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Cluster-based Visual Abstraction for Multivariate

Scatterplots
Hongsen Liao, Yingcai Wu, Li Chen and Wei Chen

Abstract—The use of scatterplots is an important method for multivariate data visualization. The point distribution on the scatterplot,
along with variable values represented by each point, can help analyze underlying patterns in data. However, determining the
multivariate data variation on a scatterplot generated using projection methods, such as multidimensional scaling, is difficult.
Furthermore, the point distribution becomes unclear when the data scale is large and clutter problems occur. These conditions can
significantly decrease the usability of scatterplots on multivariate data analysis. In this study, we present a cluster-based visual
abstraction method to enhance the visualization of multivariate scatterplots. Our method leverages an adapted multilabel clustering
method to provide abstractions of high quality for scatterplots. An image-based method is used to deal with large scale data problem.
Furthermore, a suite of glyphs is designed to visualize the data at different levels of detail and support data exploration. The view
coordination between the glyph-based visualization and the table lens can effectively enhance the multivariate data analysis. Through
numerical evaluations for data abstraction quality, case studies and a user study, we demonstrate the effectiveness and usability of the
proposed techniques for multivariate data analysis on scatterplots.

Index Terms—Data abstraction, scatterplot, glyph visualization, multilabel optimization.
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INTRODUCTION

The use of scatterplots is one of the most important and
popular multivariate data visualization methods. The points on
the scatterplot can help reveal underlying patterns in data, such
as variable relationships and possible data clusters. Attributes
of the points, such as point size and point color, are usually
used to encode data values. Users can obtain an overview of the
data through these encodings and derive conclusions from the
data. Various projection methods, such as principal component
analysis (PCA), multidimensional scaling (MDS), and t-SNE [1],
can be used to construct a scatterplot from a multivariate dataset.
These projections can provide useful illustrations for multivariate
datasets and enhance multivariate data analysis on scatterplots.

(b)

Fig. 1. Example of scatterplots. (a) Scatterplot with clutter problems. (b)
Projection of the UCI Auto-MPG dataset using t-SNE.

Although scatterplots have shown great usability in multivari-
ate data analysis, analyzing multivariate data on a scatterplot,
especially a cluttered one, is still challenging. First, obtaining a
clear view of multivariate data distribution on a scatterplot or
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intuitively explore the data is difficult, especially when the number
of variables increases. A series of color mappings for different
variables, which are utilized in many previous applications, can be
used to demonstrate the multivariate data distribution. However,
users cannot easily and simultaneously obtain a clear view of
several color mappings and compare them. Second, the clutter
problem occurs when the data scale becomes large or the projected
points are extremely close, as shown in Figure 1(a). Then, directly
obtaining a clear view of the data distribution is nearly impossible
even with proper encodings for variable values, because many
points are covered and indirectly rendered. Third, no effective
solution is available to analyze a shape of interest (SOIL a set
of points) on a scatterplot generated using multivariate projection
methods. For example, the scatterplot in Figure 1(b) is generated
from the UCI Auto-MPG dataset using t-SNE. To he best of our
knowledge, no intuitive solution is currently available to analyze
the SOI, as indicated by the red curve. Such solution is necessary
to help users intuitively analyze the underlying data relationships
conveyed by the SOlIs.

In this work, we propose to use cluster-based level of detail
(LOD) abstractions in exploring and analyzing multivariate data.
An abstraction, which comprises a set of data clusters, is used to
enhance the understanding of a multivariate scatterplot, in addition
to simple scatter points. The abstraction can briefly illustrate the
multivariate data distribution on the scatterplot, and the LOD
design can help users intuitively and effectively explore the scat-
terplot, even a cluttered one. This abstraction is generated using an
adapted multilabel optimization based clustering [2] for the data
points. This method outperforms previous solutions, such as hier-
archical clustering and normalized cuts, in providing abstractions
of high quality. To deal with large data problems, an image-based
speedup method is proposed to improve the clustering method,
which ensures its flexibility and usability in different applications.
Furthermore, a pair of glyphs is compared and selected to visualize
data clusters. Data distribution information, such as data mean



