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Fig. 1. Time slice video makes use of a robust spatio-temporal alignment to enable the blending of multiple videos recorded with di�erent appearances to
be blended together in a number of configurations. Here we show traditional time slice vertical bars (le�), as well as a world-space shape that drives the
compositing, such as the 3D spotlight (right).

Time slice photography is a popular e�ect that visualizes the passing of

time by aligning and stitching multiple images capturing the same scene at

di�erent times together into a single image. Extending this e�ect to video is

a di�cult problem, and one where existing solutions have only had limited

success. In this paper, we propose an easy-to-use and robust system for

creating time slice videos from a wide variety of consumer videos. The main

technical challenge we address is how to align videos taken at di�erent

times with substantially di�erent appearances, in the presence of moving

objects and moving cameras with slightly di�erent trajectories. To achieve a

temporally stable alignment, we perform a mixed 2D-3D alignment, where

a rough 3D reconstruction is used to generate sparse constraints that are

integrated into a pixelwise 2D registration. We apply our method to a number

of challenging scenarios, and show that we can achieve a higher quality

registration than prior work. We propose a 3D user interface that allows the

user to easily specify how multiple videos should be composited in space

and time. Finally, we show that our alignment method can be applied in

more general video editing and compositing tasks, such as object removal.
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1 INTRODUCTION
Time slice photography refers to the artistic e�ect of combining

multiple images of a scene captured at di�erent times together into a

single composite, where each slice or stripe of the �nal image shows

part of the scene at a speci�c time. Putting all slices together, the

image conveys a passage of time and how it changes the appearance

of a place, as shown in the example in Figure 2. Our goal in this

paper is to extend this e�ect from still images to video, to create

time slice videos from multiple video sequences captured at di�erent

times. In contrast to traditional time slice photography where all

images are captured by a single static camera, our system allows

videos to be captured by handheld cameras in order to cover a large

scale scene, although we do require the input videos roughly follow

the same camera motion trajectory to ensure scene continuity and

with minimal parallax. We additionally require that the majority of

the scene content is static, so that correspondences can be found

across videos. The �nal video is a spatio-temporal composite of the

input sequences, where di�erent parts of the scene are from videos

captured at di�erent times, while the whole scene structure is well

preserved as if it was shot from a single camera.

It is not surprising that such an extension from still images to

video is nontrivial and brings many new technical challenges. As

we will discuss in more detail later, previous video alignment ap-

proaches have attempted to solve this problem, but only with limited

success under restricted settings. The fundamental problem is how

to compute a spatially accurate and temporally stable alignment of

multiple video sequences, given that they can have di�erent cam-

era trajectories and motion. While this looks like a standard video
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Fig. 2. Time slice photograph. Photo credits: Miguel Mendez.

alignment problem, it becomes especially challenging in our appli-

cation since di�erent videos are captured at di�erent times, leading

to signi�cant appearance di�erence. Furthermore, our application

requires high quality alignment throughout the video, as even small

pixel misalignments become easily noticeable and break the scene

integrity.

To achieve this, we present a mixed 2D-3D multi-video alignment

method that is robust to appearance di�erence of video sequences, as

well as to content that may appear only in one video. Once aligned,

sequences recorded at di�erent times can be blended in various

ways to create time slice videos. We �rst compute a joint sparse

3D reconstruction using structure-from-motion (SfM), giving us a

single global reconstruction across all videos. This can be used to

derive reliable drift-free, albeit sparse, static scene points in cor-

respondence, and also allows us to achieve frame-level (temporal)

alignment across videos based on camera position and orientation.

We then compute a dense 2D matching using a modi�ed version of

SIFT �ow [Liu et al. 2011] that incorporates these sparse 3D points

as constraints and an extra intra/inter-video loop consistency check

to remove outliers. This method is applied on a keyframe basis, and

alignments are propagated to in-between frames using optical �ow.

Finally, the remaining reliable SIFT �ow points are used to compute

a seam-aware mesh warping. These 2D alignment steps allows us

to create a dense alignment result in cases where 3D content cannot

be reconstructed perfectly, or where mis-calibration may make it

hard to reconstruct the scene in 3D.

Another key advantage of operating in a mixed 2D-3D space, is

that we are able to introduce an intuitive way to specify time slices

that exist not just in image-space, but in world-space, corresponding

to real physical 3D regions.

In summary, we present the following contributions. We describe

a solution to create time slice videos. To achieve this, we describe a

number of modi�cations to existing registration pipelines, which

we found to be essential to get the alignment quality necessary.

