

4. Filters

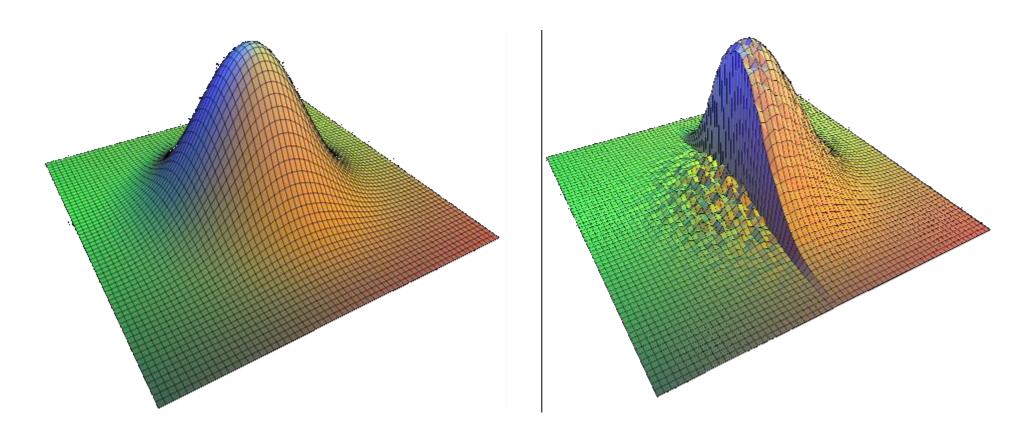
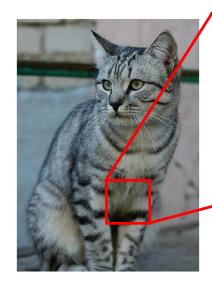


Image Filtering

An image is a 2D array of pixel values



- Filtering:
 - Replace each pixel by a *linear* combination of its neighbors
 - The combination is determined by the filter's kernel
 - Often spatially-invariant, the same kernel is applied to all pixel locations

$$g[\cdot, \cdot] = \begin{array}{c|cccc} 1 & 2 & 1 \\ \hline 2 & 4 & 2 \\ \hline 1 & 2 & 1 \end{array}$$

$$g[\cdot,\cdot] = rac{1}{9} egin{array}{c|cccc} 1 & 1 & 1 & 1 \ \hline 1 & 1 & 1 & 1 \ \hline 1 & 1 & 1 & 1 \ \hline \end{array}$$

Box Filter

Box filter example

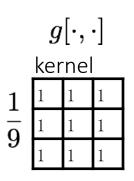
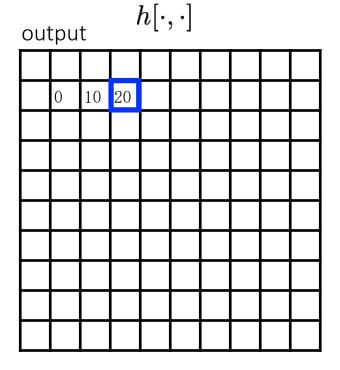


image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Box filter example

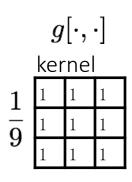
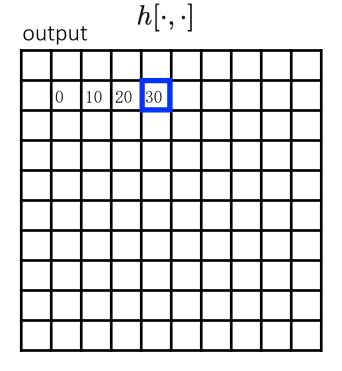
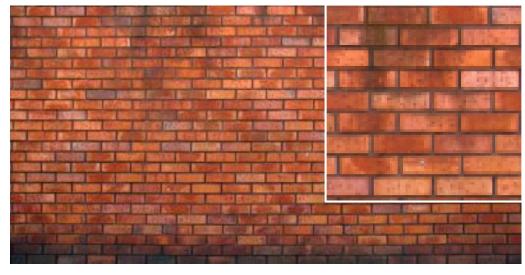


image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



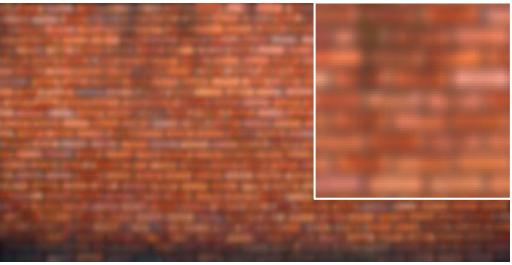
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Gaussian vs box filtering

