#### **Computer Graphics 2013**

#### 6. Geometric Transformations

Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University

2014-10-13

#### Contents

- Transformations
- Homogeneous Co-ordinates
- Matrix Representations of Transformations

#### Transformations

- Procedures to compute new positions of objects
- Used to modify objects or to transform (map) from one co-ordinate system to another co-ordinate system

#### As all objects are eventually represented using points, it is enough to know how to transform points.

#### Translation

• Is a Rigid Body Transformation

$$x \Longrightarrow x + T_x$$
$$y \Longrightarrow y + T_y$$
$$z \Longrightarrow z + T_z$$



• Translation vector  $(T_x, T_y, T_z)$  or shift vector





• Scale factor  $(S_x, S_y, S_z)$ 



## Shearing

- Produces shape distortions
- Shearing in x-direction

$$x => x + a^* y$$

y => y z => z





















$$newx = x - x_r$$
$$newy = y - y_r$$



$$newx = x - x_r$$
$$newy = y - y_r$$

 $newx' = newx \cos\theta - newy \sin\theta$  $newy' = newy \cos\theta + newx \sin\theta$ 



$$newx = x - x_r$$
$$newy = y - y_r$$

 $newx' = newx \cos\theta - newy \sin\theta$  $newy' = newy \cos\theta + newx \sin\theta$ 

$$x' = newx' + x_r$$
$$y' = newy' + y_r$$



$$newx = x - x_r$$
$$newy = y - y_r$$

 $newx' = newx \cos\theta - newy \sin\theta$  $newy' = newy \cos\theta + newx \sin\theta$ 



$$x' = newx' + X_r$$
$$y' = newy' + Y_r$$

$$x' = x_r + (x - x_r)\cos\theta - (y - y_r)\sin\theta$$
  
$$y' = y_r + (y - y_r)\cos\theta + (x - x_r)\sin\theta$$

#### Rotate around (x<sub>r</sub>,y<sub>r</sub>)

 $newx = x - x_r$ 

 $newy = y - y_r$ 

 $newx' = newx \cos\theta - newy \sin\theta$  $newy' = newy \cos\theta + newx \sin\theta$ 



$$x' = newx' + x_r$$

$$y' = newy' + y_r$$

$$x' = x_r + (x - x_r)\cos\theta - (y - y_r)\sin\theta$$
  
$$y' = y_r + (y - y_r)\cos\theta + (x - x_r)\sin\theta$$

 $\begin{aligned} x &=> a^*x + b^*y + c^*z \\ y &=> d^*x + e^*y + f^*z \\ z &=> g^*x + h^*y + i^*z \end{aligned} \quad Or \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ 

- Which of the following can be represented in this form?
  - Translation
  - Scaling
  - Rotation

 $x' = x \cos\theta - y \sin\theta$  $y' = y \cos\theta + x \sin\theta$ 

$$x' = x Sx$$
$$y' = y Sy$$





$$x = x + T_x$$
$$y' = y + T_y$$



#### Homogeneous Co-ordinates

$$(x, y) \rightarrow (x, y, a)$$
  
 $x = \frac{x}{a}, y = \frac{y}{a}$ 
 $(x, y) \rightarrow (x, y, 1)$ 

• Any point (x, y, z) in Cartesian co-ordinates is written as

 $(xw, yw, zw, w), w \neq 0$ 

- in Homogeneous Co-ordinates
- The point (x, y, z, w) represents in Cartesian co-ordinates  $(x/w, y/w, z/w), w \neq 0$

What happens when w=0 ?