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

and standard deviation (SD), is encoded in the glyph to provide
an overview of a cluster of points or compare among clusters.
Users can either clearly achieve an overview of the multivariate
data distribution or explore the detailed data under the guidance of
the glyph. This procedure can assist users in efficiently exploring
multivariate data, even on a cluttered scatterplot. Moreover, we
propose to combine the glyph-based abstraction with the table
lens. The view coordination between them can effectively help
users analyze the possible data relationships represented by SOIs
on the scatterplot. These possible data relationships can work as
initial guidelines for highly detailed data analysis. Evaluations
including a numerical evaluation for the data abstraction quality,
a set of case studies and a user study are used to demonstrate the
effectiveness and usability of the proposed techniques.
The main contributions of our work include the following.

1) An image-based multilabel clustering method is pro-
posed to generate LOD abstractions for multivariate data
points on a scatterplot. This method can provide data
abstractions of high quality and support interactive LOD
explorations even for large scale data.

2) A pair of glyphs is compared and selected to enhance the
LOD data exploration. Users can intuitively explore the
multivariate data under the guidance of the glyphs. A user
study is carried out to validate the usability of the glyphs
in data exploration.

3) View coordination between the table lens and the glyph-
based scatterplot is proposed to enhance multivariate
data analysis. Users can then efficiently interpret variable
relationships represented by SOIs on a scatterplot.

2 RELATED WORK
2.1

Multivariate data visualization has attracted considerable attention
in the past. Liu et al. recently provided a detailed survey on
the advances in high-dimensional data visualization [3]. Various
methods have been implemented in different application scenarios.
In these methods, scatterplot and scatterplot matrix are widely
used to analyze the relationship between two variables or among
multiple variables. Keim et al. enhanced scatterplots by proposing
a series of visualization solutions, such as generalized scatter-
plots [4], scatterplots enhanced by ellipsoid pixel placement and
shading [5], and variable binned scatterplots [6]. Mayorga et al.
presented the splatterplot to overcome the overdraw problem [7].
These solutions can effectively improve the usability of scatter-
plots. Other popular methods, such as parallel coordinate [8],
star coordinate [9], Radviz [10], and table lens [11], can also
be used to show the relationship pattern for high-dimensional
data. Many extensions of the aforementioned methods have been
proposed to enhance multivariate data analysis. For example,
Muller et al. attempted to guide users in exploring scatterplots
under different projections of high-dimensional data [12]. They
also developed a data context map, which uses an iso-surface
along with the scatterplot, to help users achieve a clear view of
multivariate data [13]. Yuan et al. combined a parallel coordinate
with the scatterplot to help analyze high-dimensional data [14].
However, exploring the multivariate data on a scatterplot still
lacks effective interactions apart from color mapping and brushing.
In our work, we provide a glyph-based LOD visualization and
intuitive interactions to explore scatterplots. Combined with table
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lens and parallel coordinate, the scatterplot can effectively help
users analyze multivariate data.

In recent years, many studies on multivariate data exploration
based on scatterplots have been conducted. Lehmann et al. pro-
posed a dissimilarity maximization-based method to generate a
series of scatterplots, which can comprehensively visualize multi-
variate data [15]. Kim et al. developed an intuitive system for users
to interactively generate projections that fulfill their visualization
requirements [16]. Liu et al. explored high-dimensional data on the
basis of subspace analysis and dynamic projections, and they used
a navigation graph to guide users in viewing scatterplots under
different projections [17]. In general, these techniques attempt to
visualize multivariate data and present the underlying multivariate
relationship by generating a series of scatterplots. Unlike these
previous works, our work focuses on enhancing visualization on a
single scatterplot. Thus our work can be smoothly integrated into
the aforementioned works to enhance multivariate data exploration
on the basis of a series of projections.

The use of glyphs is a widely used method to visualize
multiple variables. Borgo et al. comprehensively surveyed state-of-
the-art glyph-based visualization works [18]. The visual channels
of a glyph, such as shape, color, and location, are used to encode
the variables [19]. For example, radar glyphs are widely used to
visualize multi-dimensional data [20]. In our visualization, we use
a design similar to the radar glyph and a band design in accordance
with our visualization requirements.