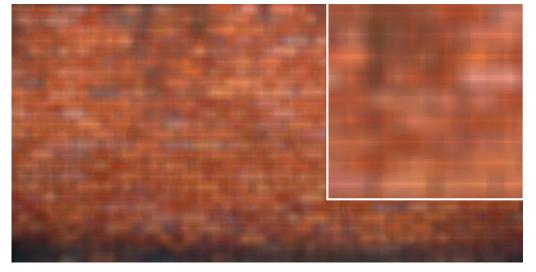


original

Which blur do you like better?

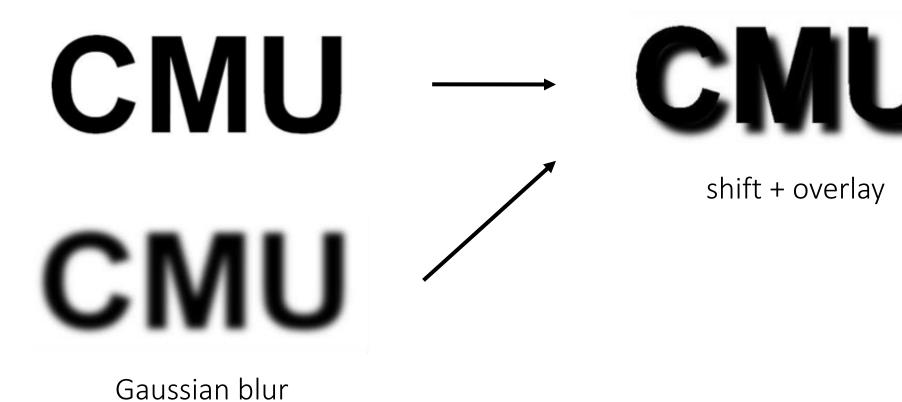


7x7 Gaussian



7x7 box

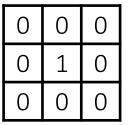
How to create a soft shadow effect?



Fun with filters

input

filter



output

unchanged

input

filter

0	0	0
0	0	1
0	0	0

output

shift to left by one

Detecting Edges

- How would you detect edges in an image (i.e., discontinuities in a function)?
 - Take derivatives: derivatives are large at discontinuities

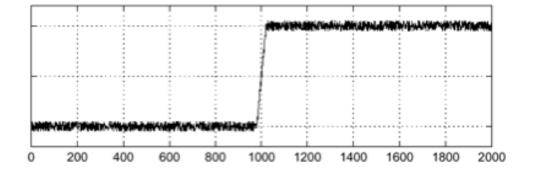
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

- How do you differentiate a discrete image (or any other discrete signal)?
 - Use finite differences

Remove limit and set h = 2

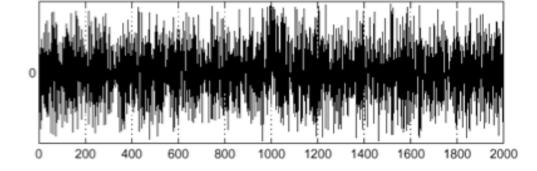
But Images are Noisy

intensity plot



Using a derivative filter:

derivative plot



Blur Before Taking Derivatives

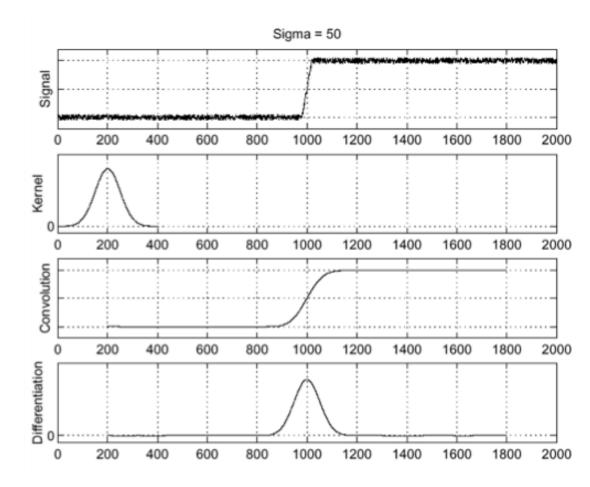
• When using derivative filters, it is critical to blur first!

