
!

Computer Graphics 2014
!

8. Hidden Surface Elimination
Hongxin Zhang	

State Key Lab of CAD&CG, Zhejiang University 	

!

2014-10-20

Computer Graphics @ ZJU Hongxin Zhang, 2014

- Achieved by correct rendering of :	

- View (perspective)	

- Field of view (Clip outside the window)	

- Omit hidden parts 	

- Surface details like texture	

- Light effects on surfaces like continuous shading, shadows,
and caustics.	

- Volumetric effects like transparency and translucency
through participating media like water, steam, smoke, …	

- Dynamic effects like movement, elasticity, …

Visual Realism

Computer Graphics @ ZJU Hongxin Zhang, 2014

OpenGL functions
- glEnable / glDisable (GL_CULL_FACE);	

- glCullFace(mode)	

!

- glutInitDisplayMode(... | GLUT_DEPTH)	

- glEnable(GL_DEPTH_TEST)	

- glEnable(GL_FOG) glFog*()

Computer Graphics @ ZJU Hongxin Zhang, 2014

Viewing Pipeline Review

X

Y

Z

v

n

u

v

u

n

low

high

W

H

View Orientation Projection Mapping

Computer Graphics @ ZJU Hongxin Zhang, 2014

Projection

Orthographic Perspective

Computer Graphics @ ZJU Hongxin Zhang, 2014

Visible Line Drawing

Computer Graphics @ ZJU Hongxin Zhang, 2014

Visible Line Drawing

Computer Graphics @ ZJU Hongxin Zhang, 2014

Visible Line Drawing

Computer Graphics @ ZJU Hongxin Zhang, 2014

Visible Line Drawing

Computer Graphics @ ZJU Hongxin Zhang, 2014

Visible Line Drawing

Computer Graphics @ ZJU Hongxin Zhang, 2014

- Goal	

- Given: a set of 3D objects and Viewing specification, 	

- Determine: those parts of the objects that are
visible when viewed along the direction of
projection	

- Or, equivalently, elimination of hidden parts (hidden
lines and surfaces)	

- Visible parts will be drawn/shown with proper colors
and shades

Visible Surface Determination

Computer Graphics @ ZJU Hongxin Zhang, 2014

HLHSR Algorithms
• Two Fundamental Approach	

- Object space algorithm 	

- a.k.a. Object Precision ~	

- hidden line remove	

!

- Image space algorithm	

- a.k.a. Image Precision ~	

- z-buffer

Computer Graphics @ ZJU Hongxin Zhang, 2014

Object Precision Algorithm

foreach (object in the world) {	

determine those parts of the object whose view is
unobstructed by other parts of it or any other object;	

draw those parts in the appropriate color;	

}

Computer Graphics @ ZJU Hongxin Zhang, 2014

Image Precision Algorithms
foreach (pixel in the image) {	

determine the object closest to the viewer that is pierced
by the projector through the pixel;	

draw the pixel in the appropriate color;	

}

projector

ViewWindow

Computer Graphics @ ZJU Hongxin Zhang, 2014

Back-face Culling
- In a closed polygonal surface 	

- i.e. the surface of a polyhedral volume or a solid
polyhedron	

- The faces whose outward normals point away from
the viewer are not visible	

- Such back-facing faces can be eliminated from
further processing	

!

- Elimination of back-faces is called back-face culling

Computer Graphics @ ZJU Hongxin Zhang, 2014

Back-Face Culling
- Back Face:	

- Part of the object surface facing away from the
eye. 	

!

- i.e. surface whose normal points away from the
eye position.

Computer Graphics @ ZJU Hongxin Zhang, 2014

Back-Face Culling

Computer Graphics @ ZJU Hongxin Zhang, 2014

Back-Face Culling

Algorithm:	

1. Find angle between the eye-vector & normal to face.	

2. If between 0 to 90°, discard the face.

Computer Graphics @ ZJU Hongxin Zhang, 2014

• Determination of back-faces

A polygonal face with outward surface normal Nf is a back-
face if Nf o Dp > 0	

where Dp is the direction of projection

Back-face Culling

Dp

Nf

What happens when the projectors are along Z axis, i.e., (0,0,1)
is the view direction.

Let Nf = (nx,ny,nz), the dot product now equals nz. If this is +ve,
then this is a back-face!

Computer Graphics @ ZJU Hongxin Zhang, 2014
13

Back-Face Culling

Back-face culling does not solve all visibility problems

Computer Graphics @ ZJU Hongxin Zhang, 2014
13

Back-Face Culling

Back-face culling does not solve all visibility problems

Computer Graphics @ ZJU Hongxin Zhang, 2014
13

Back-Face Culling

Back-face culling does not solve all visibility problems

Computer Graphics @ ZJU Hongxin Zhang, 2014
13

Back-Face Culling

Back-face culling does not solve all visibility problems

Computer Graphics @ ZJU Hongxin Zhang, 2014
14

Back-Face Culling

Back-face culling does not solve all visibility problems

Computer Graphics @ ZJU Hongxin Zhang, 2014

Back-face Culling

If the scene consists of a single convex closed
polygonal surface then back-face culling is

equivalent to HLHSR

Computer Graphics @ ZJU Hongxin Zhang, 2014

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Painter's Algorithm	

From back to Front

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Painter's Algorithm	

From back to Front

??