2.2 Data Abstraction in Multivariate Data Visualization

Viewing the multivariate data becomes difficult as the dimension
number of data or data scale increases. Therefore, data abstraction
is necessary to achieve an effective visualization of multivariate
data. Different data abstraction methods, as well as the correspond-
ing quality metrics [21], have been proposed in high-dimensional
data visualization. A systematized survey on these methods was
conducted by Bertini et al. [22]. In these methods, sampling and
clustering are extensively used in different application scenarios.

Bertini et al. used a non-uniform sampling method to reduce
visual clutter for scatterplots [23]. Ellis et al. proposed several
methods for measuring occlusion and supported interactive sam-
pling based on the said methods to reduce visual clutter in the
parallel coordinate [24]. Chen et al. [25] proposed to use the
multiclass blue noise sampling for the visual abstraction of a
multiclass scatterplot.

Clustering is used in various visualization methods and ap-
plications. Tree maps and dendrograms can be generated from
a hierarchical data structure based on clustering. Kreuseler et al.
proposed a scalable framework for information visualization based
on hierarchical clustering, and they provided different methods to
visualize hierarchies [26]. Clustering has also been widely used
in vector field visualization to achieve an abstracted rendering of
vector fields. For example, Heckel et al. generated a visualization
result by splitting clusters [27]. Telea et al. clustered a vector field
by merging data based on an elliptic similarity evaluation [28]. Du
et al. provided a visualization solution in accordance with Voronoi
regions to enhance the connection between glyphs and data [29].

In our work, we use glyphs to provide a visual abstraction for a
multivariate scatterplot. Our method is inspired by the glyph-based
visualization for a vector field, which can help users intuitively
explore multivariate data.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

% N e — —
: 5 <,
o Data Data P Interactive | ——_——
Multivariate Data | Projection Abstraction ‘ Data Analysis | =, =~ e —
- »
e ‘
@ (b) (© (d)

Fig. 2. Overview of the system pipeline. After a multivariate dataset is loaded (a), the data are initially projected to generate the scatterplot (b).
Then, the multilabel optimization is utilized to generate the LOD data clusters. Glyphs are used to visualize and analyze the clusters (c) along with

a suite of coordinated views (d).

2.3 LOD Visualization

LOD visualization is an important strategy for visualizing data
that cannot be fully conveyed with a single view. For example,
Fua et al. used a structure-based brushing tool to select the
data abstraction level for multivariate data based on hierarchical
clustering [30]. Peng et al. used a hierarchical clustering method
on a mesh to generate a LOD rendering for a vector field [31].

Much research has been conducted on LOD visualization.
In these works, LOD visualization for graphs is one of the
most popular topics. Zinsmaier et al. took advantage of edge
cumulation to provide an interactive LOD visualization for large
graphs [32]. Balzer et al. used implicit surfaces to visualize a
clustered graph [33]. Abello et al. provided an architecture to
address large scale hierarchical graphs and support interactive
exploration on graphs [34]. Different layout methods, such as
planar layout, spring layout, and tree layout, were proposed to
visualize graphs effectively [35]. The spanning tree of a graph can
be extracted to help analyze the relationship among the nodes in
the graph [36]. Interaction techniques, such as zoom and pan,
focus + context and incremental exploration, can be used to
provide navigations for data exploration [37].

In our work, we adopt the LOD design for the abstraction
of a scatterplot. We consider scatter points as nodes on a graph
in the multilabel optimization. Glyphs are used to provide an
overview of the graph, which can guide users explore the graph
and multivariate data smoothly.

3 SYSTEM OVERVIEW

The data analysis pipeline of the system is illustrated in Figure 2.
It comprises the following three main steps.

Data Projection The goal of our method is to assist multi-
variate data analysis on a scatterplot. Thus, the first step of the
pipeline is to project a multivariate dataset onto a 2D scatterplot.
Different methods can be used depending on the data type. For
geospatial data, the points are usually distributed on a map accord-
ing to their longitude and latitude attributes. For other numerical
multivariate data, the scatterplot can be generated by conventional
low-dimensional embedding approaches, such as PCA, MDS and
t-SNE.

