Computer Graphics 2013

6. Geometric Transformations

Hongxin Zhang
State Key Lab of CAD&CG, Zhejiang University

2013-09-25
Contents

• Transformations
• Homogeneous Co-ordinates
• Matrix Representations of Transformations
Transformations

- Procedures to compute new positions of objects
- Used to modify objects or to transform (map) from one co-ordinate system to another co-ordinate system

As all objects are eventually represented using points, it is enough to know how to transform points.
Translation

• Is a Rigid Body Transformation

\[x \rightarrow x + T_x \]
\[y \rightarrow y + T_y \]
\[z \rightarrow z + T_z \]

• Translation vector \((T_x, T_y, T_z)\) or shift vector
Scaling

- Changing the size of an object

\[x \Rightarrow x \times S_x \]
\[y \Rightarrow y \times S_y \]
\[z \Rightarrow z \times S_z \]

- Scale factor \((S_x, S_y, S_z)\)

\[S_y = 1 \]
\[S_x = 1 \]
\[S_x = S_y \]
Shearing

- Produces shape distortions
- Shearing in x-direction

\[
x \Rightarrow x + a^* y \\
y \Rightarrow y \\
z \Rightarrow z
\]
Rotation

\[y = x \cdot \sin(\theta) + y \cdot \cos(\theta) \]
Rotate around \((x_r, y_r)\)

\[
\text{newx} = x - x_r
\]
\[
\text{newy} = y - y_r
\]

\[
\text{newx}' = \text{newx} \cos \theta - \text{newy} \sin \theta
\]
\[
\text{newy}' = \text{newy} \cos \theta + \text{newx} \sin \theta
\]

\[
x' = \text{newx}' + x_r
\]
\[
y' = \text{newy}' + y_r
\]

\[
x' = x_r + (x - x_r) \cos \theta - (y - y_r) \sin \theta
\]
\[
y' = y_r + (y - y_r) \cos \theta + (x - x_r) \sin \theta
\]
General Linear Transformation

\[\begin{align*}
x & \Rightarrow ax + by + cz \\
y & \Rightarrow dx + ey + fz \\
z & \Rightarrow gx + hy + iz
\end{align*} \]

or

\[\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

• Which of the following can be represented in this form?

 • Translation

 • Scaling

 • Rotation
General Linear Transformation

\[x' = x \cos \theta - y \sin \theta \]
\[y' = y \cos \theta + x \sin \theta \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[x' = x S_x \]
\[y' = y S_y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 S_x & 0 \\
 0 & S_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[x' = x + T_x \]
\[y' = y + T_y \]
Homogeneous Co-ordinates

\[(x, y) \rightarrow (x, y, a)\]
\[x = \frac{x}{a}, y = \frac{y}{a}\]

\[(x, y) \rightarrow (x, y, 1)\]

• Any point \((x, y, z)\) in Cartesian co-ordinates is written as

\[(xw, yw, zw, w), w \neq 0\]

in Homogeneous Co-ordinates

• The point \((x, y, z, w)\) represents in Cartesian co-ordinates

\[(x/w, y/w, z/w), w \neq 0\]

What happens when \(w=0\) ?

the point represented is a point at infinity

Computer Graphics 2013, ZJU
\[x' = x \cos \theta - y \sin \theta \]
\[y' = y \cos \theta + x \sin \theta \]
\[x' = x S_x \]
\[y' = y S_y \]
\[x' = x + T_x \]
\[y' = y + T_y \]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & T_x \\
0 & 1 & T_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
Matrix Notations for Transformations

• Point $P (x,y,z)$ is written as the column vector P_h

• A transformation is represented by a 4x4 matrix M

• The transformation is performed by matrix multiplication

$$Q_h = M \times P_h$$
Matrix Representations and Homogeneous Co-ordinates

- Each of the transformations defined above can be represented by a 4x4 matrix
- Composition of transformations is represented by product of matrices
- So composition of transformations is also represented by 4x4 matrix
Matrix Representations of Various Transformations

• Translation

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & T_x \\
 0 & 1 & 0 & T_y \\
 0 & 0 & 1 & T_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

• Scaling

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 S_x & 0 & 0 & 0 \\
 0 & S_y & 0 & 0 \\
 0 & 0 & S_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Matrix Representations of Various Transformations (contd.)