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Painter's Algorithm	

From back to Front

??

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Painter's Algorithm	

From back to Front

??

Clipping

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Painter's Algorithm	

From back to Front

??

Clipping
Area Sorting

Hidden Surface Removal

Computer Graphics @ ZJU Hongxin Zhang, 2014

Z-Buffer Algorithm
• Image precision algorithm	

- Apart from a frame buffer F in which color values are
stored, 	

- it also needs a z-buffer, of the same size as the frame
buffer, to store depth (z) values

F-Buffer Z-Buffer

A.K.A. depth-buffer method

Computer Graphics @ ZJU Hongxin Zhang, 2013

x

!

y

z
view

direction

view
point

Screen F-Buffer Z-Buffer

Z-Buffer

Computer Graphics @ ZJU Hongxin Zhang, 2014

Polygon Scan Conversion

Scan Line

Computer Graphics @ ZJU Hongxin Zhang, 2014

Z-Buffer Pseudo-code
- for (j=0; j<SCREEN_HEIGHT; j++)	

- for (i=0; i<SCREEN_WIDTH; i++) {	

- WriteToFrameBuffer(i, j, BackgroundColor);	

- WriteToZBuffer(i, j, MAX); 	

- }	

!
- for (each polygon)	

- for (each pixel in polygon's projection) {	

- z = polygon's z value at (i, j) ;	

- if (z < ReadFromZBuffer(i, j)) {	

- WriteToFrameBuffer(i, j, polygon's color at (i, j));	

- WriteToZBuffer(i, j, z); 	

- }	

- }  

Z-buffer：

Z-buffer：

Z-buffer：

Z-buffer：

Z-buffer：

Z-buffer：

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

Computer Graphics @ ZJU Hongxin Zhang, 2014

Project：

Orthographic Perspective

Z-buffer

Calculate the z of the point
Ax + By + Cz + D = 0

Question: how?

Computer Graphics @ ZJU Hongxin Zhang, 2014

Project：

Orthographic Perspective

Z-buffer

Calculate the z of the point
Ax + By + Cz + D = 0

DDA
x++, y++

z+??

Question: how?

Computer Graphics @ ZJU Hongxin Zhang, 2014

Project：

Orthographic Perspective

Z-buffer

Calculate the z of the point
Ax + By + Cz + D = 0

DDA
x++, y++

z+??

Question: how?

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

Computer Graphics @ ZJU Hongxin Zhang, 2013

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,0）
P1

P2

P3

Q1

Q2

Q3

（xp,yp,d） P P

Ax + By + Cz + D = 0

(x, y, z) ! (xp, yp, d)(x, y, z)! (x, y, d)

p

p

x d
x
y d
y

⎧
=⎪

z⎪
⎨
⎪ =
⎪ z⎩

Computer Graphics @ ZJU Hongxin Zhang, 2013

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,0）
P1

P2

P3

Q1

Q2

Q3

（xp,yp,d） P P

Ax + By + Cz + D = 0

(x, y, z) ! (xp, yp, d)

(x, y, z)! (xp, yp, z)

(x, y, z)! (x, y, d)

p

p

x d
x
y d
y

⎧
=⎪

z⎪
⎨
⎪ =
⎪ z⎩

Computer Graphics @ ZJU Hongxin Zhang, 2013

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,0）
P1

P2

P3

Q1

Q2

Q3

（xp,yp,d） P P

Ax + By + Cz + D = 0

(x, y, z) ! (xp, yp, d)

(x, y, z)! (xp, yp, z)

(xp, yp, d)

(x, y, z)! (x, y, d)

p

p

x d
x
y d
y

⎧
=⎪

z⎪
⎨
⎪ =
⎪ z⎩

Computer Graphics @ ZJU Hongxin Zhang, 2013

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,0）
P1

P2

P3

Q1

Q2

Q3

（xp,yp,d） P P

Ax + By + Cz + D = 0

(x, y, z) ! (xp, yp, d)

(x, y, z)! (xp, yp, z)

(xp, yp, d)

Orthographic	

project

(x, y, z)! (x, y, d)

p

p

x d
x
y d
y

⎧
=⎪

z⎪
⎨
⎪ =
⎪ z⎩

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

(x,y,z)! (xp,yp,z)

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

(x,y,z)! (xp,yp,z)

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

(x,y,z)! (xp,yp,z)

(xp,yp,d)

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

(x,y,z)! (xp,yp,z)

(xp,yp,d)

Orthographic
project

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

（0,0,-0）

perspective project

 P

(x,y,z)! (xp,yp,z)

(xp,yp,d)

Orthographic
project

P1

P2

P3

Q1

Q2

Q3

（xp,yp,d）

Perspective
Transformation

Computer Graphics @ ZJU Hongxin Zhang, 2014

Perspective Transformation...
• We need to apply a perspective transformation to the

view volume and transform it into a rectangular
parallel-piped one	

!