Additionally, we present a 3D selection interface, which allows us

to create world-space aligned time slices in addition to image-space

ones.

2 RELATED WORK
Time slice. Time slice photography is usually created using a �xed

camera position and image-space blending shapes added in post

production. One option to reduce the capture requirements, is to

hallucinate the appearance of a photograph at di�erent times. This

has been accomplished using a database of webcam or timelapse

videos to learn a locally a�ne color mapping [Shih et al. 2013], or

or a set of attributes that allow the user to make the scene look e.g.,

“more like winter” [La�ont et al. 2014]. These approaches generate

realistic looking results for images, but do not extend trivially to

video sequences with moving cameras. Other work on video has

proposed combining multiple parts of di�erent videos [Pritch et al.

2008] into a video synopsis, however this method works only on

videos recorded with �xed camera, and performs all operations in

image space.

Image alignment. Non-static cameras require aligning frames

across videos, which is a classic problem of computer vision and

computer graphics. Traditional approaches rely on matching fea-

ture points between images [Lowe 1999] and applying a global

or smoothly interpolated warping to register them, or by comput-

ing per-pixel correspondences, e.g., using optical �ow [Horn and

Schunck 1981]. In general, global alignment methods are robust to

outlier estimates, but cannot handle parallax e�ects, while optical

�ow based methods are able to handle arbitrary scenes, but are more

prone to warping artifacts. Additionally, optical �ow relies on an

assumption of brightness constancy, which restricts it to matching

image pairs with similar appearance. SIFT Flow [Liu et al. 2011], re-

places optical �ow pixel matching with dense SIFT descriptors used

in feature matching, which adds robustness to appearance di�erence.

Each of these approaches has advantages and disadvantages, but in

particular they are all designed to match a single pair of images, and

do not trivially extend to pairs of videos, due to temporal coherency

issues.

2D video alignment. Rüegg et al. [2013] introduce a block-based

local search between views, using intra-view (temporal) homogra-

phies to initialize a inter-view (spatial) homography used for align-

ment. This approach is restricted to scenes where geometry can be

well approximated by a single plane. Sand and Teller [2004] pro-

pose a method for registering video clips that consists of robust

feature matching and dense interpolation. They also propose an im-

age preprocessing step to reduce the e�ect of lighting for sequences

recorded at di�erent intensities. This method however, relies on

a good initial guess for frame-level registration due to the local

regression method used for this step. It can handle certain amount

of lighting change, but the ability is inherently limited by the image

features it uses (Haris corners). Thanks to the 3D reconstruction

and SIFT �ow methods used in our system, we can achieve bet-

ter frame-level alignment and handle more dramatic appearance

change, in a more robust way. Beyond registration, we demonstrate

how 3D reconstruction can help users quickly specify semantically-

meaningful spatial-temporal seams for compositing, which has not

been explored in previous methods.

Zhong et al. [2014] present a di�erent solution to compositing

two videos. It takes as input a pre-segmented foreground object, and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 131. Publication date: July 2017.



Time Slice Video Synthesis by Robust Video Alignment • 131:3

computes an optimal spacetime warping, focusing on the contact

points of the object and the background video to prevent slippage.

Aligning views from multiple cameras is also a fundamental step

in stitching together wide angle (incl. 360
◦
) video. These approaches

have used methods similar to single-image registration techniques

such as feature matching and mesh warping [Guo et al. 2016; Lee

et al. 2016], optical �ow [Perazzi et al. 2015], or joint 3D reconstruc-

tion [Lin et al. 2016]. Temporal consistency is enforced by restricting

the mesh to undergo temporally smooth warping [Lee et al. 2016;

Lin et al. 2016], or by directly regularizing �ow estimates [Anderson

et al. 2016]. These methods however cannot be directly adapted for

our application. In particular, creating panoramic video requires

aligning frames that are captured at the same time, which means the

only major source of di�erences between images is parallax, which

can be kept to minimum by customized hardware con�gurations. In

our case, we align videos recorded by handheld cameras at di�erent

times, days, or even months, thus our videos have substantially

larger di�erences in both appearance and content, which cannot be

handled well by these previous methods.

3D video alignment. Several methods have leveraged 3D recon-

struction to help with computing image space alignment. For ex-

ample, Liu et al [2009] reconstruct sparse 3D points and use them

for computing an image warp to render the video in a stable path.

