
Computer Graphics 2015

4. Primitive Attributes
Hongxin Zhang

State Key Lab of CAD&CG, Zhejiang University

2015-10-12

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Previous lessons
- Rasterization

- line

- circle /ellipse ? => homework

- OpenGL and its rendering pipeline

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

3 Stages in OpenGL

 Define Objects in World Scene

 Set Modeling and Viewing Transformations

 Render the Scene

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Example Code
int main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode (
GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowPosition(100,100);
glutInitWindowSize(300,300);
glutCreateWindow ("square");

glClearColor(0.0, 0.0, 0.0, 0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 10.0, 0.0, 10.0, -1.0, 1.0);

glutDisplayFunc(display);
glutMainLoop();
return 0;

}

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 1.0, 0.0);

glBegin(GL_POLYGON);

glVertex3f(2.0, 4.0, 0.0);

glVertex3f(8.0, 4.0, 0.0);

glVertex3f(8.0, 6.0, 0.0);

glVertex3f(2.0, 6.0, 0.0);

glEnd();

glFlush();

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Attribute parameters
- How to generate different display effects?

- per primitive (C++)

- system owns states (OpenGL)

- OpenGL is a state machine!

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

State parameters of OpenGL
- Attributes are assigned by OpenGL state functions:

- color, matrix mode, buffer positions, Light ...

- on state paras in this lesson

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Primitives
- GL_POINTS

- GL_LINES

- GL_LINE_STRIP

- GL_LINE_LOOP

1.GL_POLYGON and GL_TRIANGLE are the only ones in
common usage

2.valid OpenGL polygons are closed, convex, co-planar and
non-intersecting, which is always true for triangles!

- GL_TRIANGLES

- GL_QUADS

- GL_POLYGON

- GL_TRIANGLE_STRIP

- GL_TRIANGLE_FAN

- GL_QUAD_STRIP

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Examples
glBegin(GL_POLYGON);

 glVertex2i(0,0);
 glVertex2i(0,1);
 glVertex2i(1,1);
 glVertex2i(1,0);

glEnd() ;

glBegin(GL_POINTS);
 glVertex2i(0,0);
 glVertex2i(0,1);
 glVertex2i(1,1);
 glVertex2i(1,0);

glEnd() ;

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Examples
GLfloat list[6][2] ;

glBegin(GL_LINES)
 for (int i = 0 ; i < 6 ;i++)

 glVertex2v(list[i]);
glEnd() ;

glBegin(GL_LINE_STRIP)
 for (int i = 0 ; i < 6 ;i++)

 glVertex2v(list[i]);
glEnd() ;

glBegin(GL_LINE_LOOP)
 for (int i = 0 ; i < 6 ;i++)

 glVertex2v(list[i]);
glEnd() ;

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Examples
GLfloat list[6][2] ;

glColor3f(0.0, 1.0, 0.0);
glBegin(GL_TRIANGLES)
 for (int i = 0 ; i < 6 ;i++)
 glVertex2v(list[i]);
glEnd() ;

glBegin(GL_TRIANGLES)
 glColor3f(1.0, 0.0, 0.0);
 for (i = 0 ; i < 3 ;i++)
 glVertex2v(list[i]);
 glColor3f(1.0, 1.0, 1.0);
 for (i = 3 ; i < 6 ;i++)
 glVertex2v(list[i]);
glEnd() ;

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Examples

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

P0

P1

P2

P3

P4

P5 P6

P7

Must be
planar convex

GL_QUAD_STRIP

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Command Syntax
- All command names begin with gl

- Ex.: glVertex3f(0.0, 1.0, 1.0);

- Constant names are in all uppercase

- Ex.: GL_COLOR_BUFFER_BIT

- Data types begin with GL

- Ex.: GLfloat onevertex[3];

- Most commands end in two characters that determine
the data type of expected arguments

- Ex.: glVertex3f(…) => 3 GLfloat arguments

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

glVertex
- All primitives are defined in terms of vertices

- glVertex2f(x, y);

- glVertex3f(x, y, z);

- glVertex4f(x, y, z, w);

- glVertex3fv(a); // with a[0], a[1], a[2]