input

Gaussian

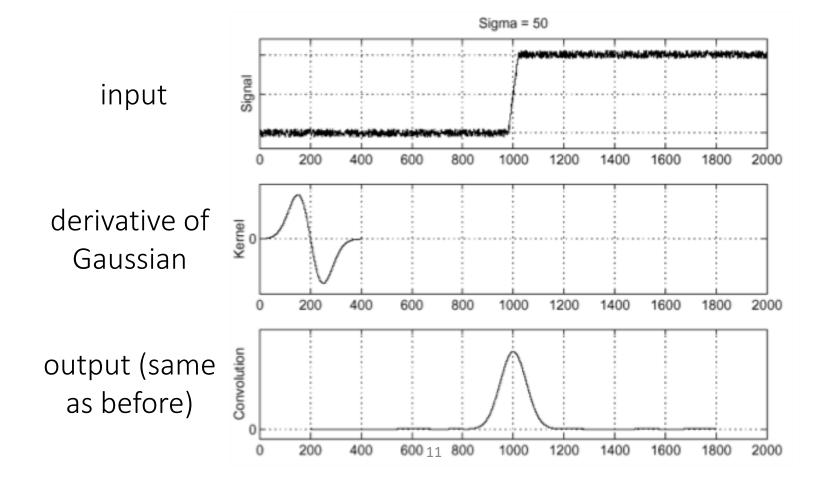
blurred

derivative of blurred

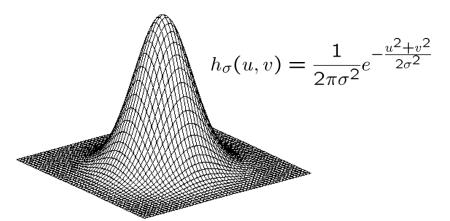


Derivative of Gaussian (DoG) filter

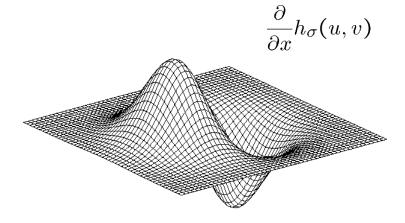
- Derivative theorem of convolution: $\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$
- Applying DoG = Applying blur first and then taking derivative



2D Gaussian filters



Gaussian



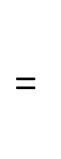
Derivative of Gaussian

12 Derivative of Gaussian filtering

The Sobel filter

Horizontal Sobel filter:

Sobel filter



Blurring

1D derivative filter

Vertical Sobel filter:

=

*

*

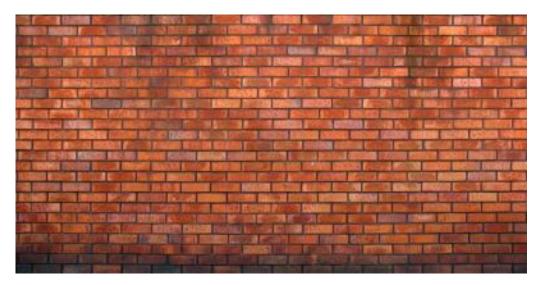
Sobel filter example

original

horizontal Sobel filter

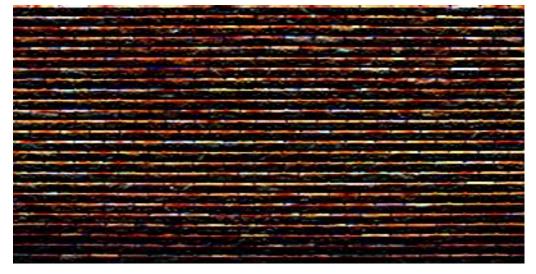
vertical Sobel filter

Sobel filter example



original

horizontal Sobel filter



vertical Sobel filter

Computing Image Gradients

1. Select a derivative filters (there are other similar filters, e.g. Scharr)

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$$

2. Convolve with the image to compute derivatives.

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

3. Form the image gradient, and compute its direction and amplitude.

$$abla m{f} = \left[rac{\partial m{f}}{\partial x}, rac{\partial m{f}}{\partial y}
ight]$$
 gradient