A similar idea was used by Kopf et al [2014] to create smooth,

watchable high speed videos. Zhang et al. [2009] propose an ap-

proach where an accurate depth map is computed, which allows for

depth-speci�c video e�ects such as refocusing. Similarly, Klose et

al. [2015] compute per-frame depth maps and project all pixels in

a video into a 3D space. These pixels are then gathered to render

a modi�ed output video. All of these approaches use a 3D recon-

struction (sparse or dense) from single video. In our work, we use

3D reconstructions across multiple videos, which provide us with

additional information to help with alignment, as registering videos

in 3D space can be easier than trying to compute sparse 2D matches

when the appearance is signi�cantly di�erent across views.

More recently, Lin et al. [2016] utilize 3D reconstruction for multi-

video stitching. Their approach uses CoSLAM [Zou and Tan 2013]

to compute camera poses, and then computes a dense stereo map,

which is fed into a warp procedure for alignment. While this works

for aligning videos captured simultaneously by multiple devices,

both CoSLAM and dense stereo matching are not applicable for

videos recorded at di�erent times, or with substantially di�erent

appearances. Our approach is quite di�erent from this method, as

we apply global SfM using all videos and use the sparse (instead of

dense) 3D points as constraints in our alignment method. Unlike

[Lin et al. 2016], our approach can also handle videos of di�erent

frame rates and speeds.

Sequence Alignment. Unlike prior work that assumes that the clips

are already in temporal alignment [Rüegg et al. 2013], we derive a

frame-to-frame temporal alignment to compensate for di�erences

in speed of each video. Previous methods have used histograms

of image-based feature matching [Wang et al. 2014] to align two

video clips, or looked for nearby frames that result in the best image

matching [Sand and Teller 2004]. Recently, Freeman et al. [2016]

propose a deep learning approach, that trains CNNs to compute

pairwise frame similarity for driving videos recorded under di�erent

weather conditions. The main focus of this work is to �nd temporal

correspondences by searching for a shortest path in a frame-to-

frame cost matrix, after which the method aligns frames using

optical �ow. In our case we use the 3D reconstruction to compute

temporal frame correspondences, which gives added robustness.

3 METHOD
Our pipeline is visualized in Figure 3. Although our input videos

have roughly the same camera trajectories, they are shot by hand-

held cameras, thus the pace and camera motion are slightly di�erent.

This requires us to �rst apply frame-level registration to �nd most

similar frames across multiple videos, before applying pixel-level
registration among these frames.

We �rst apply 3D reconstruction jointly on all input video se-

quences, and compute a frame-level registration between two dif-

ferent videos based on camera con�guration. Secondly, we compute

a pixel-level registration between two keyframes that are paired in

the previous step, using sparse 3D scene points that exist in both

videos as constraints. Finally, based on user-speci�ed 3D seams, we

perform video synthesis to generate the combined result.

We describe each of these steps in the following subsections.

For simplicity we �rst assume two input sequences only, and then

extend our method to to handle more than two videos.

3.1 Frame-level 3D registration
For 3D reconstruction, we �rst extract keyframes from each input

video with uniform subsampling (one every ten frames). We feed

all keyframes from di�erent videos into a global SfM system [Cui

and Tan 2015] and obtain the sparse 3D reconstruction as shown

in Figure 3. We then interpolate the camera poses from extracted

frames to in-between frames using linear interpolation for camera

positions, and quaternions to interpolate camera rotation.

With the estimated camera poses of all frames, we construct a cost

matrix of frame correspondences, and use dynamic programming

to �nd the optimal frame-to-frame alignment. This is similar to the

approach in [Wang et al. 2014], but instead of using image-based fea-

tures, we can directly compare the camera poses. This is especially

good for pixel-wise alignment as we can pair frames with closest

camera poses to minimize parallax. Speci�cally, denoting two videos

as A and B, and two series of camera poses as QA = (qA
1
, qA

2
, ..., qAn )

and QB = (qB
1
, qB

2
, ..., qBm ), qi encodes the camera rotation angle

θi and translation ci of the ith camera in each sequence. We then

construct an n-by-m matrix C where its (i, j) element corresponds

to the cost d(qAi , q
B
j ) = ‖c

A
i − cBj ‖ + β ‖θ

A
i − θ

B
j ‖ of aligning qAi

with qBj . To �nd the best match between these two sequences, we

compute the optimal warping pathW ∗ by solving:

DTW (QA,QB ) = CW ∗ (QA,QB )

=min CW (Q
A,QB ), (1)

whereW is a (n,m)-warping path [Müller 2007],

CW (Q
A,QB ) =

K∑
k=1

wk (2)
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Input Sequences Global SfM Frame-Level Registration Pixel-Level Registration Mesh-based Warping Video Synthesis