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Building Objects From Vertices
- Specify a primitive mode, and enclose a set of

vertices in a glBegin / glEnd block

- glBegin(GL_POLYGON);

- glVertex3f(1.0, 2.0, 0.0);

- glVertex3f(0.0, 0.0, 0.0);

- glVertex3f(3.0, 0.0, 0.0);

- glVertex3f(3.0, 2.0, 0.0);

- glEnd();

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Example

V4 V5

V7 V6

void drawOneCubeface(size)
{
 static Glfloat v[8][3];
 v[0][0] = v[3][0] = v[4][0] = v[7][0] = -size/2.0;
 v[1][0] = v[2][0] = v[5][0] = v[6][0] = size/2.0;
 v[0][1] = v[1][1] = v[4][1] = v[5][1] = -size/2.0;
 v[2][1] = v[3][1] = v[6][1] = v[7][1] = size/2.0;
 v[0][2] = v[1][2] = v[2][2] = v[3][2] = -size/2.0;
 v[4][2] = v[5][2] = v[6][2] = v[7][2] = size/2.0;

 glBegin(GL_POLYGON);
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);
 glVertex3fv(v[2]);
 glVertex3fv(v[3]);
 glEnd();
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Real examples in OpenGL|ES
float afVertices [] = {…};

glEnableVertexAttribArray(0);

glVertexAttribPointer(VERTEX_ARRAY,GL_FLOAT, GL_FALSE,afVertices);

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Note: there is no glBegin/glVertex/glEnd in OpenGL|ES

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Colors
- OpenGL colors are typically defined as RGB components

- each of which is a float in the range [0.0, 1.0]

- For the screen’s background:

- glClearColor(0.0, 0.0, 0.0); // black color

- glClear(GL_COLOR_BUFFER_BIT);

- For objects:

- glColor3f(1.0, 1.0, 1.0); // white color

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Other Commands in glBegin / glEnd blocks

- Not every OpenGL command can be located in
such a block. Those that can include, among others:

- glColor

- glNormal (to define a normal vector)

- glTexCoord (to define texture coordinates)

- glMaterial (to set material properties)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Example

glBegin(GL_POLYGON);

glColor3f(1.0, 1.0, 0.0); glVertex3f(0.0, 0.0, 0.0);

glColor3f(0.0, 1.0, 1.0); glVertex3f(5.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 1.0); glVertex3f(0.0, 5.0, 0.0);

glEnd();

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Polygon Display Modes
- glPolygonMode(GLenum face, GLenum mode);

- Faces: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK

- Modes: GL_FILL, GL_LINE, GL_POINT

- By default, both the front and back face are drawn filled

- glFrontFace(GLenum mode);

- Mode is either GL_CCW (default) or GL_CW

- glCullFace(Glenum mode);

- Mode is either GL_FRONT, GL_BACK, GL_FRONT_AND_BACK;

- You must enable and disable culling with

- glEnable(GL_CULL_FACE) or glDisable(GL_CULL_FACE);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Drawing Other Objects
• GLU contains calls to draw cylinders, cones and more

complex surfaces called NURBS

• GLUT contains calls to draw spheres and cubes

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Compiling OpenGL Programs
• To use GLUT :

• #include <GL/glut.h>

• This takes care of every other include you need

• Make sure that glut.lib (or glut32.lib) is in your
compiler’s library directory, and that the object
module or DLL is also available

• See OpenGL Game Programming or online tutorials
for details

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Structure of GLUT-Assisted Programs

- GLUT relies on user-defined callback functions,
which it calls whenever some event occurs

- Function to display the screen

- Function to resize the viewport

- Functions to handle keyboard and mouse events

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Event Driven Programming

Main
Event
Loop

Display
Handler

Keyboard
Handler

Mouse
Handler

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Simple GLUT Example

Displaying a square

int main (int argc, char *argv[])
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);

int windowHandle
 = glutCreateWindow("Simple GLUT App");

glutDisplayFunc(redraw);
glutMainLoop();

return 0;
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Display Callback
Called when window is redrawn

void redraw()
{
glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_QUADS);
glColor3f(1, 0, 0);
glVertex3f(-0.5, 0.5, 0.5);
glVertex3f(0.5, 0.5, 0.5);
glVertex3f(0.5, -0.5, 0.5);
glVertex3f(-0.5, -0.5, 0.5);

glEnd(); // GL_QUADS

glutSwapBuffers();