Data Abstraction Instead of simple scatter points, we attempt
to provide a brief illustration of the multivariate data distribution
on the scatterplot for users. This way can help users easily under-
stand and analyze the data. An image-based multilabel clustering
method is used to generate LOD abstractions for the multivariate
scatterplot from the previous projection. The abstractions can

be generated using a view-dependent clustering or a top-down
clustering, which will be detailed in Section 4.

Interactive Data Exploration and Analysis Based on the
data abstraction, the following three main kinds of data exploration
tasks are supported in the system:

1) Data overview helps users obtain an initial understand-
ing of the data. Data abstractions are visualized by the
glyph on the scatterplot. Each glyph visualizes the data
information of a cluster. Based on the glyph, users are
allowed to interactively obtain an overview of the data.

2) Detecting clusters of interest enables users to efficiently
focus on data subset that may need special attention dur-
ing data exploration. Two kinds of clusters are considered
in the system. The first clusters are those with high SDs
and need to be further explored, while the second ones
present mean values that differ much from those of others.
They may be outliers or the ones that require further
analysis. In the system, a pair of glyphs is designed to
assist users in detecting clusters of interest.

3) Variable relationship analysis is an important task
for multivariate data analysis. The view coordination
between the glyph-based scatterplot and the table lens
is provided to assist users in analyzing possible data
relationships conveyed by SOIs on the scatterplot. A
parallel coordinate is provided to show detailed data.

Using this pipeline, users can efficiently analyze the multivari-
ate data and obtain intuitive guidance for further data analysis.

4 DATA ABSTRACTION

An image-based multilabel optimization method is used in our
system to generate LOD abstractions for the scatterplot.

4.1 Adapted Multilabel Optimization

Multilabel optimization is a graph-based method in which each
node in the graph is assigned with a label. The nodes that share
the same label form a possible cluster [38]. In this method, the
number of independent clusters into which the entire graph should
be segmented is determined through graph cuts. Compared with
the hierarchical binary structure used in some previous studies,
the multilabel optimization method can adaptively determine the
appropriate cluster number for each level in the data hierarchy.
This scenario is natural for most clustering problems, given that a
dataset can be typically divided into more than two classes.

The multilabel optimization method works with a set of graph
nodes P and a finite set of labels L. Three types of costs, namely,
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data, smooth and label costs, are introduced to determine which
label should be assigned to each node. Once the label for each
node is assigned, the nodes that share the same label can be
alternatively visualized by glyphs (Section 5.1).

The points on the scatterplot are used in our system as graph
nodes. Delaunay triangulation is applied to generate the graph
structure G for the scatterplot nodes. This method is selected
to ensure the continuity of node labels on the scatterplot, which
the more commonly used k-nearest neighbor method fails to do.
Thereafter, candidate labels should be evaluated for the graph. An
intuitional method for this evaluation is to set up an individual
candidate label for each node p in the graph. Then the label can
be assigned to node p or to nearby nodes. In this case, we expect to
determine a possible graph partition L, that centers at node p for
each label. In our implementation, the possible partition is defined
as the subgraph within a specified distance to the node. Thus, a
label partition is defined as:

L,=|J{4ld(p.q) <t.q € G} (1)

where d(p,q) is the Euclidean distance of point nodes p and g; ¢ is
the distance parameter for the view dependent control, which can
be defined depending on screen resolution and user requirement.
In our implementation, ¢ is evaluated using

t= (7)045 (2)

where § is the size of the bounding box for the points; and N,
is the expected number of clusters for the abstraction, which can
be set according to user requirement. In order to maintain the
continuity of a partition, we search for the possible partition from
p and extend it to the neighboring nodes that satisfy the distance
constraint until no new extension can be found. After all the label
partitions are evaluated, the three costs are obtained and defined
as follows.

Data Cost Data cost D,(f,) penalizes the data difference
between point p and other points in label f,. It ensures that the
point is assigned with a label in which the majority of the points’
data are similar to its. Thus, the data cost is defined as follows:

1
Dy(fp) =5 L Vo=Vl 3)

P qely

where V), and V, are the multivariate data of points p and ¢,
respectively; N, is the number of points in the label partition L.