### Homogeneous Co-ordinates

$$(x, y) \rightarrow (x, y, a)$$
  
 $x = \frac{x}{a}, y = \frac{y}{a}$ 
 $(x, y) \rightarrow (x, y, 1)$ 

• Any point (x, y, z) in Cartesian co-ordinates is written as

 $(xw, yw, zw, w), w \neq 0$ 

- in Homogeneous Co-ordinates
- The point (x, y, z, w) represents in Cartesian co-ordinates

 $(x/w, y/w, z/w), w \neq 0$ 

What happens when w=0 ? the point represented is a point at infinity Computer Graphics 2014, ZJU



$$\begin{aligned} \mathbf{x}' &= \mathbf{x} \cos\theta - \mathbf{y} \sin\theta \\ \mathbf{y}' &= \mathbf{y} \cos\theta + \mathbf{x} \sin\theta \\ \mathbf{x}' &= \mathbf{x} \operatorname{Sx} \\ \mathbf{y}' &= \mathbf{y} \operatorname{Sy} \\ \mathbf{x}' &= \mathbf{x} + \mathbf{T}_{\mathbf{x}} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{T}_{\mathbf{y}} \\ \mathbf{x}' &= \mathbf{x} + \mathbf{T}_{\mathbf{x}} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{T}_{\mathbf{y}} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{T}_{\mathbf{y}} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{x} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{y} \\ \mathbf{y}' &= \mathbf{y} + \mathbf{y} \end{aligned}$$

# Matrix Notations for Transformations

- Point P (x,y,z) is written as the column vector  $P_h$
- A transformation is represented by a 4x4 matrix M
- The transformation is performed by matrix multiplication

$$Q_h = M * P_h$$

## Matrix Representations and Homogeneous Co-ordinates

- Each of the transformations defined above can be represented by a 4x4 matrix
- Composition of transformations is represented by product of matrices
- So composition of transformations is also represented by 4x4 matrix

## Matrix Representations of Various Transformations

Translation

• Scaling

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• Shearing (in X direction)

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & a & b & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation (around Z axis)



Rotation (around Z axis)



Rotation (around Z axis)

















# Properties of Transformations

| Type<br>Preserves | Rigid Body:            | Linear                | Affine                  | Projective                                |
|-------------------|------------------------|-----------------------|-------------------------|-------------------------------------------|
|                   | Rotation & translation | General 3x3<br>matrix | Linear +<br>translation | 4x4 matrix with<br>last row<br>≠(0,0,0,1) |
| Lengths           | Yes                    | No                    | No                      | No                                        |
| Angles            | Yes                    | No                    | No                      | No                                        |
| Parallelness      | Yes                    | Yes                   | Yes                     | No                                        |
| Straight lines    | Yes                    | Yes                   | Yes                     | Yes                                       |

## Simple Rotation



## Simple Rotation



## Simple Rotation



## Suppose we wish to rotate the cat's head about its nose!

#### To rotate the cat's head about its nose









# Composition...

This is an instance of a general rule: to apply transformation A to point p, and the transform result by transformation B, to obtain, say, q:

# Composite Transformation

- Resultant of a sequence of transformations
- Composite transformation matrix is equal to the product of the sequence of the given transformation matrices

$$Q_h = M_n^* \dots * M_2 * M_1 * P_h$$
$$= M * P_h$$

## Rotation About Point P (Math)

Point about which to rotate

$$P = \begin{bmatrix} I_{\mathcal{X}} \\ T_{\mathcal{Y}} \\ I \end{bmatrix}$$

Translate to OriginRotateTranslate Back $M_1 = \begin{bmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{bmatrix}$  $M_2 = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$  $M_3 = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$ 

Composition Maps a Point A to new Point B.  $B := M_4 A$ 

$$M_{4} = \begin{bmatrix} I & 0 & T_{x} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & -T_{x} \\ 0 & I & -T_{y} \\ 0 & 0 & I \end{bmatrix}$$
$$M_{4} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & -\cos(\theta) & T_{x} + \sin(\theta) & T_{y} + T_{x} \\ \sin(\theta) & \cos(\theta) & -\sin(\theta) & T_{x} - \cos(\theta) & T_{y} + T_{y} \\ 0 & 0 & I \end{bmatrix}$$

# Scaling About Point P

- Scaling also operates relative to the Origin.
- To make an object bigger without moving it
  - Translate P to origin.
  - Apply scaling.
  - Inverse translation.

$$M_{4} = \begin{bmatrix} I & 0 & T_{x} \\ 0 & I & T_{y} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & -T_{x} \\ 0 & I & -T_{y} \\ 0 & 0 & I \end{bmatrix} = \begin{bmatrix} S_{x} & 0 & -S_{x} T_{x} + T_{x} \\ 0 & S_{y} & -S_{y} T_{y} + T_{y} \\ 0 & 0 & I \end{bmatrix}$$