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

More GLUT

Additional GLUT functions
 glutPositionWindow(int x,int y);
 glutReshapeWindow(int w, int h);

Additional callback functions
 glutReshapeFunction(reshape);
 glutMouseFunction(mousebutton);
 glutMotionFunction(motion);
 glutKeyboardFunction(keyboardCB);
 glutSpecialFunction(special);
 glutIdleFunction(animate);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

 Reshape Callback

Called when the window is resized
void reshape(int w, int h)
{

glViewport(0.0,0.0,w,h);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0,w,0.0,h, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

 Mouse Callbacks

Called when the mouse button is pressed
void mousebutton(int button, int state, int x, int y)
{

if (button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
{

rx = x; ry = winHeight - y;
}

}

Called when the mouse is moved with button down
void motion(int x, int y)
{

rx = x; ry = winHeight - y;
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Called when a button is pressed
void keyboardCB(unsigned char key, int x, int y)
{
 switch(key)
 { case 'a': cout<<"a Pressed"<<endl; break; }
}

Called when a special button is pressed
void special(int key, int x, int y)
{
 switch(key)
 { case GLUT_F1_KEY:

cout<<“F1 Pressed"<<endl; break; }
}

 Keyboard Callbacks

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL – GLUT Example
#include <gl/glut.h>
#include <stdlib.h>
static GLfloat spin = 0.0;
void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
}

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT);

 glPushMatrix();

 glRotatef(spin, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glRectf(-25.0, -25.0, 25.0, 25.0);

 glPopMatrix();

 glutSwapBuffers();

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL – GLUT Example
void spinDisplay(void)

{

 spin += 2.0;

 if(spin > 360.0)

 spin -= 360.0;

 glutPostRedisplay();

}

void reshape(int w, int h)

{

 glViewport(0, 0, (GLsizei) w, (GLsizei)
h);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL – GLUT Example
void mouse(int button, int state, int x, int y)

{

 switch(button)

 {

 case GLUT_LEFT_BUTTON:

 if(state == GLUT_DOWN)

 glutIdleFunc(spinDisplay);

 break;

 case GLUT_RIGHT_BUTTON:

 if(state == GLUT_DOWN)

 glutIdleFunc(NULL);

 break;

 default: break;

 }

}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL – GLUT Example
int main(int argc, char ** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize(250, 250);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);

 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Web Resources

http://www.opengl.org

http://nehe.gamedev.net

http://www.xmission.com/~nate/glut.html

http://www.opengl.org/
http://nehe.gamedev.net/
http://www.xmission.com/~nate/glut.html

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Color and greyscale
- Color is a fundamental primitive attribute

- RGB color model

- Color lookup table / Color map

- Greyscale

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Why RGB?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Color Model

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Color perception
- Three types of cones:

- Colorblindness results from a deficiency of one
cone type.

peak sensitivities

S M L

Blue Green Red

430nm 560nm 610nm

roughly approximate

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Color function
- GLUT_RGB and

- GLUT_RGBA with alpha channel

- glColor3f (1.0, 1.0, 1.0);

- glColor3i (0, 255, 255);

- glColor3fv (colorArray);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Color function
- Color index mode

- glIndexi (196);

- Color blending function

- glEnable (GL_BLEND);

- glDisable (GL_BLEND);

- glBlendFunc (sFactor, dFactor);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

OpenGL Color Array
- Defined in the latest OpenGL standard

- glEnableClientState (GL_COLOR_ARRAY);

- glColorPointer (...);

- glEnableClientState (GL_VERTEX_ARRAY);

- glVertexPointer (...);

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Attributes of
- Point

- Size and Color

- Line

- line width

- line style

- brush

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Region attributes
- defined by a planar polygon

- filling style:

- wireframe,

- fill,

- tiling pattern

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Polygon filling
- Polygon representation

-

- By vertex By lattice

- Polygon filling:

- vertex representation vs lattice representation

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

22

Polygon filling
• fill a polygonal area ! test every pixel in the raster to

see if it lies inside the polygon.

