Computer Graphics 2014

2. 2D Graphics Algorithms

Hongxin Zhang
State Key Lab of CAD\&CG, Zhejiang University
20|4-09-26

Screen

Computer Graphics @ ZJU
Nikon D40 Sensors

Rasterization

- The task of displaying a world modeled using primitives like lines, polygons, filled / patterned areas, etc. can be carried out in two steps
- determine the pixels through which the primitive is visible, a process called Rasterization or scan conversion
- determine the color value to be assigned to each such pixel.

Rasterization

Raster Graphics Packages

- The efficiency of these steps forms the main criteria to determine the performance of a display
- The raster graphics package is typically a collection of efficient algorithms for scan converting (rasterization) of the display primitives
- High performance graphics workstations have most of these algorithms implemented in hardware

Why Study these Algorithms?

- Some of these algorithms are very good examples of clever algorithmic optimization done to dramatically improve performance using minimal hardware facilities
- Mobile graphics
- Inspiration

Scan Converting a Line Segment

- The line is a powerful element used since the days of Euclid to model the edges in the world.

Given a line segment defined by its endpoints determine the pixels and color which best model the line segment.

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

$\left(x_{1}, y_{1}\right)$

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

$\left(x_{1}, y_{1}\right)$

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

Scan converting lines

start from $\left(x_{1}, y_{1}\right)$ end at $\left(x_{2}, y_{2}\right)$

$\left(x_{1}, y_{1}\right)$

Scan converting lines

- Requirements
- chosen pixels should lie as close to the ideal line as possible
- the sequence of pixels should be as straight as possible
- all lines should appear to be of constant brightness independent of their length and orientation
- should start and end accurately
- should be drawn as rapidly as possible
- should be possible to draw lines with different width and line styles

Question I:How?

Question I:How?

$$
\begin{gathered}
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \\
\square \\
y=m x+b \\
\square
\end{gathered}
$$

$$
x_{1}+1 \Rightarrow y=\text { ?, rounding }
$$

县
$x_{1}+2 \Rightarrow y=$?, rounding $\Longleftrightarrow x_{1}+i \Rightarrow y=$?, rounding

Question I:How?

$$
\begin{gathered}
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \\
\quad \square \\
y=m x+b \\
\quad \square \\
x_{1}+1 \Rightarrow y=\text { ? }, ~ r o u n d i n g ~
\end{gathered}
$$

$$
\square
$$

$x_{1}+2 \Rightarrow y=$?, rounding $\Longleftrightarrow x_{1}+i \Rightarrow y=$?, rounding
Question 2: How to speed up?

Equation of a Line

- Equation of a line is $y-m \cdot x+c=0$
- For a line segment joining points
- $\boldsymbol{P}\left(x_{1}, y_{1}\right)$ and $\boldsymbol{Q}\left(x_{2}, y_{2}\right) \quad$ slope $\quad m=\frac{y 2-y 1}{x 2-x 1}=\frac{\Delta y}{\Delta x}$
- Slope m means that for every unit increment in x the increment in y is m units

Digital Differential Analyzer (DDA)

- We consider the line in the first octant.

Other cases can be easily derived.

- Uses differential equation of the line

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y^{2}-y_{1}}{x 2-x 1}
\end{aligned}
$$

- Incrementing X-coordinate by I

$$
\begin{aligned}
& x_{i}=x_{i _p r e v}+1 \\
& y_{i}=y_{i _ \text {prev }}+\mathrm{m}
\end{aligned}
$$

- Illuminate the pixel $\left[x_{i}, \operatorname{round}\left(y_{i}\right)\right]$

Digital Differential Analyzer (DDA)

- We consider the line in the first octant.

Other cases can be easily derived.

- Uses differential equation of the line

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y^{2}-y_{1}}{x 2-x 1}
\end{aligned}
$$

- Incrementing X-coordinate by

$$
\begin{aligned}
& x_{i}=x_{i _p r e v}+1 \\
& y_{i}=y_{i _p r e v}+\mathrm{m}
\end{aligned}
$$

- Illuminate the pixel $\left[x_{i}, \operatorname{round}\left(y_{i}\right)\right]$

Discussion I:What technique makes it fast?

Digital Differential Analyzer (DDA)

- We consider the line in the first octant.

Other cases can be easily derived.