Label Cost Label cost penalizes the appropriateness of a label.
This cost assigns a penalty for each label, and large penalties are
assigned to labels with large data SD. Therefore, labels with small
data SD present high probability to remain in the final result. In
our system, the label cost is defined as follows:

Fo=aN) h-8(f) (4)

ICL
&(f)—{] i fp =1 )

0 otherwise

where N is the number of point nodes, ¢ is a ratio value, [ is a
label, h; is the weighted summary of the variable SD in each label
partition, and &y (f) is the indicator function, We add a small value
of 0.01 to this cost in our implementation to avoid a nearly zero
cost for a label. In practice, & can be used to control the number
of the remaining labels. The larger the value is, the smaller the
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number of preferred labels are. Additional detailed discussion on
how this cost will work on real dataset is provided in Section 6.

Smooth Cost Smooth cost V), measures whether two adjacent
nodes (p and ¢) should be assigned with the same label. This
cost provides a penalty in assigning different labels to neighboring
nodes. In our implementation, we use a simple definition for this
cost, which is a constant for all adjacent nodes. The constant is
evaluated with the average difference values between adjacent
nodes. Additional complex definitions for this cost can be found
in [38].

The multilabel optimization aims to minimize the following
energy function:

E(f)=Y. Dp(fo)+ Y Vog(fo:ifo) + N Y hi-8.(f) (6)
peP pgeEN LCL
The solution for this optimization assigns a label to each point,
and the points that share the same label are grouped into a cluster.
Then, these clusters are used as the data basis for the glyph
visualization in Section 5.

4.2

A problem with the adapted multilabel optimization is its per-
formance in dealing with large scale data. Processing a graph
with a large number of point nodes is time consuming, which
is unacceptable in an interactive visualization system for multi-
variate data exploration. In our work, an image-based processing
procedure is introduced to accelerate the optimization for large
scale data. The scatterplot is first transformed into an image with
a high resolution; for example, the height of the image can be set
to 1000 and the width can be set depending on their relative size
ranges. Points on the scatterplot are then mapped into pixels in
the image. These pixels, along with the average variable values of
their corresponding points, are used for the optimization instead
of the original points. However, the pixel number can also be
very large when the resolution of the image increases. Inspired
by the recent research for image processing in computer vision,
superpixel is used in our system to further accelerate the optimiza-
tion. Particularly, we utilize the simple linear iterative clustering
(SLIC) superpixel generation method because of its effectiveness
and computing efficiency [39]. Thereafter, the superpixels are
used as the graph nodes for the optimization. The computing
time for a single run of optimization can then be controlled
by assigning the expected number of superpixels for the SLIC
superpixel generation. For example, the computing time will be
less than a half second if the expected number of superpixels is
set to 500. This setting works effectively in all our experiments.

In our system, the image-based processing is applied when the
number of points for the optimization is large, such as 2000 in all
our cases. Otherwise, the original points and variable values are
directly used.

Image-Based Processing for Large Scale Data

4.3 View-Dependent and Top-Down Clustering

Two types of clustering are supported in our system, namely, view-
dependent clustering and top-down clustering. In view-dependent
clustering, data points, which are shown in the viewport during
user interactions, are utilized for the multilabel optimization. In
that case, the abstraction for the scatterplot will be updated each
time after user interactions, such as zooming and panning. We
also support top-down clustering to construct a data hierarchy for
a multivariate scatterplot. The clustering is first applied on the
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entire dataset, and then iteratively on the generated clusters. Users
can specify an SD threshold for the cluster data. As long as the SD
of a cluster is greater than the threshold, the multilabel clustering
will be recursively applied. A data hierarchy for the multivariate
scatterplot can then be generated. Thereafter, the system queries
for the expected level of abstraction in the data hierarchy in
accordance with user interaction, and the corresponding cluster
data are visualized. In our implementation, we initially map a
screen distance (e.g., 150px, which depends on the glyph size) to
the point distance. We then query for the level of clusters whose
average distance among cluster centers is closest to the mapped
distance.