• Shearing (in X direction)

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & a & b & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \cdot
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Matrix Representations of Various Transformations (contd.)

Rotation (around Z axis)

\[
\begin{align*}
(x', y', z') &= (x, y, z) \\
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} &=
\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\end{align*}
\]
Matrix Representations of Various Transformations (contd.)

Rotation (around X axis)

\[
\begin{align*}
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix}
&=
\begin{bmatrix}
 \cos\theta & -\sin\theta & 0 \\
 \sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
&=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\theta & -\sin\theta & 0 \\
0 & \sin\theta & \cos\theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\end{align*}
\]
Rotation (around Y axis)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 \cos\theta & -\sin\theta & 0 \\
 \sin\theta & \cos\theta & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 \cos\theta & 0 & \sin\theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sin\theta & 0 & \cos\theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

question: why?
Properties of Transformations

<table>
<thead>
<tr>
<th>Type Preserves</th>
<th>Rigid Body:</th>
<th>Linear</th>
<th>Affine</th>
<th>Projective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotation & translation</td>
<td>General 3x3 matrix</td>
<td>Linear + translation</td>
<td>4x4 matrix with last row ≠ (0,0,0,1)</td>
</tr>
<tr>
<td>Lengths</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Angles</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Parallelness</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Straight lines</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Simple Rotation

Suppose we wish to rotate the cat’s head about its nose!
To rotate the cat’s head about its nose

1. Translate the Nose to the Origin

2. Rotate by the desired amount

3. Translate back
Composition...

This is an instance of a general rule: to apply transformation A to point p, and the transform result by transformation B, to obtain, say, q:

$q = (B \ A) \ p = B \ (A \ p)$
Composite Transformation

- Resultant of a sequence of transformations
- Composite transformation matrix is equal to the product of the sequence of the given transformation matrices

\[Q_h = M_n \ast \ldots \ast M_2 \ast M_1 \ast P_h \]
\[= M \ast P_h \]
Rotation About Point P (Math)

Point about which to rotate \(P = \begin{bmatrix} T_x \\ T_y \\ 1 \end{bmatrix} \)

Translate to Origin
\(M_1 = \begin{bmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{bmatrix} \)

Rotate
\(M_2 = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

Translate Back
\(M_3 = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \)

Composition Maps a Point A to new Point B. \(B := M_4 A \)

\[
M_4 = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & -\cos(\theta) T_x + \sin(\theta) T_y + T_x \\ \sin(\theta) & \cos(\theta) & -\sin(\theta) T_x - \cos(\theta) T_y + T_y \\ 0 & 0 & 1 \end{bmatrix}
\]
Scaling About Point P

- Scaling also operates relative to the Origin.
- To make an object bigger without moving it
 - Translate P to origin.
 - Apply scaling.
 - Inverse translation.

\[
M_4 = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & -S_x \cdot T_x + T_x \\ 0 & S_y & -S_y \cdot T_y + T_y \\ 0 & 0 & 1 \end{bmatrix}
\]
Matrix Multiplication is Not Commutative

First rotate, then translate =>

First translate, then rotate =>

Computer Graphics 2013, ZJU
Composite of basic transformations

- Order of multiplication of the matrices is important because matrix multiplication is not commutative.
- Most of the transformations that we normally deal with can be obtained as composite of the 3 basic transformations, i.e., translation, scaling, and rotation.
Rotation about arbitrary axis

• Given:
 Axis: \((x_1,y_1,z_1)\) to \((x_2,y_2,z_2)\)
 Angle of rotation: \(\theta\)

• Procedure
 1. Transform so that the given axis coincides with the Z axis
 2. Rotate by \(\theta\)
 3. Apply inverse of step 1. transforms
Rotation example (contd.)