3D Slice Selection

Fig. 3. Pipeline of the proposed method highlighting the main steps: joint 3D reconstruction, temporal registration, semi-dense 2D registration, mesh-based
warping, and finally video synthesis. By working in 3D, we can optionally select regions to blend directly in world-space.

is the total cost forW , and wk corresponds to the matrix element

(ik , jk ) of C . This ensures the �nal matching results are monotonic

and achieve a good balance between matching accuracy of individual

frames and temporal matching coherence. In our system, β is set

based on the scale of the 3D reconstruction. We �rst compute the

shortest distance to the frames of B for each keyframe of A and

compute their median value λ, and then set β as 0.1λ. As the output

of this stage, we have a series of known camera poses for each

camera, and a set of frames in correspondence.

3.2 Pixel-level 2D registration
Given a pair of matched frames from the previous step which we

denote Ai ,Bj , the next step is to compute a dense pixel-wise reg-

istration for each image pair. For e�ciency, we use a hierarchical

strategy, �rst computing a dense pixel-wise registration between

the keyframe pairs to get reliable feature correspondences. We then

propagate the correspondences to the remaining frame pairs using

optical �ow. The keyframe pairs are chosen by using all keyframes

in the �rst sequence A, which acts as a reference, and the corre-

sponding matched frames in the second sequence B.

Guided SIFT �ow matching for keyframe pairs. Given that our

input videos can be taken at di�erent times, there may be large

appearance di�erences between matched frames. SIFT �ow [Liu

et al. 2011] was designed to handle illumination changes well, but it

may fail when there is large parallax between the two frames. In

order to deal with these problems, we propose a guided SIFT �ow
method that leverages the sparse 3D points computed by the global

SfM and as constraints, and includes a subsequent intra/inter-frame

loop consistency check.

Speci�cally, we �rst project the sparse 3D points onto the ith
frame as:

[x
j
i ,y

j
i , 1]
> = γKi [Ri | − Ri ci ]Pj , (3)

where Ki is the camera intrinsic matrix , Ri and ci are the camera

rotation and position,γ is the scale factor, and Pj is the homogeneous

coordinate of a 3D point. By projecting a 3D point to the two frames,

we obtain an image space (2D) correspondence between they frames

as shown in Figure 4. Using these reliable 2D correspondences,

we compute a global homography transformation between them,

and use it to pre-warp B to B′ to roughly align it to A through a

global homography transformation H . The global warping is used

to compensate for large camera pose and orientation di�erences

between the two images.

After global warping, we compute dense SIFT images SA and SB′

for A and B′. We then compute pixelwise matching by minimizing

the following matching energy function:

E = Ed + Es + Eд . (4)

As in [Liu et al. 2011], the data term Ed is de�ned as:

Ed =
∑
p
min (‖SA(p) − SB′(p +w(p))‖1, t) , (5)

where p = (x ,y)> is pixel location on the image, w(p) = (u(p),v(p))
is the �ow vector that matches SA(p) with SB′ (p +w(p)), t is a

threshold which is set according to the histogram of the SIFT feature

matching [Liu et al. 2011]. This term encourages the matched points

to have similar SIFT descriptors.

Also as in [Liu et al. 2011], the smoothness term Es is de�ned as:

Es =
∑
(p,q)∈N

min (ws |u(p) − u(q)|,d) +min (ws |v(p) −v(q)|,d) ,

(6)

where N is the set that contains all the spatial neighborhoods (we

use a four-neighbor system). This term encourages the �ow vectors

of adjacent pixels to be similar.

Finally, our novel guidance term Eд is de�ned as:

Eд =
∑
x∈M

F (px +w(px) − H (qx)) =
∑
x∈M

F (z) , (7)

where z = px +w(px) − H (qx) = (xz,yz)> is the vector di�erence,

F (z) = f (|xz |) + f (|yz |) , (8)
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Reference Source

Fig. 4. This figure shows the projections of 3D points (red dots). We can see
that they are not well distributed where the upper part of images has few
points.

f (x) =

{
0 x ≤ d2

ψ otherwise

, (9)

M is a set of 3D points that are visible in either A or B, px and qx
are the projected 3D scene points on A and B, respectively. H (qx) is

the position of qx in the warped image B′. This term enforces that

the two projections of the same 3D scene point should match. In

our system, we set ws , d , d2 andψ to be 2, 40, 8 and 25 respectively.