- Uses differential equation of the line

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y^{2}-y_{1}}{x 2-x 1}
\end{aligned}
$$

- Incrementing X-coordinate by

$$
\begin{aligned}
& x_{i}=x_{i _p r e v}+1 \\
& y_{i}=y_{i _p r e v}+\mathrm{m}
\end{aligned}
$$

- Illuminate the pixel $\left[x_{i}, \operatorname{round}\left(y_{i}\right)\right]$

Discussion I:What technique makes it fast?
Discussion2: Is there any problem in the algorithm?

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m ;
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m ;
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

If $\triangle x<\Delta y$

$$
y+=1 ; x+=1 / m
$$

$$
\text { If } \triangle x<\Delta y
$$

$$
y+=1 ; x+=1 / m ;
$$

Divide and conquer!

Digital Differential Analyzer

- Digital Differential Analyzer algorithm (a.k.a. DDA)
- Incremental algorithm: at each step it makes incremental calculations based on the calculations done during the preceding step
- The algorithm uses floating point operations.
- An algorithm to avoid this problem is first proposed by J. Bresenham of IBM.
- The algorithm is well known as Bresenham's Line Drawing Algorithm.

Bresenham Line Drawing

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y 2-y 1}{x 2-x 1}
\end{aligned}
$$

Bresenham Line Drawing

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y 2-y 1}{x 2-x 1}
\end{aligned}
$$

Bresenham Line Drawing

$$
x_{i}
$$

$$
x_{i}+1
$$

$$
y_{i}=m x_{i}+c
$$

Bresenham Line Drawing

$$
\begin{aligned}
& y_{i}=m x_{i}+c \\
& \text { where, } \quad m=\frac{y 2-y 1}{x 2-x 1}
\end{aligned}
$$

$$
\begin{align*}
& d_{1}>d_{2} ? \Rightarrow y_{i+1}=y_{i} \text { or } y_{i+1}=y_{i}+1 \\
& y=m\left(x_{i}+1\right)+b \tag{2.1}\\
& d_{1}=y-y_{i} \tag{2.2}\\
& d_{2}=y_{i}+1-y \tag{2.3}
\end{align*}
$$

If $d_{1}-d_{2}>0$, then $y_{i+1}=y_{i}+1$, else $y_{i+1}=y_{i}$
substitute (2.1), (2.2), (2.3) into $d_{1}-d_{2}$,

$$
d_{1}-d_{2}=2 y-2 y_{i}-1=2 d y / d x * x_{i}+2 d y / d x+2 b-2 y_{i}-1
$$

on each side of the equation, * $d x$, denote $\left(d_{1}-d_{2}\right) d x$ as P_{i}, we have

$$
\begin{equation*}
P_{i}=2 x_{i} d y-2 y_{i} d x+2 d y+(2 b-1) d x \tag{2.4}
\end{equation*}
$$

Because in first octant $d x>0$, we have $\operatorname{sign}\left(d_{1}-d_{2}\right)=\operatorname{sign}\left(P_{i}\right)$

If $P_{i}>0$, then $y_{i+1}=y_{i}+1$, else $y_{i+1}=y_{i}$

$$
\begin{gather*}
P_{i+1}=2 x_{i+1} d y-2 y_{i+1} d x+2 d y+(2 b-1) d x, \quad \text { note that } x_{i+1}=x_{i}+1 \\
P_{i+1}=P_{i}+2 d y-2\left(y_{i+1}-y_{i}\right) d x \tag{2.5}
\end{gather*}
$$

Bresenham algorithm in first octant

$$
\begin{aligned}
& \text {. Initialization } P_{0}=2 d y-d x \\
& \text { 2.draw }\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}, d \mathrm{dy}=\mathrm{y}_{2}-\mathrm{y}_{1} \text {, } \\
& \text { Calculate } P_{1}=2 \mathrm{~d} y-\mathrm{d} x, \quad i=1 \text {; } \\
& \text { 3. } x_{i+1}=x_{i}+1 \\
& \text { if } P_{i}>0 \text {, then } \mathrm{y}_{i+1}=\mathrm{y}_{i}+1 \text {, else } \mathrm{y}_{i+1}=\mathrm{y}_{i} \text {; } \\
& \text { 4.draw }\left(x_{i+1}, y_{i+1}\right) \text {; } \\
& \text { 5.calculate } P_{i+1} \text { : } \\
& \text { if } P_{i}>0 \text { then } P_{i+1}=P_{i}+2 d y-2 d x \text {, } \\
& \text { else } \quad P_{i+1}=P_{i}+2 d y \text {; } \\
& \text { 6. } i=i+1 \text {; if } i<d x+1 \text { then goto } 3 \text {; else end }
\end{aligned}
$$

