#### **Computer Graphics 2014**

### 2. 2D Graphics Algorithms

Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University

2014-09-26

### Screen







Computer Graphics @ ZJU



#### Nikon D40 Sensors

### Rasterization

- The task of displaying a world modeled using primitives like lines, polygons, filled / patterned areas, etc. can be carried out in two steps
  - determine the pixels through which the primitive is visible, a process called Rasterization or scan conversion
  - determine the color value to be assigned to each such pixel.

### Rasterization



## Raster Graphics Packages

- The efficiency of these steps forms the main criteria to determine the performance of a display
- The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives
- High performance graphics workstations have most of these algorithms implemented in hardware

# Why Study these Algorithms?

 Some of these algorithms are very good examples of clever algorithmic optimization done to dramatically improve performance using minimal hardware facilities

- Mobile graphics
- Inspiration



# Scan Converting a Line Segment

- The line is a powerful element used since the days of Euclid to model the edges in the world.



Given a line segment defined by its endpoints determine the pixels and color which best model the line segment.

Computer Graphics @ ZJU

#### start from $(x_1, y_1)$ end at $(x_2, y_2)$



#### start from $(x_1, y_1)$ end at $(x_2, y_2)$



 $(x_1, y_1)$ 

Computer Graphics @ ZJU

start from  $(x_1, y_1)$  end at  $(x_2, y_2)$ 



start from  $(x_1, y_1)$  end at  $(x_2, y_2)$ 



Computer Graphics @ ZJU

start from  $(x_1, y_1)$  end at  $(x_2, y_2)$ 



- Requirements
  - chosen pixels should lie as close to the ideal line as possible
  - the sequence of pixels should be as straight as possible
  - all lines should appear to be of constant brightness independent of their length and orientation
  - should start and end accurately
  - should be drawn as rapidly as possible
  - should be possible to draw lines with different width and line styles







Question 2: How to speed up?

# Equation of a Line

- Equation of a line is  $y m \cdot x + c = 0$
- For a line segment joining points
- $P(x_1, y_1)$  and  $Q(x_2, y_2)$  slope  $m = \frac{y_2 y_1}{x_2 x_1} = \frac{\Delta y}{\Delta x}$
- Slope *m* means that for every unit increment in *x* the increment in *y* is *m* units



## Digital Differential Analyzer (DDA)

- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = mx_i + c$$
  
where,  $m = \frac{y_i^2 - y_i^2}{x_i^2 - x_i^2}$ 

- Incrementing X-coordinate by I  $x_i = x_{i\_prev} + 1$  $y_i = y_{i\_prev} + m$
- Illuminate the pixel  $[x_i, round(y_i)]$



## Digital Differential Analyzer (DDA)

- We consider the line in the first octant. Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = mx_i + c$$
  
where,  $m = \frac{y^2 - y^1}{x^2 - x^1}$ 

- Incrementing X-coordinate by I  $x_i = x_{i\_prev} + 1$ 

$$y_i = y_{i\_prev} + m$$
  
lluminate the pixel  $[x_i, round(y_i)]$ 



Discussion I: What technique makes it fast?

## Digital Differential Analyzer (DDA)

- We consider the line in the first octant.
   Other cases can be easily derived.
- Uses differential equation of the line

$$y_i = mx_i + c$$
  
where,  $m = \frac{y^2 - y^1}{x^2 - x^1}$ 

- Incrementing X-coordinate by I  $x_i = x_{i\_prev} + 1$ 

- Illuminate the pixel 
$$\begin{bmatrix} y_{i\_prev} + m \\ [x_{i}, round(y_{i})] \end{bmatrix}$$



Discussion I: What technique makes it fast?

I.

Discussion2: Is there any problem in the algorithm? How to avoid it?

If  $\triangle x < \triangle y$ 



y += 1; x += 1/m;

If  $\triangle x < \triangle y$ 



$$y += 1; x += 1/m;$$

#### **Divide and conquer!**

# **Digital Differential Analyzer**

- Digital Differential Analyzer algorithm (a.k.a. DDA)
- Incremental algorithm: at each step it makes incremental calculations based on the calculations done during the preceding step
- The algorithm uses floating point operations.