• Steps

\[T_{-(x_1,y_1,z_1)} \] Makes given axis pass through origin
\[R_{(x,\alpha)} \] Makes axis lie in ZX plane
\[R_{(y,\beta)} \] Makes axis coincide with the Z axis
\[R_{(z,\theta)} \] Applies given rotation

Apply inverses of aligning transformations
Rotation About Arbitrary Axis

Initial Position

Translate P1 to Origin

Rotate about X

Rotate about Y

Rotate about Z

$R_y(\beta)$

$R_z(\theta)$
Alternative solution

- Quaternion
- 10 reading
Transformations in OpenGL

• Model-view matrix
• Projection matrix
• Texture matrix
Programming Transformations

• In OpenGL, the transformation matrices are part of the state, they must be defined *prior to* any vertices to which they are to apply.

• In modeling, we often have objects specified in their own coordinate systems and must use transformations to bring the objects into the scene.

• OpenGL provides *matrix stacks* for each type of supported matrix (model-view, projection, texture) to store matrices.
Current Transformation Matrix

- Current Transformation Matrix (CTM)
 Is the matrix that is applied to any vertex that is defined subsequent to its setting.
- If we change the CTM, we change the state of the system.
- CTM is a 4 x 4 matrix that can be altered by a set of functions.
Changing CTM

- Specify CTM mode: `glMatrixMode(mode);`
 \[
 \text{mode} = (\text{GL_MODELVIEW} | \text{GL_PROJECTION} | \text{GL_TEXTURE})
 \]
- Load CTM: `glLoadIdentity(void); glLoadMatrix(fd)(*m);`
 \[
 m = 1D \text{ array of 16 elements arranged by the columns}
 \]
- Multiply CTM: `glMultMatrix(fd)(*m);`
- Modify CTM: (multiplies CTM with appropriate transformation matrix)

 \[
 \begin{align*}
 &\text{glTranslate(fd)}(x, y, z); \\
 &\text{glScale(fd)}(x, y, z); \\
 &\text{glRotate(fd)}(\text{angle}, x, y, z);
 \end{align*}
 \]

 rotate counterclockwise around ray (0,0,0) to (x, y, z)
Rotation About an Arbitrary Point

Task:
Rotate an object by 45.0 degrees about the line from (4.0, 5.0, 6.0) to (5.0, 7.0, 9.0). (T_{p1}, R_{45}, T_{+p1})

```gl
glMatrixMode (GL_MODEVIEW);
glLoadIdentity ();
glTranslatef (4.0, 5.0, 6.0);
glRotatef (45.0, 1.0, 2.0, 3.0);
glTranslatef (-4.0, -5.0, -6.0);
```
Order of Transformations

• The transformation matrices appear in reverse order to that in which the transformations are applied.

• In OpenGL, the transformation specified most recently is the one applied first.
Matrix Stacks

- OpenGL uses matrix stacks mechanism to manage modeling transformation hierarchy.

  ```
  glPushMatrix ( void );
  
  glPopMatrix ( void );
  ```

- OpenGL provides matrix stacks for each type of supported matrix to store matrices.

 - Model-view matrix stack
 - Projection matrix stack
 - Texture matrix stack
Example of Modeling Transform hierarchy

Table

Table Top

Base Frame

4 legs

stiffener

NSbars

EWbars

Leg-1

Leg-2

Leg-3

Leg-4

E

W

N

S
Ex – Desk with 4 legs

By calling glutSolidCube() …
Hierarchical transformations

Hierarchical transformations in computer graphics involve the use of a skeletal structure to control the movement of articulated objects. The diagram illustrates the hierarchy of a human skeleton, showing how each body part can be individually controlled or animated.

- **Body**
- **Torso**
- **Head**
- **Shoulder**
- **L Arm**
 - **Upper Arm**
 - **Lower Arm**
 - **Hand**
- **R Arm**
 - **Upper Arm**
 - **Lower Arm**
 - **Hand**
- **Hips**
- **L Leg**
 - **Upper Leg**
 - **Lower Leg**
 - **Foot**
- **R Leg**
 - **Upper Leg**
 - **Lower Leg**
 - **Foot**

This hierarchical structure allows for precise control over the movement of the body parts, making it essential for animating characters in computer graphics.
Non-Linear Transforms!
Thank You