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

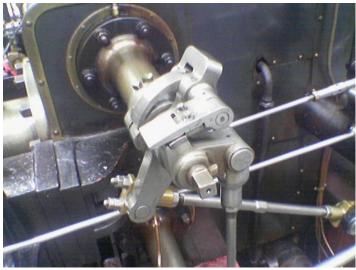
direction

$$abla oldsymbol{f} = \left[rac{\partial oldsymbol{f}}{\partial x}, rac{\partial oldsymbol{f}}{\partial y}
ight] \qquad heta = an^{-1} \left(rac{\partial f}{\partial y} / rac{\partial f}{\partial x}
ight) \qquad ||
abla f|| = \sqrt{\left(rac{\partial f}{\partial x}
ight)^2 + \left(rac{\partial f}{\partial y}
ight)^2}$$

amplitude

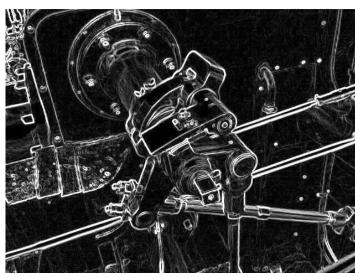
Image gradient example

original

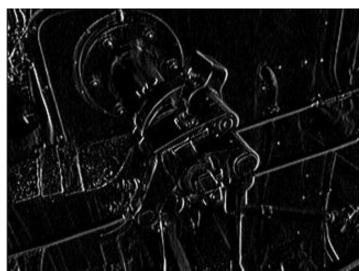


vertical derivative

gradient amplitude



horizontal derivative



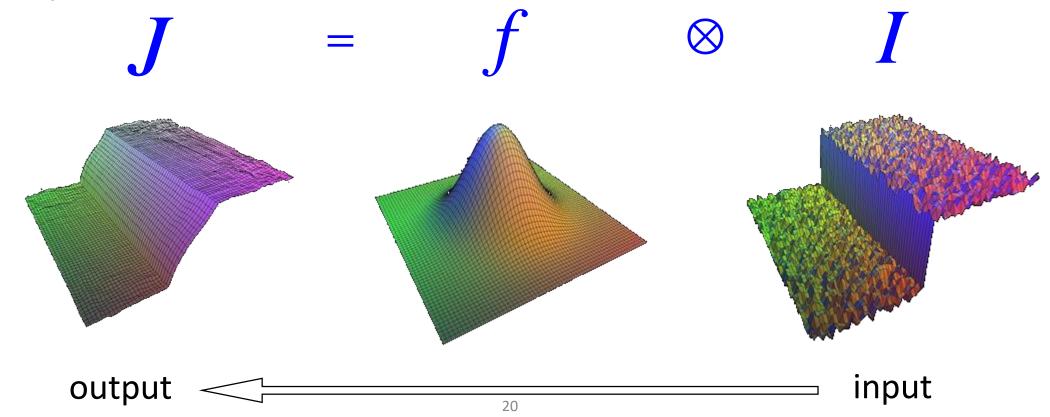
Questions?

Bilateral filter

- Proposed by Tomasi and Manduci in ICCV 1998
 - "Bilateral Filtering for Gray and Color Images"
- A very good survey by Sylvain Paris et al. 2009
 - Published at Foundations and Trends in Computer Graphics and Vision
 - "Bilateral Filtering: Theory and Applications"
- Related to
 - SUSAN filter
 [Smith and Brady 95] http://citeseer.ist.psu.edu/smith95susan.html
 - Digital-TV [Chan, Osher and Chen 2001]
 http://citeseer.ist.psu.edu/chan01digital.html
 - sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

