [0,1], the point 	

(1 − t) x + t y	

is in C.

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Interval_(mathematics)

Computer Graphics 2014, ZJU

Convex polygon
rasterization

One in and one out

Triangle Rasterization

Computer Graphics 2014, ZJU

Triangle Rasterization?

Computer Graphics 2014, ZJU

Triangle Rasterization

Computer Graphics 2014, ZJU

Triangle Rasterization

Computer Graphics 2014, ZJU

Triangle Rasterization

Computer Graphics 2014, ZJU

Compute Bounding Box

Computer Graphics 2014, ZJU

Point Inside Triangle Test

Computer Graphics 2014, ZJU

Point Inside Triangle Test

Computer Graphics 2014, ZJU

Point Inside Triangle Test

Computer Graphics 2014, ZJU

Point Inside Triangle Test

Computer Graphics 2014, ZJU

Line equation

Computer Graphics 2014, ZJU

The Parallelogram Rule

Computer Graphics 2014, ZJU

Dot Product

Computer Graphics 2014, ZJU

Orthonormal Vectors

Computer Graphics 2014, ZJU

Coordinates and Vectors

Computer Graphics 2014, ZJU

Dot product between
two vectors

Computer Graphics 2014, ZJU

Cross Product

Computer Graphics 2014, ZJU

Cross Product

Computer Graphics 2014, ZJU

2~3D

Computer Graphics 2014, ZJU

Vector operations

Computer Graphics 2014, ZJU

Point operations

Computer Graphics 2014, ZJU

illegal operations

Computer Graphics 2014, ZJU

Directed line

Computer Graphics 2014, ZJU

Perpendicular vector in
2D

Computer Graphics 2014, ZJU

Line equation

Computer Graphics 2014, ZJU

Normal to the line

Computer Graphics 2014, ZJU

Line equation

Computer Graphics 2014, ZJU

Line equation

Computer Graphics 2014, ZJU

Singularities

Computer Graphics 2014, ZJU

Handling singularity

Antialiasing

Computer Graphics 2014, ZJU

• Aliasing is caused due to the discrete nature of the display device	

• Rasterizing primitives is like sampling a continuous signal by a finite
set of values (point sampling)	

• Information is lost if the rate of sampling is not sufficient. This
sampling error is called aliasing.	

• Effects of aliasing are	

– Jagged edges	

– Incorrectly rendered fine details	

– Small objects might miss

Aliasing

Computer Graphics 2014, ZJU

Aliasing(examples)

Computer Graphics 2014, ZJU

Aliasing(examples)

Computer Graphics 2014, ZJU

Aliasing(examples)

Computer Graphics 2014, ZJU

Antialiasing

• Application of techniques to reduce/eliminate aliasing
artifacts	

• Some of the methods are	

– increasing sampling rate by increasing the resolution.
Display memory requirements increases four times if the
resolution is doubled	

– averaging methods (post processing). Intensity of a pixel is
set as the weighted average of its own intensity and the
intensity of the surrounding pixels	

– Area sampling, more popular

Antialiasing (postfiltering)
How should one supersample?

36

Area Sampling

• A scan converted primitive occupies finite area on the
screen

• Intensity of the boundary pixels is adjusted depending
on the percent of the pixel area covered by the
primitive. This is called weighted area sampling

Computer Graphics 2014, ZJU

• Methods to estimate percent of pixel covered by the
primitive	

–subdivide pixel into sub-pixels and determine how many
sub-pixels are inside the boundary	

–Incremental line algorithm can be extended, with area
calculated as 	
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

x+0.5

Area Sampling

y+0.5

y-0.5

x-0.5 x

y

filled area

Clipping

• Clipping of primitives is done usually before scan
converting the primitives

• Reasons being
–scan conversion needs to deal only with the clipped

version of the primitive, which might be much
smaller than its unclipped version

–Primitives are usually defined in the real world, and
their mapping from the real to the integer domain of
the display might result in the overflowing of the
integer values resulting in unnecessary artifacts

Clipping

Clipping

• Why Clipping?
• How Clipping?

–Lines
–Polygons
!

• Note: Content from chapter 4.
–Lots of stuff about rendering systems and

mathematics in that chapter.

Definition

• Clipping – Removal of content that is not going to be
displayed
–Behind camera
–Too close
–Too far
–Off sides of  

the screen

How would we clip?