#### Matrix Multiplication is Not Commutative



#### Matrix Multiplication is Not Commutative



#### Matrix Multiplication is Not Commutative



# Composite of basic transformations

- Order of multiplication of the matrices is important because matrix multiplication is not commutative
- Most of the transformations that we normally deal with can be obtained as composite of the 3 basic transformations, i.e., translation, scaling, and rotation

# Rotation about arbitrary axis

• Given:

Axis:  $(x_1,y_1,z_1)$  to  $(x_2,y_2,z_2)$ 

Angle of rotation: θ

- Procedure
- 1. Transform so that the given axis coincides with the Z axis
- 2. Rotate by  $\theta$
- 3. Apply inverse of step 1. transforms



# Rotation example (contd.)

- Steps
  - $T_{-(x_1,y_1,z_1)}$   $R_{(x,\alpha)}$   $R_{(y,\beta)}$   $R_{(z,\theta)}$

Makes given axis pass through origin

Makes axis lie in ZX plane

Makes axis coincide with the Z axis

Applies given rotation

Apply inverses of aligning transformations



Computer Graphics 2014, ZJU

## Alternative solution

- Quaternion (10 min reading)
  - what is?
  - basic operations
  - and how to perform rotation
- reference:
  - http://www.cs.ucr.edu/~vbz/resources/ quatut.pdf

# Transformations in OpenGL

- Model-view matrix
- Projection matrix
- Texture matrix

# Programming Transformations

- In OpenGL, the transformation matrices are part of the state, they must be defined *prior to* any vertices to which they are to apply.
- In modeling, we often have objects specified in their own coordinate systems and must use transformations to bring the objects into the scene.
- OpenGL provides matrix stacks for each type of supported matrix (model-view, projection, texture) to store matrices.

## Current Transformation Matrix

Current Transformation Matrix (CTM)

Is the matrix that is applied to any vertex that is defined subsequent to its setting.

- If we change the CTM, we change the state of the system.
- CTM is a 4 x 4 matrix that can be altered by a set of functions.

# Changing CTM

Specify CTM mode : glMatrixMode (mode);

mode = (GL\_MODELVIEW | GL\_PROJECTION | GL\_TEXTURE )

• Load CTM : glLoadIdentity ( void ); glLoadMatrix{fd} ( \*m );

m = ID array of I6 elements arranged by the columns

- Multiply CTM : glMultMatrix{fd} ( \*m );
- Modify CTM : (multiplies CTM with appropriate transformation matrix)

glTranslate {fd} ( x, y, z);
glScale {fd} ( x, y, z);
glRotate {fd} ( angle, x, y, z);

rotate counterclockwise around ray (0,0,0) to (x, y, z)

#### Rotation About an Arbitrary Point

#### Task:

Rotate an object by 45.0 degrees about the line from (4.0, 5.0, 6.0) to (5.0, 7.0, 9.0).  $(T_{-p1}, R_{45}, T_{+p1})$ 

glMatrixMode (GL\_MODEVIEW); glLoadIdentity (); glTranslatef (4.0, 5.0, 6.0); glRotatef (45.0, 1.0, 2.0, 3.0); glTranslatef (-4.0, -5.0, -6.0);

## Order of Transformations

- The transformation matrices appear in *reverse* order to that in which the transformations are applied.
- In OpenGL, the transformation specified most recently is the one applied first.

## Matrix Stacks

• OpenGL uses matrix stacks mechanism to manage modeling transformation hierarchy.

glPushMatrix (void);

glPopMatrix (void);

- OpenGL provides matrix stacks for each type of supported matrix to store matrices.
  - Model-view matrix stack
  - Projection matrix stack
  - Texture matrix stack

#### Example of Modeling Transform hierarchy



## Ex – Desk with 4 legs



By calling glutSolidCube() ...

# Hierarchal transformations





#### **Non-Linear Transforms!**

## Thank You