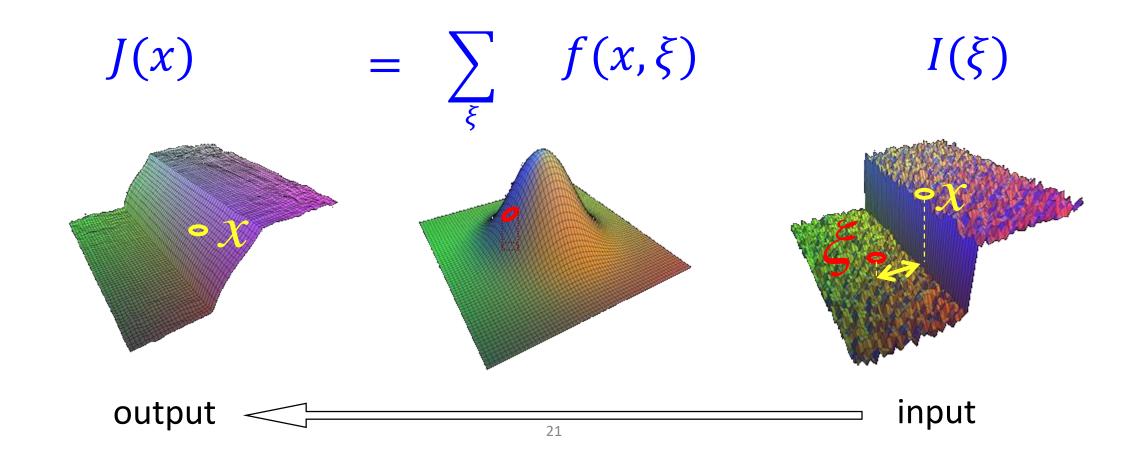
Start with Gaussian Filter

- Here, input is a step function + noise
- Spatial Gaussian filter f
- Output is blurred



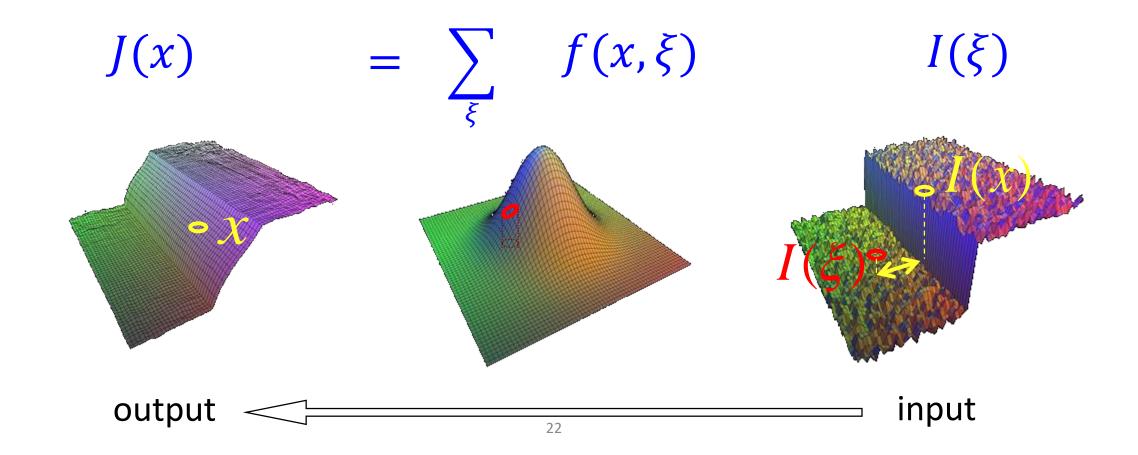
Gaussian Filter as Weighted Average

• Weight of ξ depends on its distance to x



The Problem of Edges

- Here, $I(\xi)$ "pollutes" our estimated J(x)
- It is too different to be averaged together



Principle of Bilateral Filter

[Tomasi and Manduchi 1998]

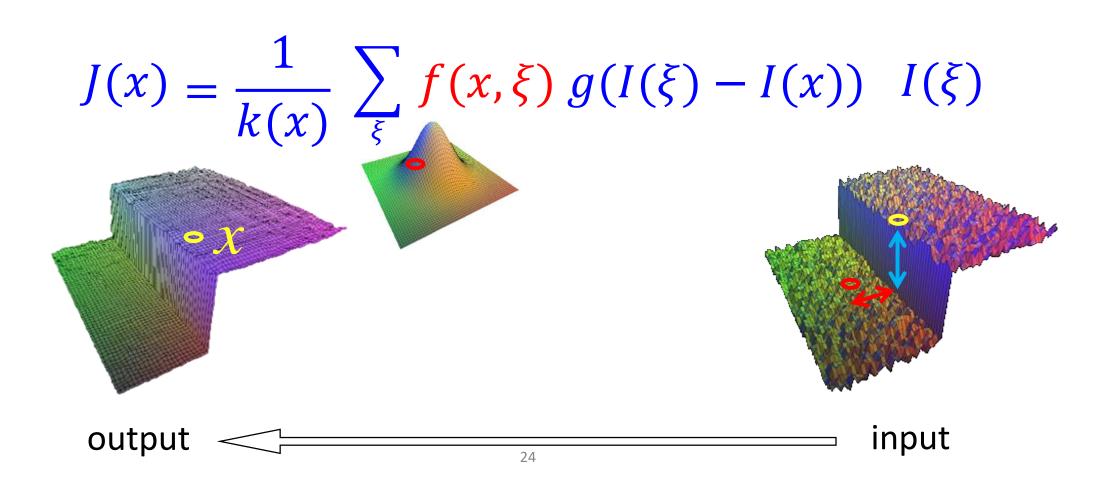
Penalty Gaussian g on the intensity difference