Ip et al. [40] attempted to segment a 2D image with the
normalized cuts (NCuts) algorithm to interactively explore volume
data on 2D intensity histograms. In our system, we follow their
design of hierarchical exploration. Moreover, we provide the glyph
as the visual guidance for the exploration. The mean and SD of
the data are encoded in the glyph to provide visual clues for the
data in the cluster. Users can decide whether they should explore
thoroughly into the cluster depending on the glyph. This scenario
is similar to the usual manner in which users conduct a data
analysis. We also demonstrate that the results generated using
the adapted multilabel optimization exhibit better data abstraction
quality than the NCuts for multivariate data in the evaluation
(Section 6).

5 VISUALIZATION AND EXPLORATION

In this section, we first introduce the glyph design for a multivari-
ate data cluster and then provide details of the view design in the
system.

5.1 Glyph
-------- Std Deviation
—
/ Dataset ____-
\ ~ Mean Value 7
~ "~ Mean Value R Py

. . ’ -
Deviation -

(@ (b)

Fig. 3. Glyph design. Glyphs are used to visualize a cluster of multivari-
ate point data.

Glyphs are used to visualize multivariate data in clusters gener-
ated via the multilabel optimization (Section 4). They are expected
to directly support two main tasks during data exploration and
analysis, namely, data overview and detecting clusters of interest,
as mentioned in Section 3. However, effectively supporting the
two tasks simultaneously with a single glyph is difficult. Thus, a
pair of glyphs is used in the system, as illustrated in Figure 3.

The glyph in Figure 3(a) is mainly used to help users obtain
an overview of the data and detect clusters with high SDs. Each
glyph visualizes the mean and standard (Std) deviation of a data
cluster. Each axis of the glyph represents a variable in the data.
Mean values of a cluster are visualized by a line that connects all
the axes, and corresponding SDs are encoded by the half width of
the orange band on the axes. Users can obtain a clear view of the
mean values and SDs through the glyph. Moreover, they can easily
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detect clusters with high standard deviations through the orange
band. However, the band can be an obstacle for users and even
lead to misunderstandings when users compare the mean values
of different clusters.

The glyph in Figure 3(b) is mainly used to assist users in
detecting clusters of interest with mean values that differ much
from others. The commonly used radar glyph can also assist
users in observing the differences among clusters and detecting
clusters whose mean values differ from others. However, when
the differences are small, the shape of the radar glyph can no
longer effectively support the detection. Thus, we employ an
alternative design for this task, which is the Z-Glyph provided
by Cao et al. [41]. Color and area, instead of shape, are used
to represent the differences. In our system, we first calculate the
deviations between the cluster and dataset mean values. Then, the
deviations are directly visualized in the glyph. Similar to the glyph
in Figure 3(a), each axis represents a variable. However, we use
an extra circle to represent the dataset mean values, as shown
in Figure 3(b). Then, a curve is used to indicate the deviation
values. A radius that is smaller than the extra circle indicates a
negative deviation; otherwise, the deviation is positive. Moreover,
color is used to enhance the visualization. Blue represents negative
deviations and red represents positive ones. Users can intuitively
compare among clusters and detect clusters of interest through
the differences in curves and filled colors. For example, it still
needs some time for users to compare among different glyph
shapes and determine their differences in Figure 4(a). However,
we can efficiently infer the differences from the curves and colors
in Figure 4(b).

A series of glyph alternatives is considered during the devel-
opment, as shown in Figure 6. We mainly compare two types
of glyph designs, namely, the bar chart-based and radar chart-
based glyphs. These two types of glyphs are widely used for
visualizing multivariate data. In the bar chart based glyphs, as
shown in Figures 6(a) and (c), each bar represents a variable. The
height of a black line in Figure 6(a) is used to encode the mean
value of a variable, and the half height of the bar encodes the
corresponding SD. The glyphs in Figures 6(c), (d), (e) and (f) are
used to visualize the deviations between cluster and dataset mean
values. Independent bars and linked lines are used to visualize the
deviations in Figures 6(c) and (d). By contrast, the Z-Glyph uses
smoothed curves and colors to visualize the deviations, as shown
in Figures 6(e) and (f). A user study is carried out to compare the
usability of the glyphs and validate the rationality of our glyph
choices (Section 6.6).