Question5: How to Judge…?

even-odd test winding number test

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

23

Inside check

Question6: How to improve …?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Inside check

even-odd test

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
24

Scan Line Methods
• Makes use of the coherence properties

–Spatial coherence : Except at the boundary edges,
adjacent pixels are likely to have the same
characteristics

–Scan line coherence : Pixels in the adjacent scan
lines are likely to have the same characteristics

• Uses intersections between area boundaries and scan
lines to identify pixels that are inside the area

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

25

Scan Line Method 
- Proceeding from left to right the intersections are paired and intervening

pixels are set to the specified intensity

- Algorithm

- Find the intersections of the scan line with all the edges in the polygon

- Sort the intersections by increasing X-coordinates

- Fill the pixels between pair of intersections

Discussion 5 : How to speed up, or how to avoid
calculating intersection

From top to down

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

• Intersections could be found using edge coherence

the X-intersection value xi+1 of the lower scan line can be computed from the
X-intersection value xi of the preceeding scanline as

• List of active edges could be maintained to increase efficiency

• Efficiency could be further improved if polygons are convex, much better if they
are only triangles

26

Efficiency Issues in Scan Line Method

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
27

Special cases for Scan Line Method
• Overall topology should be

considered for intersection
at the vertices

• Intersections like I1 and I2
should be considered as two
intersections

• Intersections like I3 should
be considered as one
intersection

• Horizontal edges like E need
not be considered

I1

I2

I3
E

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
28

Advantages of Scan Line method
• The algorithm is efficient

• Each pixel is visited only once

• Shading algorithms could be easily integrated with
this method to obtain shaded area

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
29

Seed Fill Algorithms
• Assumes that atleast one pixel interior to the

polygon is known

• It is a recursive algorithm

• Useful in interactive paint packages

Seed 4-connected 8 - connected

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
30

Aliasing
• Aliasing is caused due to the discrete nature of the display

device

• Rasterizing primitives is like sampling a continuous signal by a
finite set of values (point sampling)

• Information is lost if the rate of sampling is not sufficient. This
sampling error is called aliasing.

• Effects of aliasing are

– Jagged edges

– Incorrectly rendered fine details

–Small objects might miss

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Aliasing(examples)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Aliasing(examples)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Aliasing(examples)

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
34

Antialiasing
• Application of techniques to reduce/eliminate aliasing

artifacts

• Some of the methods are

– increasing sampling rate by increasing the resolution.
Display memory requirements increases four times if
the resolution is doubled

–averaging methods (post processing). Intensity of a
pixel is set as the weighted average of its own intensity
and the intensity of the surrounding pixels

–Area sampling, more popular

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Antialiasing(postfiltering)
How should one supersample?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
36

Area Sampling
• A scan converted primitive occupies finite area on

the screen

• Intensity of the boundary pixels is adjusted
depending on the percent of the pixel area covered
by the primitive. This is called weighted area sampling

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
37

Area Sampling
• Methods to estimate percent of pixel covered by the

primitive

–subdivide pixel into sub-pixels and determine how
many sub-pixels are inside the boundary

– Incremental line algorithm can be extended, with
area calculated as y+0.5

y-0.5

x+0.5x-0.5 x

y

filled area

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
38

Clipping
• Clipping of primitives is done usually before scan

converting the primitives

• Reasons being

–scan conversion needs to deal only with the clipped
version of the primitive, which might be much
smaller than its unclipped version

–Primitives are usually defined in the real world, and
their mapping from the real to the integer domain
of the display might result in the overflowing of the
integer values resulting in unnecessary artifacts

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Clipping
• Why Clipping?

• How Clipping?

–Lines

–Polygons

• Note: Content from chapter 4.

–Lots of stuff about rendering systems and
mathematics in that chapter.

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Definition
• Clipping – Removal of content that is not going to be

displayed

–Behind camera

–Too close

–Too far

–Off sides of  
the screen

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

How would we clip?
• Points?

• Lines?

• Polygons?

• Other objects?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

We’ll start in 2D
• Assume a 2D upright rectangle we are clipping

against

–Common in windowing systems

–Points are trivial

• >= minx and <= maxx and >= miny and <= maxy

a
b

c

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Line Segments
• What can happen when a line segment is clipped?