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) g(I(\xi) - I(x)) I(\xi)$$
output

Bilateral Filter

[Tomasi and Manduchi 1998]

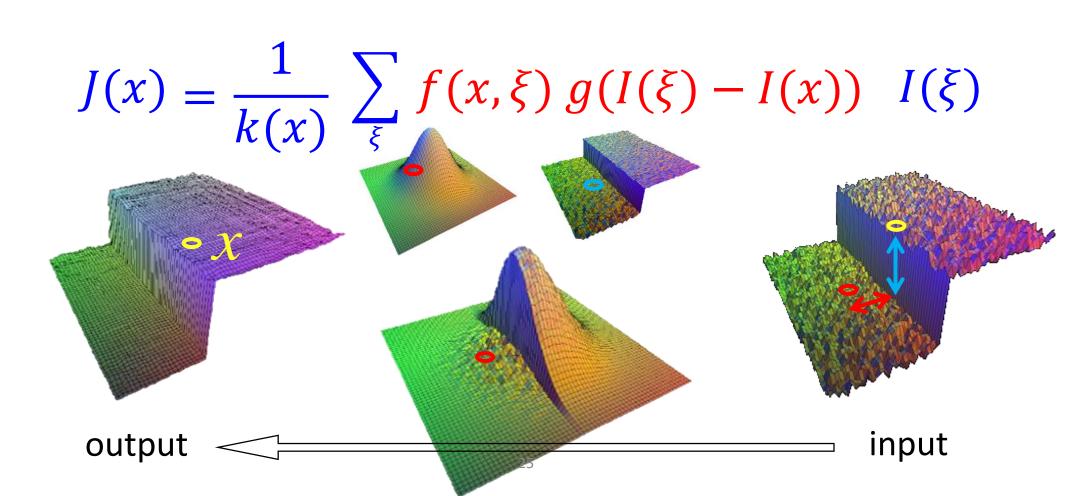
Spatial Gaussian f



Bilateral Filter

[Tomasi and Manduchi 1998]

Combined weight



Normalization Factor

[Tomasi and Manduchi 1998]

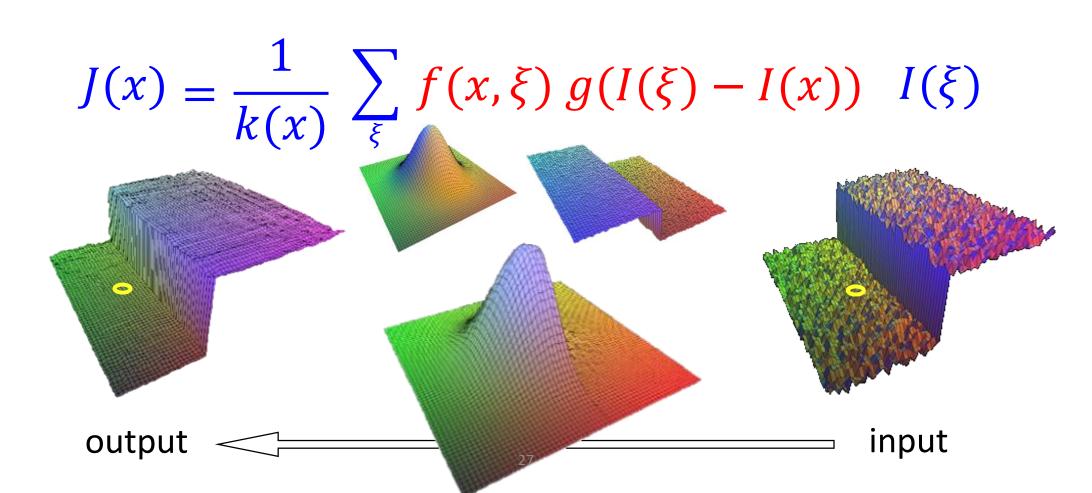
$$k(x) = \sum_{\xi} f(x,\xi) g(I(\xi) - I(x))$$