5.2 Coordinated Views

We design the glyph-based scatterplot (Figure 5(a)) to help users
smoothly explore multivariate data. Other coordinated views,
including a table lens (Figure 5(b)) and a parallel coordinate (Fig-
ure 5(c)), are provided to promote data exploration and analysis.

5.2.1 Glyph-based Scatterplot

The glyph-based scatterplot is a two-layer view, which includes
one for the original points and the other for the glyphs (Fig-
ure 5(a)). The glyph layer for clusters is rendered above the point
layer. If a cluster contains child clusters in the data hierarchy
generated using the top-down clustering, then a plus indicator is
shown at the top left of the glyph, as indicated by al in Figure 5(a).
This indicator directly provides clues for users whether they can
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Fig. 4. Glyph Comparison. (a) Radar glyph. (b) Z-Glyph.

zoom in to obtain a detailed view of the data. For clusters without
child clusters, users can also choose to split the cluster and thus
obtain more detailed subclusters. When the point number of a
cluster is excessively small (e.g., less than 5), a circle represen-
tation is used to identify small clusters, as indicated by the black
arrows in Figure 12(b). The tooltip indicated by a3 provides clues
for the number of points represented by a full outer circle. Users
can relatively evaluate the number of points in each of the cluster
through the angle of the corresponding outer circles. Moreover,
the visibility and color encoding for each variable in the glyph can
be controlled through an additional panel, as shown in Figure 5(d).
Furthermore, set-based visualization methods [42], such as region-
based overlay techniques, can be used to enhance the relationship
between the glyphs and their corresponding regions. However,
they are not utilized in our current solution. We will try to
implement them in the future.

For the interaction, users can simply select a cluster for
data analysis or a sequence of clusters for comparison. When
a sequence of clusters is selected, the selecting path is directly
shown on the plot, as indicated by a2 in Figure 5(a).

5.2.2 Other Views

Three other views are provided to support smooth data exploration
for multivariate data.

Table Lens. A table lens (Figure 5(b)) is provided to assist
users in comparing selected clusters in a sequence, and analyzing
the relationship among variables. In our implementation, the

6

height and width of each bar represent the mean value of each
variable in a cluster and the relative number of points in the
cluster, respectively. Each row of the table lens represents the value
change of a variable through the selected sequence of clusters.
Users can obtain a clear view of the value change of each variable
and conclude data relationships through this table lens.

Parallel Coordinate. A parallel coordinate is used to provide
a detailed view of multivariate data. After users select clusters
on the scatterplot, detailed visualization for the cluster data will
be shown, as illustrated in Figure 7(a). The color band is also
supported on the parallel coordinate to maintain the consistency
with the scatterplot by visualizing the mean and the SD of the
cluster. The center of the band on each axis represents the mean
value of each variable, whereas the half width of the band indicates
the SD. Line-based visualization can assist accurate comparison
for clusters, whereas band-based visualization can provide an
overall impression for the differences among clusters. The axis
order of the variables is determined by maximizing the correlation
between all neighboring variables, as described in [43]. The same
variable order is applied to the glyphs and the table lens.

5.2.3 Interactions and View Coordination

View coordination is supported in the system among all the
aforementioned views. Users can explore the scatterplot to achieve
an appropriate LOD abstraction for the data through zooming and
panning interactions. At the topmost level, the system provides
the data mean and SD of the entire dataset. At the lowest level,
users can view each of the data point. Clusters of interest can be
selected for analysis. Then, the detailed data of the clusters will
be visualized in the parallel coordinate. Users can also select a
sequence of clusters and compare them on the table lens.

Two types of explorations can be used. First, view-dependent
exploration is supported. Users can zoom and pan to view different
regions of data on the scatterplot. Then the clusters and the
glyphs will be updated immediately after users stop the mouse
interactions. Second, the hierarchical data structure can be gener-
ated automatically through preprocessing. Accordingly, users can
smoothly explore data through zooming and panning interactions.