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Cohen-Sutherland Line Clipping
• We’ll assign the ends of a line “outcodes”, 4 bit values that

indicate if they are inside or outside the clip area.

1001 1000 1010

0001

0101 0110

0010

0100

0000

x < xmin
x > xmaxy < ymin

y > ymax

ymin

ymax

xmin xmax

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Outcode cases
• We’ll call the two endpoint outcodes o1 and o2.

– If o1 = o2 = 0, both endpoints are inside.

–else if (o1 & o2) != 0, both ends points are on the
same side, the edge is discarded.

1001 1000 1010

0001

0101 0110

0010

0100

0000

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

More cases
• else if (o1 != 0) and (o2 = 0), (or vice versa), one end

is inside, other is outside.

–Clip and recompute one that’s outside until
inside.

–Clip edges with bits set…

–May require two  
clip computations

1001 1000 1010

0001

0101 0110

0010

0100

0000

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Last case…
–else if (o1 & o2) = 0, end points are on different

sides.

• Clip and recompute.

• May have some inside part or may not…

• May require up to 4 clips!
1001 1000 1010

0001

0101 0110

0010

0100

0000

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Cohen-Sutherland Line-Clipping Algorithm

48

• To do the clipping find the
end point that lies outside

• Test the outcode to find
the edge that is crossed
and determine the
corresponding intersection
point

• Replace the outside end-
point by intersection-point

• Repeat the above steps for
the new line

a
b

c

d

e
f

g

h

i
1001

0000

1010

0010

0100

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Liang–Barsky algorithm

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015

Liang–Barsky algorithm

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
49

Sutherland-Hodgeman Polygon-Clipping Algorithm

• Polygons can be clipped against each edge of the window one edge at a time.
Window/edge intersections, if any, are easy to find since the X or Y coordinates
are already known.

• Vertices which are kept after clipping against one window edge are saved for
clipping against the remaining edges.

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
50

Pipelined Polygon Clipping
• Because polygon clipping does not depend on any other polygons, it is possible to

arrange the clipping stages in a pipeline. the input polygon is clipped against one
edge and any points that are kept are passed on as input to the next stage of the
pipeline.

• This way four polygons can be at different stages of the clipping process
simultaneously. This is often implemented in hardware.

Clip
Right

Clip
Top

Clip
Left

Clip
Bottom

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
51

Sutherland-Hodgeman Polygon Clipping Algorithm

• Polygon clipping is similar to line clipping except we
have to keep track of inside/outside relationships

–Consider a polygon as a list of vertices

–Note that clipping  
can increase the  
number of vertices!

–Typically clip one  
edge at a time…

v1

v2

v3

v4

v5

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
52

Sutherland-Hodgeman algorithm
• Present the vertices in pairs

– (vn,v1), (v1, v2), (v2,v3), …, (vn-1,vn)

–For each pair, what are the possibilities?

–Consider v1, v2

Inside Outside Inside Outside Inside Outside Inside Outside

v1

v2 v1

v1

v1

v2

v2

v2

output v2 output i no output output i
and v2

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
53

Example: v5, v1

v1

v2

v3

v4

v5
Inside Outside

v1

Inside Outside

Inside, Inside 
Output v1

Current
Output

s

p

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
54

v1,v2

v1

v2

v3

v4

v5
Inside Outside

v1

v2

Inside Outside

Inside, Inside 
Output v2

Current
Output

s

p

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
55

v2, v3

v1

v2

v3

v4

v5
Inside Outside

v1

v2

Inside Outside

Inside, Outside 
Output i1

Current
Output

s

p

i1

i1

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
56

v3, v4

v1

v2

v3

v4

v5
Inside Outside

Outside, Outside 
No output

s

p

v1

v2

Inside Outside

Current
Output

i1

Computer Graphics @ ZJU Hongxin Zhang, 2010-2015
57

v4, v5 – last edge…

v1

v2

v3

v4

v5
Inside Outside

Outside, Inside 
Output i2, v5

s

p

v1

v2

Inside Outside

Current
Output

i1

i2 i2

v5