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) g(I(\xi) - I(x)) I(\xi)$$
output input

Bilateral Filter is Spatially-Variant

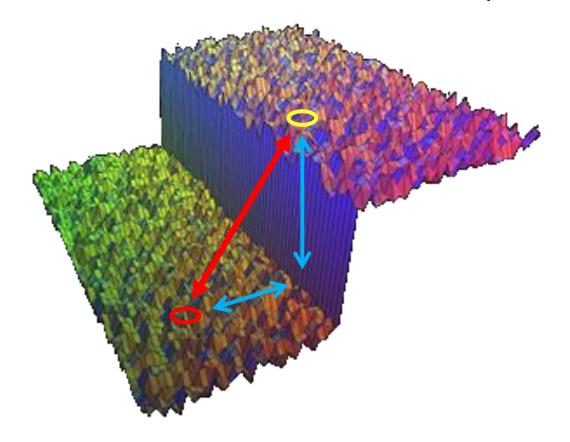
[Tomasi and Manduchi 1998]

The weights are different for each output pixel



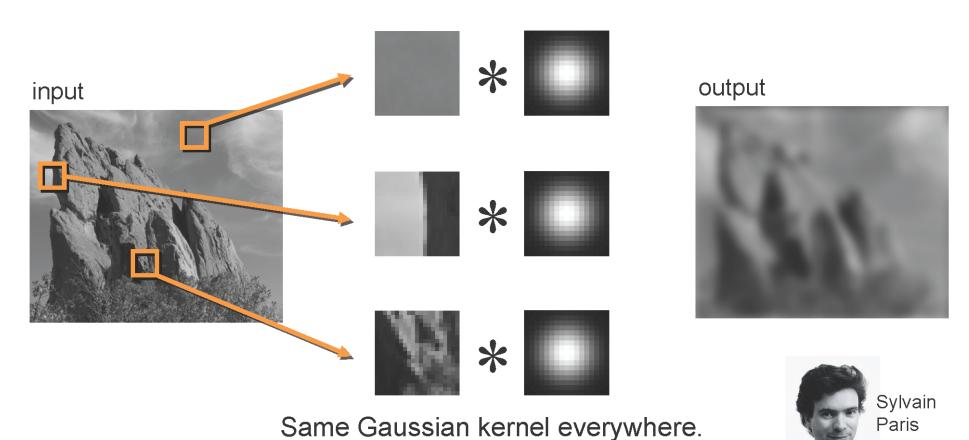
Other Explanation

• The bilateral filter uses the 3D distance to compute the weight



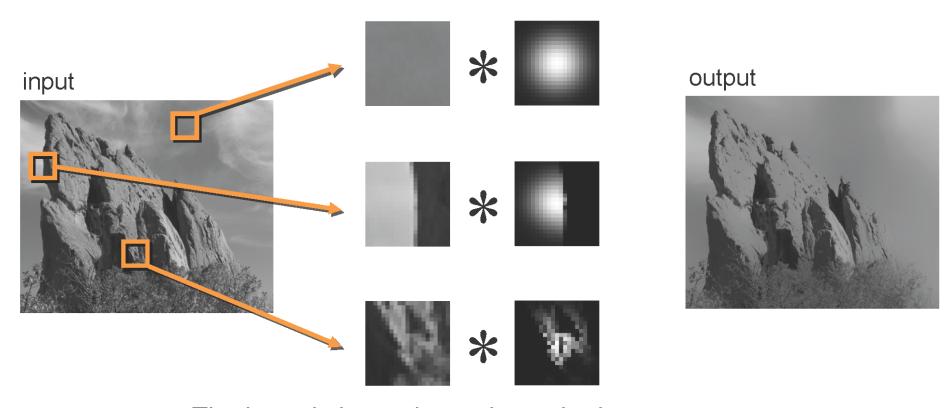
Bilateral Filter vs Gaussian Filter

- Bilateral Filter fix to the Gaussian filter
- Gaussian filtering applies the same filter everywhere



Bilateral Filter vs Gaussian Filter

Adjust kernel based on image content



The kernel shape depends on the image content.