To enhance the robustness, we compute the bidirectional �ows and

remove unreliable matches through bidirectional checking. Note

that once the �ow between A and B′ is computed, we can easily

apply an inverse global homography warping to the �ow �led to

produce the �ow between original video frames ofA and B. We solve

Equation 4 using belief propagation, similar to [Liu et al. 2011].

Loop consistency check. Dense matching often employs a forward-

backwards consistency check, where a point is warped from A to B
and then from B to A. If the point ends in the same place, it is likely

that the motion estimation is accurate. However, this approach ig-

nores any temporal relationships between keyframes. So we further

use an inter/intra video loop consistency check. To do this, we com-

pute optical �ow between keyframes within the same sequence

(where appearance similarity assumption holds) using a recent fast

optical �ow method [Kroeger et al. 2016]. Up until now, we have

computed dense �ows between sparse key frames. As illustrated

in Figure 5, suppose we have two adjacent keyframes A1 and A2

in one sequence, and their matching counterparts B1 and B2 in

the other. We have computed SIFT �ow SF (A1,B1) and SF (A2,B2)
between two pairs of keyframes, and also computed optical �ow

within each sequence asOF (A1,A2) andOF (B1,B2). For every pixel

p in A1, there are two paths that lead it to its destination in B2:

OF (A1,A2) + SF (A2,B2), or SF (A1,B1) + OF (B1,B2), resulting in

two candidate matching points. If all correspondences are computed

accurately, these two points should collide in the same location in

B2. In other words, if these two points have a large spatial distance,

then it means the matching in this loop are not reliable. In our sys-

tem we set a distance threshold of 2 pixels as the loop consistency

criterion. If it is violated, we then conservatively label all pixels in

the loop as unreliable.

Correspondence propagation. In theory one can apply above guided

SIFT �ow between every pair of matched frames. However this re-

quires a signi�cant amount of computation. In practice we have

found that we can achieve very similar results by building dense

A1 B1

A2 B2

OF (A1, A2) OF (B1, B2)

SF (A1, B1)

SF (A2, B2)

Fig. 5. Illustration of loop consistency check.

correspondence between sparse keyframe pairs �rst, then propagate

the correspondence to in-between frames using optical �ow, which

typically works well within the same video sequence, and is much

faster to compute compared with SIFT �ow.

3.3 Video synthesis
Slice selection. Once the two sequences are aligned, we now have

to specify which part of each sequence we want to use in the �nal

composite. There are a number of ways to do this, we can use simple

image-space polygons to specify blending regions (see Figure 9) as

is used in traditional time-slice images. Alternately, we propose a

3D interface for scene selection, which creates a new type of time

slice videos, exhibiting interesting world-space seams.

In general, object selection in video is challenging, frame-by-

frame labeling is often impractical, and lacks temporal coherence.

Although more intelligent video object segmentation systems can be

employed [Li et al. 2016; Rother et al. 2004], the amount of required

user interaction is still very large for general videos. Prior seam-

based work [Rüegg et al. 2013], �nds an optimal mask where there

is minimal color di�erence using graph cuts, however this method

won’t work in our case as the appearance is di�erent between clips.

Furthermore, the user may sometimes choose to create a seam inside

a textureless region, which is hard for any segmentation or tracking

methods to follow.

As we are working in a mixed 2D-3D environment, we propose

a 3D object selection interface as an e�cient way to identify the

spatio-temporal stitching seam between two videos. Working in a

3D interface has a number of advantages in our application. For

instance, object selection in 3D is often easier than in 2D. Thanks to

the depth information, a single bounding box is often su�cient to

select an object, which may have complex image-space boundaries

that are hard to segment. Furthermore, as the 3D reconstruction is

done for the entire sequence, selecting an object in 3D simultane-

ously provides temporally consistent constraints on all frames in

which that object is visible. This eliminates the need to propagate

selection regions using conventional visual tracking, which is prone

to drifting or occlusions. Figure 8 shows some examples of the user-

speci�ed 3D scenes. In Figure 8(a), we evenly divide the scene using

3D cubes, so the scene changes between day and light as the camera

moves along the path. In Figure 8(b), we use a single 3D cube to
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Fig. 6. This figure shows the computed 2D masks (right) guided by the 3D
mask (le�).

select the entire left garden. In Figure 8(c) we use a spot-light e�ect

by selecting a circular cylinder in 3D.