Bresenham algorithm in first octant

$$
\begin{aligned}
& \text {. Initialization } P_{0}=2 d y-d x \\
& \text { 2.draw }\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}, \quad \mathrm{dy}=\mathrm{y}_{2}-\mathrm{y}_{1} \text {, } \\
& \text { Calculate } P_{1}=2 \mathrm{~d} y-\mathrm{d} x, \quad i=1 \text {; } \\
& \text { 3. } x_{i+1}=x_{i}+1 \\
& \text { if } P_{i}>0 \text {, then } \mathrm{y}_{i+1}=\mathrm{y}_{i}+1 \text {, else } \mathrm{y}_{i+1}=\mathrm{y}_{i} \text {; } \\
& \text { 4.draw }\left(x_{i+1}, y_{i+1}\right) \text {; } \\
& \text { 5. calculate } P_{i+1} \text { : } \\
& \text { if } P_{i}>0 \text { then } P_{i+1}=P_{i}+2 d y-2 d x \text {, } \\
& \text { else } \quad P_{i+1}=P_{i}+2 d y \text {; } \\
& \text { 6. } i=i+1 \text {; if } i<d x+1 \text { then goto } 3 \text {; else end }
\end{aligned}
$$

Question 3: Is it faster than DDA ?

Bresenham algorithm in first octant

$$
\begin{aligned}
& \text {. Initialization } P_{0}=2 d y-d x \\
& \text { 2.draw }\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}, \quad \mathrm{dy}=\mathrm{y}_{2}-\mathrm{y}_{1} \text {, } \\
& \text { Calculate } P_{1}=2 \mathrm{~d} y-\mathrm{d} x, \quad i=1 \text {; } \\
& \text { 3. } x_{i+1}=x_{i}+1 \\
& \text { if } P_{i}>0 \text {, then } \mathrm{y}_{i+1}=\mathrm{y}_{i}+1 \text {, else } \mathrm{y}_{i+1}=\mathrm{y}_{i} \text {; } \\
& \text { 4.draw }\left(x_{i+1}, y_{i+1}\right) \text {; } \\
& \text { 5.calculate } P_{i+1} \text { : } \\
& \text { if } P_{i}>0 \text { then } P_{i+1}=P_{i}+2 d y-2 d x \text {, } \\
& \text { else } \quad P_{i+1}=P_{i}+2 d y \text {; } \\
& \text { 6. } i=i+1 \text {; if } i<d x+1 \text { then goto } 3 \text {; else end }
\end{aligned}
$$

Question 3: Is it faster than DDA ? Question 4:What technique?

Bresenham algorithm in first octant

$$
\begin{aligned}
& \text {. Initialization } P_{0}=2 d y-d x \\
& \text { 2.draw }\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{dx}=\mathrm{x}_{2}-\mathrm{x}_{1}, \quad \mathrm{dy}=\mathrm{y}_{2}-\mathrm{y}_{1} \text {, } \\
& \text { Calculate } P_{1}=2 \mathrm{~d} y-\mathrm{d} x, \quad i=1 ; \\
& \text { 3. } x_{i+1}=x_{i}+1 \\
& \text { if } P_{i}>0 \text {, then } \mathrm{y}_{i+1}=\mathrm{y}_{i}+1 \text {, else } \mathrm{y}_{i+1}=\mathrm{y}_{i} \text {; } \\
& \text { 4.draw }\left(x_{i+1}, y_{i+1}\right) \text {; } \\
& \text { 5. calculate } P_{i+1} \text { : } \\
& \text { if } P_{i}>0 \text { then } P_{i+1}=P_{i}+2 d y-2 d x \text {, } \\
& \text { else } \quad P_{i+1}=P_{i}+2 d y \text {; } \\
& \text { 6. } i=i+1 \text {; if } i<d x+1 \text { then goto } 3 \text {; else end }
\end{aligned}
$$

Question 3: Is it faster than DDA? Question 4:What technique?

3D DDA and 3D Bresenham

3D DDA and 3D Bresenham algorithm

Scan converting circles

A circle with center $\left(x_{\mathrm{c}}, y_{\mathrm{c}}\right)$ and radius r :

$$
\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}=r^{2}
$$

orthogonal coordinate
$y=y_{y} \pm \sqrt{r^{2}-\left(x-x_{\mathrm{c}}\right)^{2}}$