- An algorithm to avoid this problem is first proposed by J.
   Bresenham of IBM.
- The algorithm is well known as Bresenham's Line Drawing Algorithm.

$$y_i = mx_i + c$$
  
where,  $m = \frac{y^2 - y^1}{x^2 - x^1}$   
Computer Graphics @ ZJU

14



$$y_i = mx_i + c$$
where,  $m = \frac{y^2 - y^1}{x^2 - x^1}$ 
Computer Graphics @ ZJU

14







If  $d_1 - d_2 > 0$ , then  $y_{i+1} = y_i + 1$ , else  $y_{i+1} = y_i$ 

substitute (2.1) (2.2) (2.3) into  $d_1-d_2$ ,

$$d_1 - d_2 = 2y - 2y_i - 1 = 2dy/dx^*x_i + 2dy/dx + 2b - 2y_i - 1$$

on each side of the equation, \* dx, denote  $(d_1-d_2)$  dx as  $P_i$ , we have

$$P_i = 2x_i dy - 2y_i dx + 2dy + (2b-1)dx$$
 (2.4)

Because in first octant dx>0, we have sign $(d_1-d_2)=$ sign  $(P_i)$ 

If 
$$P_i > 0$$
, then  $y_{i+1} = y_i + 1$ , else  $y_{i+1} = y_i$   
 $P_{i+1} = 2x_{i+1}dy - 2y_{i+1}dx + 2dy + (2b-1)dx$ , note that  $x_{i+1} = x_i + 1$   
 $P_{i+1} = P_i + 2dy - 2(y_{i+1} - y_i) dx$  (2.5)

```
Initialization P_0 = 2 dy - dx
2.draw (x_1, y_1), dx = x_2 - x_1, dy = y_2 - y_1,
   Calculate P_1=2dy-dx, i=1;
3.x_{i+1} = x_i + 1
   if P_i > 0, then y_{i+1} = y_i + 1, else y_{i+1} = y_i;
4.draw (x_{i+1}, y_{i+1});
5.calculate P_{i+1}:
          if P_i > 0 then P_{i+1} = P_i + 2dy - 2dx,
                    P_{i+1} = P_i + 2dy;
          else
6. i=i+1; if i < dx+1 then goto 3; else end
```

Computer Graphics @ ZJU

```
Initialization P_0 = 2 dy - dx
2.draw (x_1, y_1), dx = x_2 - x_1, dy = y_2 - y_1,
   Calculate P_1=2dy-dx, i=1;
3.x_{i+1} = x_i + 1
   if P_i > 0, then y_{i+1} = y_i + 1, else y_{i+1} = y_i;
4.draw (x_{i+1}, y_{i+1});
5.calculate P_{i+1}:
          if P_i > 0 then P_{i+1} = P_i + 2dy - 2dx,
                    P_{i+1} = P_i + 2dy;
          else
6. i=i+1; if i < dx+1 then goto 3; else end
```

#### Question 3: Is it faster than DDA ?

Computer Graphics @ ZJU

```
Initialization P_0 = 2 dy - dx
Z.draw (x_1, y_1), dx = x_2 - x_1, dy = y_2 - y_1,
   Calculate P_1=2dy-dx, i=1;
3.x_{i+1} = x_i + 1
   if P_i > 0, then y_{i+1} = y_i + 1, else y_{i+1} = y_i;
4.draw (x_{i+1}, y_{i+1});
5.calculate P_{i+1}:
          if P_i > 0 then P_{i+1} = P_i + 2dy - 2dx,
                    P_{i+1} = P_i + 2dy;
          else
6. i=i+1; if i < dx+1 then goto 3; else end
```

#### Question 3: Is it faster than DDA ? Question 4: What technique ?

Computer Graphics @ ZJU

1.Initialization 
$$P_0 = 2 dy - dx$$
  
2.draw  $(x_1, y_1)$ ,  $dx=x_2-x_1$ ,  $dy=y_2-y_1$ ,  
Calculate  $P_1=2dy-dx$ ,  $i=1$ ;  
3. $x_{i+1} = x_i + 1$   
if  $P_i > 0$ , then  $y_{i+1}=y_i+1$ , else  $y_{i+1}=y_i$ ;  
4.draw  $(x_{i+1}, y_{i+1})$ ;  
5.calculate  $P_{i+1}$ :  
if  $P_i > 0$  then  $P_{i+1}=P_i+2dy-2dx$ ,  
else  $P_{i+1}=P_i+2dy$ ;  
6. $i=i+1$ ; if  $i < dx+1$  then goto 3; else end

#### Question 3: Is it faster than DDA ? Question 4: What technique ?

Computer Graphics @ ZJU

## 3D DDA and 3D Bresenham



#### 3D DDA and 3D Bresenham algorithm













## Scan converting circles



Computer Graphics @ ZJU