• Points?
• Lines?
• Polygons?
• Other objects?

We’ll start in 2D

• Assume a 2D upright rectangle we are clipping against
–Common in windowing systems
–Points are trivial

• >= minx and <= maxx and >= miny and <= maxy

a
b

c

Line Segments

• What can happen when a line segment is clipped?

Cohen-Sutherland Line Clipping

• We’ll assign the ends of a line “outcodes”, 4 bit
values that indicate if they are inside or outside
the clip area.

1001 1000 1010

0001

0101 0110

0010

0100

0000

x < xmin
x > xmaxy < ymin

y > ymax

ymin

ymax

xmin xmax

Outcode cases

• We’ll call the two endpoint outcodes o1 and o2.
– If o1 = o2 = 0, both endpoints are inside.
–else if (o1 & o2) != 0, both ends points are on the

same side, the edge is discarded.

1001 1000 1010

0001

0101 0110

0010

0100

0000

More cases

• else if (o1 != 0) and (o2 = 0), (or vice versa), one end is
inside, other is outside.
–Clip and recompute one that’s outside until inside.
–Clip edges with bits set…
–May require two  

clip computations 1001 1000 1010

0001

0101 0110

0010

0100

0000

Last case…

–else if (o1 & o2) = 0, end points are on different
sides.
• Clip and recompute.
• May have some inside part or may not…
• May require up to 4 clips!

1001 1000 1010

0001

0101 0110

0010

0100

0000

48

• To do the clipping find the
end point that lies outside

• Test the outcode to find the
edge that is crossed and
determine the
corresponding intersection
point

• Replace the outside end-
point by intersection-point

• Repeat the above steps for
the new line

a
b

c

d

e
f

g

h

i
1001

0000

1010

0010

0100

Cohen-Sutherland Line-Clipping Algorithm

49

Sutherland-Hodgeman Polygon-Clipping 
Algorithm

• Polygons can be clipped against each edge of the window
one edge at a time. Window/edge intersections, if any, are
easy to find since the X or Y coordinates are already
known.

• Vertices which are kept after clipping against one window
edge are saved for clipping against the remaining edges.

Computer Graphics 2014, ZJU

• Because polygon clipping does not depend on any other polygons, it is
possible to arrange the clipping stages in a pipeline. the input polygon
is clipped against one edge and any points that are kept are passed on as
input to the next stage of the pipeline. 	

• This way four polygons can be at different stages of the clipping process
simultaneously. This is often implemented in hardware.

Pipelined Polygon
Clipping

Clip	

Right

Clip	

Top

Clip	

Left

Clip	

Bottom

51

Sutherland-Hodgeman Polygon Clipping
Algorithm

• Polygon clipping is similar to line clipping except we
have to keep track of inside/outside relationships
–Consider a polygon as a list of vertices
–Note that clipping  

can increase the  
number of vertices!

–Typically clip one  
edge at a time…

v1

v2

v3

v4

v5

52

Sutherland-Hodgeman algorithm
• Present the vertices in pairs

–(vn,v1), (v1, v2), (v2,v3), …, (vn-1,vn)
–For each pair, what are the possibilities?
–Consider v1, v2

Inside Outside Inside Outside Inside Outside Inside Outside

v1

v2 v1

v1

v1

v2

v2

v2

output v2 output i no output output i
and v2

53

Example  
v5, v1

v1

v2

v3

v4

v5
Inside Outside

v1

Inside Outside

Inside, Inside 
Output v1

Current
Output

s

p

54

v1,v2

v1

v2

v3

v4

v5
Inside Outside

v1

v2

Inside Outside

Inside, Inside 
Output v2

Current
Output

s

p

55

v2, v3

v1

v2

v3

v4

v5
Inside Outside

v1

v2

Inside Outside

Inside, Outside 
Output i1

Current
Output

s

p

i1

i1

56

v3, v4

v1

v2

v3

v4

v5
Inside Outside

Outside, Outside 
No output

s

p

v1

v2

Inside Outside

Current
Output

i1

57

v4, v5 – last edge…

v1

v2

v3

v4

v5
Inside Outside

Outside, Inside 
Output i2, v5

s

p

v1

v2

Inside Outside

Current
Output

i1

i2 i2

v5

Transforms

Computer Graphics 2014, ZJU

Transformations

• Procedures to compute new positions of objects	

• Used to modify objects or to transform (map) from
one co-ordinate system to another co-ordinate
system

 As all objects are eventually represented using
points, it is enough to know how to transform points.