Results: Denoise

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

Smoothing an image without blurring its edges.

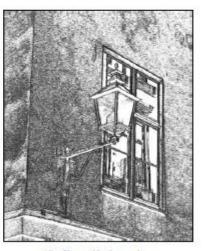
More Examples

(b) Edge-aware smoothing

(c) Detail enhancement

(d) Stylization

(e) Recoloring



(f) Pencil drawing

(g) Depth-of-field

Questions?

Guided Image Filtering

Kaiming He¹, Jian Sun², and Xiaoou Tang^{1,3}

Department of Information Engineering, The Chinese University of Hong Kong Microsoft Research Asia

³ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

ECCV 2010

Formulation

• Given an input image P, the output image Q is computed as,

$$Q_i = \sum_j W_{ij}(I) P_j$$

• The weights are computed from the guide image I,

$$W_{ij}(I) = \frac{1}{|\omega|^2} \sum_{k:(i,j)\in\omega_k} \left(1 + \frac{(I_i - \mu_k)(I_j - \mu_k)}{\sigma_k^2 + \epsilon}\right)$$

the total number of such windows containing both i and j

the k-th local window containing both i and j

 μ_k , σ_k are the mean and variance of pixel values in the window ω_k

Spatially-Variant Kernals

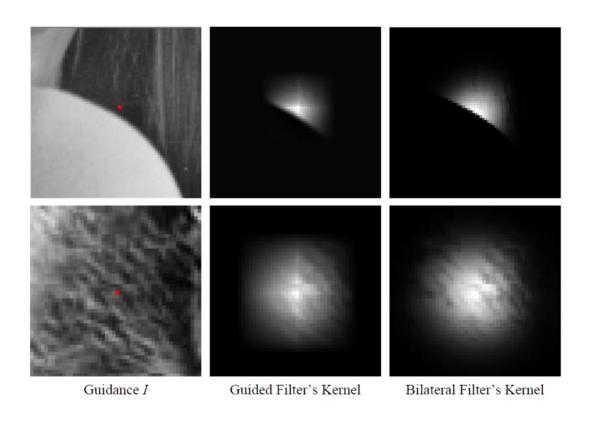


Fig. 3. Filter kernels. Top: a step edge (guided filter: $r = 7, \epsilon = 0.1^2$, bilateral filter: $\sigma_s = 7, \sigma_r = 0.1$). Bottom: a textured patch (guided filter: $r = 8, \epsilon = 0.2^2$, bilateral filter: $\sigma_s = 8, \sigma_r = 0.2$). The kernels are centered at the pixels denote by the red dots.

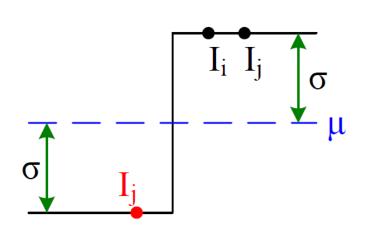
Explanation

• When i and j are from different sides of an edge,

$$\frac{(I_i - \mu_k)(I_j - \mu_k)}{\sigma_k^2} \sim -1$$

When i and j are from the same side,

$$\frac{(I_i - \mu_k)(I_j - \mu_k)}{\sigma_k^2} \sim 1$$



$$W_{ij}(I) = \frac{1}{|\omega|^2} \sum_{k:(i,j)\in\omega_k} \left(1 + \frac{(I_i - \mu_k)(I_j - \mu_k)}{\sigma_k^2 + \epsilon}\right)$$

Better Than Bilateral Filter

- O(N) time, N is the number of pixels
 - Bilateral filter is $O(Nr^2)$, r is the local window size

$$Q_i = \sum_j W_{ij}(I)P_j$$

$$W_{ij}(I) = \frac{1}{|\omega|^2} \sum_{k:(i,j) \in \omega_k} \left(1 + \frac{(I_i - \mu_k)(I_j - \mu_k)}{\sigma_k^2 + \epsilon} \right)$$

 μ_k , σ_k can be computed with box filter (O(N)).