• This makes the final 3D view volume of a perspective
view the same as that of a parallel view, just before
projection

Computer Graphics @ ZJU Hongxin Zhang, 2014

• A perspective transformation preserves relative
depth, straight lines and planes

Perspective Transformation

Computer Graphics @ ZJU Hongxin Zhang, 2014

Perspective Transformation

n

u

n=-1 n=+1

n

Computer Graphics @ ZJU Hongxin Zhang, 2014

- Accumulation buffer	

- used in Lucasfilm REYES	

- not only store depth but also other data	

- support transparent surfaces

A-buffer

Computer Graphics @ ZJU Hongxin Zhang, 2014

Depth-sorting
- space-image space hybrid method	

- space or image space: 	

- sort surface by depth	

!

- image space:	

- do scan conversion from deepest surfaces

Computer Graphics @ ZJU Hongxin Zhang, 2014
32

Binary Space Partitioning Trees
- BSP Tree	

- Very efficient for a static group of 3D polygons as
seen from an arbitrary viewpoint	

- Correct order for Painter’s algorithm is
determined by a suitable traversal of the binary
tree of polygons

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

A

B C

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

A

B C

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

tree.root

tree.left

Draw BSP Tree
function draw(bsptree tree, point eye)
if tree.empty then
 return
if ftree.root(eye) < 0
 draw (tree.right)
 rasterize(tree.root)
 draw(tree.left)
else
 draw (tree.left)
 rasterize(tree.root)
 draw(tree.right)

tree.right

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

A

B C

rasterize(C)	

rasterize(A)	

rasterize(B)

B

C
A

rasterize(B)	

rasterize(A)	

rasterize(C)

C
A

B

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree

A

B C

rasterize(C)	

rasterize(A)	

rasterize(B)

B

C
A

rasterize(B)	

rasterize(A)	

rasterize(C)

C
A

B

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree
• Code works for any view	

• Tree can be pre-computed	

• Requires evaluation of 	

 fplane of the triangle(eye)

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree Construction
- The binary tree is constructed using

the following principle:	

- For each polygon, we can divide the
set of other polygons into two
groups	

- One group contains those lying in
front of the plane of the given
polygon	

- The other group contains those in
the back	

- The polygons intersecting the plane
of the given polygon are split by that
plane

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree
• Split Triangle:	

How to?

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree
• Split Triangle:	

How to?

Computer Graphics @ ZJU Hongxin Zhang, 2014

BSP Tree
• Split Triangle:	

How to?

Computer Graphics @ ZJU Hongxin Zhang, 2014

Summary: BSP Trees
• Pros:	

Simple, elegant scheme	

Only writes to frame-buffer (i.e., painters algorithm)	

Thus very popular for video games (but getting less so)	

!

• Cons:	

Computationally intense preprocess stage restricts algorithm to static scenes	

Worst-case time to construct tree: O(n3)	

Splitting increases polygon count 	

Again, O(n3) worst case

Computer Graphics @ ZJU Hongxin Zhang, 2014

Z-buffer

Scan-line

Warnock：

A divide and conquer

Computer Graphics @ ZJU Hongxin Zhang, 2014

Computational
expensive of

clipping

Z-buffer

Scan-line

Warnock：

A divide and conquer

Computer Graphics @ ZJU Hongxin Zhang, 2014

Warnock’s Area Subdivision (Image Precision)

- Start with whole image	

- If one of the easy cases is satisfied, draw what’s in front 	

- front polygon covers the whole window or	

- there is at most one polygon in the window.	

- Otherwise, subdivide region into 4 windows and recurse	

- If region is single pixel, choose surface with smallest depth	

!

- Advantages:	

- No over-rendering	

- Anti-aliases well - just recurse deeper to get sub-pixel information	

- Disadvantage:	

- Tests are quite complex and slow

Computer Graphics @ ZJU Hongxin Zhang, 2014

Warnock’s Algorithm
• Regions labeled with

case used to classify
them:	

One polygon in front	

Empty	

One polygon inside,
surrounding or
intersecting	

• Small regions not
labeled

2 2 2

2222

2

2

3

3

3

3 33

3

3

3

3

3

333

3

3

1

1 1 1
1

Octree

http://en.wikipedia.org/wiki/View_frustum_culling

http://en.wikipedia.org/wiki/View_frustum_culling

ray casting

1

Greg Humphreys

CS445: Intro Graphics

University of Virginia, Fall 2004

Ray Casting

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from

visible surfaces

View plane

Eye position

Simplest method

is ray casting

Rays
through

view plane

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color sample based on surface radiance

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through

view plane

WHY?

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

1

Greg Humphreys

CS445: Intro Graphics

University of Virginia, Fall 2004

Ray Casting

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from

visible surfaces

View plane

Eye position

Simplest method

is ray casting

Rays
through

view plane

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color sample based on surface radiance

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through

view plane

WHY?

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Thank You