After the selection of the slice in 3D space, we need further ob-

tain the mask in 2D space. We �rst project both the 3D mask and

the 3D points onto key frame images. The projections of 3D mask

provides soft mask constraints for 2D segmentation. What’s more,

we can easily determine whether a 3D point is in or outside the

3D cube, so we can also get the some hard constraints from the

3D points’ projections. With these prior information, we can take

2D segmentation on the key frame images. Then we can propagate

the 2D mask on key frames to non-key frame by taking the local

video segmentation in a small window with optical �ows or using

advanced video segmentation algorithms like [Märki et al. 2016].

The 2D mask examples are also shown in Figure 6.

Seam-aware mesh warping. We now have a reliable piecewise-

dense correspondence �eld, however we cannot directly use this for

warping. This is because after the loop consistency check, large parts

of the correspondence �eld may be removed, especially when there

are di�erent objects present in the videos. In addition, smoother

warping �elds are much less likely to generate warping artifacts, at

the expense of being able to handle parallax. We found that we could

obtain the best results by using our reliable 2D correspondence �eld

to drive a mesh-warping.

For mesh warping, we select only the 2D correspondences with

the highest con�dence by eliminating unreliable correspondences

in three steps. First, we remove the weaker points in low contrast

regions (e.g. some point in the blue sky), which are often incor-

rect even if they pass the loop consistency check. We compute the

Di�erence-of-Gaussian (DoG) images, and compute the median DoG

values of all candidates. We then examine each candidate point, and

remove those whose DoG values are smaller than the median. For

computing DoG we set the kernel size as 3× 3, and δ1 and δ2 are set

to be 0.5 and 5 respectively. Second, we make sure that the selected

matched points are distributed in each grid cell (8 × 8) as evenly as

possible. If a cell contains too many points, we only sample a por-

tion of them. Finally, we require that the �nal selected points to be

temporally as consistent as possible. Speci�cally, we make sure that

at least 50% of selected points on a keyframe has correspondences

with the selected points on the previous keyframe. If more points

have no temporal correspondence, we subsample from them.

We have observed that when creating time slice video, human

perception is very sensitive to the alignment errors around the

stitching seams. This implies that we need to give the regions around

the seams higher importance when aligning videos. We achieve

Reference Source with mesh warping

Fig. 7. This figure shows the selected reliable points a�er our feature re-
finement (blue and green dots), and the result of the mesh-warping in the
source image.

Time (s) Time (s)

Global SfM 0.7166 Frame-level registration 0.0025

Pixel-level registration 3.5446 Mesh-based warping 1.7508

3D slice selection 1.9469 Blending 0.2188

Total 8.1802

Table 1. Runtime of di�erent components of our system in seconds per
frame.

this by sampling additional points within a certain distance from

the seams. These new added points will naturally guide the mesh

warping towards more accurate alignment around the seams.

Given a reliable set of correspondences (Figure 7), we divide the

original frames into uniform grid meshes, and use the energy mini-

mization technique proposed in [Liu et al. 2013] to derive the �nal

warped mesh. Please refer to [Liu et al. 2013] for well-documented

technical details.

3.4 Blending
Given the warped videos and user-speci�ed scene, various blending

methods can be used to create the �nal composite. A simple solution

is just to feather the seams and apply linear blending. Alternatively,

one could use more advanced blending methods such as multi-band

blending [Burt and Adelson 1983]. Most of the results shown in the

paper are created using feathering; only the example in Figure 12

uses multi-band blending for a smoother transition.

3.5 Multiple videos
Our method can be naturally extended to handle more than two

input videos. While it would be theoretically possible to optimize

the alignment among all videos simultaneously, the computational

cost of such an approach is high. We instead adopt a strategy similar

to Videosnapping [Wang et al. 2014], which sequentially matches

videos to a reference. We have found that such a simple method

works quite well in practice (see Figure 9 for an example with three

input videos).

4 RESULTS
Runtime. We evaluated the system on a desktop PC with two

2.3GHz Intel Xeon E5-2650 CPUs and one Nvidia Quadro K5200

GPU. The video resolution is 960×540, and computational costs of

individual steps are listed in Table 1.
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Slice selection Reference Source Time slice

(a)

(b)

(c)

(d)

(e)

Fig. 8. Example time slice configurations showing the world-space (3D) slices. Please see supplemental result videos. From top to bo�om: (a) Alley, (b) Garden,
(c) Bear, (d) Snow and (e) Drone.

SIFT �ow Guided �ow Guided �ow + checking

w/ moving obj 7.44 4.00 2.06

w/o moving obj 7.34 3.18 2.66

Table 2. �antitative evaluation on alignment error in pixels. See text for
details.