Computer Graphics 2014, ZJU

Translation
• Is a Rigid Body Transformation

• Translation vector (Tx, Ty, Tz) or shift vector

x => x+ Tx

y => y + Ty

z => z + Tz

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Translating an Object

(Tx, Ty)

x

y

Computer Graphics 2014, ZJU

Scaling
• Changing the size of an object

x => x * Sx

y => y * Sy

z => z * Sz

Computer Graphics 2014, ZJU

Scaling

• Scale factor (Sx, Sy, Sz)

• Changing the size of an object

x => x * Sx

y => y * Sy

z => z * Sz

Computer Graphics 2014, ZJU

Scaling

• Scale factor (Sx, Sy, Sz)

• Changing the size of an object

Sy = 1 Sx = 1 Sx = Sy

x => x * Sx

y => y * Sy

z => z * Sz

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling an Object

(x, y)

(x’, y’)

x

y

Computer Graphics 2014, ZJU

Scaling (contd.)
 Scaling is always with respect to the origin. The origin

does not move.

Scaling wrt a reference point can be
achieved as a composite transformation

Computer Graphics 2014, ZJU

Scaling an Object

Question8 : How ?

Computer Graphics 2014, ZJU

Scaling an Object

Question8 : How ?

Computer Graphics 2014, ZJU

Scaling an Object

(x0,y0)

Question8 : How ?

Computer Graphics 2014, ZJU

Shearing
• Produces shape distortions	

• Shearing in x-direction

x => x + a* y

y => y

z => z

Computer Graphics 2014, ZJU

Rotation

x

y

Computer Graphics 2014, ZJU

Rotation

x

y

Computer Graphics 2014, ZJU

Rotation

x

y

Computer Graphics 2014, ZJU

Rotation

x

y

(x, y)

(x’, y’)

Computer Graphics 2014, ZJU

Rotation

x

y

α

θ

(x, y)

(x’, y’)

Computer Graphics 2014, ZJU

Rotation

x

y

α

θ

(x, y)

(x’, y’)

Computer Graphics 2014, ZJU

Rotation
• Is a Rigid Body Transformation

Computer Graphics 2014, ZJU

Rotation
• Is a Rigid Body Transformation

x’ = r · cos(α+θ)
 = r cos α cos θ - r sin α sin θ
 = x cos θ - y sin θ

Computer Graphics 2014, ZJU

Rotation (contd.)

• Rotation also is wrt to a reference -	

• A Reference Line in 3D	

• A Reference Point in 2D  

• Define 2D rotation about arbitrary point

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)
newx = x−xr
newy = y−yr

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)
newx = x−xr
newy = y−yr

newxʹ′ = newx cosθ − newy sinθ	

newyʹ′ = newy cosθ + newx sinθ

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)
newx = x−xr
newy = y−yr

newxʹ′ = newx cosθ − newy sinθ	

newyʹ′ = newy cosθ + newx sinθ

xʹ′ = newxʹ′ + xr
yʹ′ = newyʹ′ + yr

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)
newx = x−xr
newy = y−yr

newxʹ′ = newx cosθ − newy sinθ	

newyʹ′ = newy cosθ + newx sinθ

xʹ′ = newxʹ′ + xr
yʹ′ = newyʹ′ + yr

 xʹ′ = xr+(x−xr)cosθ − (y−yr)sinθ
yʹ′ = yr+(y−yr)cosθ +(x−xr)sinθ

Computer Graphics 2014, ZJU

x

y

φ

θ

(x, y)

(x’, y’)

(xr, yr)
newx = x−xr
newy = y−yr

newxʹ′ = newx cosθ − newy sinθ	

newyʹ′ = newy cosθ + newx sinθ

xʹ′ = newxʹ′ + xr
yʹ′ = newyʹ′ + yr

 xʹ′ = xr+(x−xr)cosθ − (y−yr)sinθ
yʹ′ = yr+(y−yr)cosθ +(x−xr)sinθ

Rotate around (xr,yr)

Computer Graphics 2014, ZJU

General Linear
Transformation

• Which of the following can be represented in this
form?	

•Translation	

•Scaling	
 	
 	

•Rotation

or