Quantitative evaluation. Our pixel-level 2D alignment has two

novel contributions: (1) using 3D scene points as guidance for SIFT

�ow computation; and (2) a robust check to remove unreliable

matches. To evaluate how much they contribute to the alignment

quality, we conduct a quantitative evaluation. We project 3D points

to two input videos, and compare the average distance (or error)

between pairs of projected 2D points after the same image warping

driven by: 1) SIFT �ow, 2) Guided SIFT �ow, and 3) Guided SIFT �ow

with robust checking. The mean error (in pixels) over datasets with

(e.g. Drone and Girl) and without (e.g. Garden and Bear) moving

objects are listed in Table 2. The results suggest that both guided

SIFT �ow and robust checking play signi�cant roles in improving

the alignment accuracy. Note that we can only measure accuracy at

known 3D points, in practice we have found that the visual quality

improvement of the results after robust checking is far greater than

the numbers indicate.

Comparisons. We compare our alignment method to a number of

alternative solutions including pure image-based baseline methods,

warping methods utilizing our 3D points, and recent mesh-based

video stitching systems. Two datasets Garden and Bear are used for

testing. Please see the supplementary video for a temporal alignment

stability comparison.

For pure image-based baseline methods, we compare to optical

�ow [Kroeger et al. 2016] and regular SIFT Flow [Liu et al. 2011],

computed on each pair of the matched frames. The video results

show that optical �ow alignment has very poor performance, which

ACM Transactions on Graphics, Vol. 36, No. 4, Article 131. Publication date: July 2017.



131:8 • Cui et. al.

(a)

(b) (c)

(d) (e)

Fig. 9. Result of Walking with 2D slices. (a) is the image-space (2D) slice
selection. (b), (c) and (d) are sample frames from the three input videos, and
(e) is a frame from the synthesized video. Please see the supplemental video.

is expected due to the limitations of the brightness constancy as-

sumption. SIFT Flow performs slightly better, but without the guid-

ance from 3D points in our approach, the correspondence �elds

are not stable and we see some obvious distortions in some image

regions. We additionally compare to a commercial tool Nuke, which

contains a video alignment node, likely based on feature matching

and a global homography warp. This approach similarly cannot

handle the large appearance di�erence between sequences.

We further compare to methods that use 3D points computed in

our system. The most straightforward baseline would be to apply

a single homography or mesh-based warp using the projection of

the 3D points as constraints. Video results show that warping based

on these 2D projections are sensitive to the accuracy, stability and

distribution of 2D projections, causing obvious drifting in the video

results.

Finally, we compare against two recent mesh-based video stitch-

ing methods [Guo et al. 2016; Lin et al. 2016]. Guo et al. [2016]

integrate inter-sequence feature tracking with intra-sequence fea-

ture matching, while Lin et al. [2016] utilize 3D information from

a stereo reconstruction. Given that direct matches across videos

may be quite sparse when large appearance di�erence exists, mesh

warping based on these sparse matches [Guo et al. 2016] will be

inaccurate and unstable, leading to severe distortion and jitters in

the video results. [Lin et al. 2016] only succeeds on the Bear exam-

ple, and has obvious distortions on the ground due to noisy stereo

reconstruction in that area. It totally failed on the Garden example

as the stereo reconstruction could not work.

Time slice video. We have experimented with a variety of datasets,

including both indoor and outdoor videos, with di�erent kinds

R
e
f
e
r
e
n

c
e

S
o

u
r
c
e

O
u

t
p

u
t

Fig. 10. Example of other applications, including compositing (le�), and
clean-plate extraction (right). Top two rows show the sample frames from
two input videos, and the bo�om row is the frame from the synthesized
video. Please see the supplemental video.

of motions (circling, forward, sideways), including hand held and

drone-�lmed footage. We demonstrate both image-space (2D) and

world-space (3D) slices generated using our 3D editing interface.

Sample frames of input videos and �nal synthesized videos are

shown in Figure 8. We also show multi-video alignments in the

Walking dataset, with three videos captured at noon, dusk and

night (see Figure 9).

Other applications. While our method is motivated by time slice

videos, we can use a temporally stable alignment for a number of

other applications. One example is video compositing, e.g. trans-

ferring a segmented object from one video to another. In the Girl

example shown in Figure 10 (left), we capture the same person

walking twice, and then transfer the girl from the second sequence

into the �rst sequence where she looks like talking to herself. The

segmentation masks in this example are automatically computed

based on thresholding the color di�erence after video alignment.

Another application is constructing clean plates from multiple

takes. As long as there is no occluded region in all the videos, we

can create a clean plate by combining the background parts. In this

application, no precise segmentation is needed, and we can �nd

any open place to blend the sequences. In Figure 10 (right), instead

of masking out person in image space through the video ,which

requires careful rotoscoping, we use our partial 3D reconstruction

to specify rough areas e.g. the ground �oor and the gray pillar as it

is shown in Figure 11.

We can also generate time-lapse video, e.g. a person walking from

day to night. We use Walking dataset and mask out the people in

the �rst sequence with a video segmentation method [Märki et al.
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Fig. 11. 3D selection for the clean-plate example.

Fig. 12. Time-lapse video. We transfer the person in the first sequence (top
row) to other sequences (bo�om row). Please see the supplemental video.

2016]. With all the other sequences registered to the �rst sequence,

we can transfer the girl into other sequences easily, and generate a

time-lapse video.

E�ect of increasing parallax. Our system requires the input videos

to have roughly the same camera path. To explore how robust our

system is to the camera path di�erence of input videos, we conducted

a stress test. As shown in Figure 13, we captured six videos of

the same scene, with camera paths progressively farther from the

reference one, resulting in increasing parallax shown in Figure 13(b).

We then compute the average alignment errors from �ve source

videos to the reference, shown at the top-left corner of each video

frame. We note that for the source video (marked as red) which

has the smallest parallax, its alignment error is the smallest and

its visual quality is also the best. For the source video marked as

yellow, the alignment error is still relative small (3.43) although it

has obvious parallax. When the camera path di�erence becomes

larger, the alignment error increases. However, our method does not

fail miserably even when the parallax is quite signi�cant. The video

results for this test can be found in the supplementary material.

Limitations. Video alignment is a challenging problem, and while

we found our method to be more robust than existing solutions,

there are still cases where it can fail, and some artifacts remain. In

our examples, we have tried to create as similar as possible camera

trajectories. This is because the mesh warping step restricts our

ability to correct for strong parallax e�ects. The e�ect of this can be

seen in our parallax experiment, where warping artifacts become

visible in regions that are close to the camera. However, there is

always a balance between continuity and �delity of the warp, and

(a)

Reference 1.19 3.43

6.18 10.96 19.97

(b)

Fig. 13. Alignment error as related to parallax. (a) The camera paths of
six videos in 3D space. The blue one is the path for the reference video. (b)
The first frame of all input videos with increasing parallax. The color of the
frame boundary corresponds to the color of its camera path. The number
on the frame is the average alignment error in pixels from the current video
to the reference video.

we found our approach provided the best compromise between

them.

In addition, we require that we are able to obtain a reasonable

3D reconstruction of the scene using SfM. If the camera poses are

badly recovered, it will in�uence both frame-level and pixel-level

registration. As shown in Figure 14, as the night video has very bad

quality, including heavy motion blur, the reconstruction is quite bad

for this frame, which in turn in�uences �nal pixel registration.

We can also see occasional wobbling artifacts especially around

the borders of the videos. This is because these regions often have

very few constraints (sometimes there is no overlap with the other

video at all), and so the warp has to extrapolate from the limited

constraints that exist further inside the mesh. One solution, which is

already employed in many productions, would be to always record a

wider angle �eld of view than required at the end, so that observed

points outside the view can constrain the warp.

5 DISCUSSION
In conclusion, we have presented the �rst robust solution to time

slice video. Our approach is based o� of a joint 2D-3D robust align-

ment system that outperforms other similar approaches. Addition-

ally, we have demonstrated that world-space slices are possible,

which gives rise to a new category of possible visual e�ects. One

of the main challenges of creating time slice video is capturing the

data, as it requires repeatedly following the same trajectory. We

have included one example recorded on a drone, but drone cameras

are well suited to capture this type of recurring camera trajectories.
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Fig. 14. Example of failure cases. As 3D reconstruction is not successful due
to severe motion blur (top row), our final alignment is not accurate (bo�om
row).

One area for future work could be to more seamlessly integrate

the mesh warping step with the dense pixel correspondences, for

example by adaptive subdivision.

While our method makes use of SIFT descriptors, augmenting

them with 3D registration, we believe that descriptors that are

learned speci�cally for the dataset that we are trying to match are a

promising way to improve the registration quality. Possibly, using

the sparse 3D information to train a video-pair speci�c feature

descriptor could improve the results.
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