6 EVALUATIONS

In this section, we discuss the effect of the label cost and expected
number of clusters on data abstraction. Quantitative and qualitative
evaluations are used to validate the effectiveness of multilabel
clustering in data abstraction. Moreover, we provide a set of glyph-
based data abstraction examples using small and large scale data.
A user study is also conducted to test the usability of the glyph-
based abstraction for multivariate data exploration. The datasets
used in our experiments are listed in Table 1. The Wine, Auto-
MPG (without the car name), Wdbc (without the ID), and Shuttle
datasets are from the UCI database [44], and are all numerical
multivariate data. The MetObs and Agent data [45] are real
application data. These datasets will be explained in the case
studies. As for the implementation, the system is developed with
C++/Qt and runs on a standalone machine. B/S framework and
distributed implementation will be attempted in the future work.

6.1 Results on Different Parameters

Two important parameters, namely, the label cost ratio o and the
expected number of clusters N,, can directly affect the abstraction
result. In this experiment, we project the Wine dataset onto
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the scatterplot using MDS. The projected result is illustrated in
Figure 9(a).

Figure 9 provides the second-level abstraction results based
on different o values when N, is set to 10. The number of
clusters decreases as ¢ increases. When « is set to 0, many small
clusters appear as indicated by the arrows in Figure 9(b). After
we gradually increase the ¢, small clusters disappear and large
ones are preferred. In real applications, & can be set depending
on the application requirements of either obtaining an overview of

(a) Cluster 0 Cluster 1 I cluseer 2 Cluster 3
wes 56 205 0.60 1600
—— e e
ies 0.7 0.6 013 218
Alcohol Malic_acid Alealinity_of_ash Honflavanoid_phenols FProline
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Fig. 7. Parallel coordinate design. (a) Visualization and comparison of
detailed cluster data. (b) Band-based visualization for intuitive compari-
son among clusters.

TABLE 1
Datasets Used in Experiments
Dataset Type Record  Variable Projection
Wine Numerical 178 14 MDS
Auto-MPG  Numerical 290 8 MDS/t-SNE
Wdbc Numerical 569 31 MDS
Shuttle Numerical 14500 10 t-SNE
MetObs Geospatial 2776 7 Lon/Lat
Agent Geospatial 51274 6 Lon/Lat

the data through large clusters or detecting possible data outliers
through small clusters.

Figure 10 provides the second-level abstraction results based
on different N, values when « is set to 1.0. The number of clusters
increases as N, increases. However, the number does not increase
linearly with N, because the cost functions help adaptively control
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the number of clusters for the abstraction. N, can be set in
accordance with the complexity of the data (e.g., number of
variables) and the screen resolutions in real applications. If the
number of variables is small and the glyph is sufficiently simple,
then a high value for N, can be selected. In all the following

experiments, ¢ is set to 1.0, which works effectively in most of
our experiments. N, is set to 10 except for the agent simulation
data wherein Ny is 40.

6.2 Data Abstraction Quality

We adopt the nearest neighbor measure as the data abstraction
quality metric to evaluate the usability of the method numer-
ically [21]. The metric uses square error to measure the data
abstraction quality in multiresolution visualization. This objective
is in line with the general goal of data clustering, that is, to
minimize within-cluster variation.

We use the Wine, Auto-MPG and Wdbc datasets for the test. In
our experiments, we first linearly normalize each of the variable
in the dataset into the range of [0,1] and then project the data
onto 2D scatterplots using MDS. For comparison, we use NCuts
and hierarchical clustering with centroid linkage in the system.
As for comparison with other classical methods, such as k-means
and expectation maximization, Delong et al. [2] provided detailed
discussion on the differences among them. For example, they
stated that k-means minimizes a special case of the cost as shown
in Equation 6, but the multilabel optimization can automatically
remove unnecessary models from the initial set of label proposals.

In our experiments, we first generate the hierarchical data
structure using the top-down clustering and the NCuts method
through preprocessing with a threshold of 0.1 for data SD. Then,
the structure is traversed to achieve the different levels of ab-
straction for the data, and the results are plotted. We also set the
expected number of clusters (a number sequence of [1,2,4,...],
with an increasing rate of 2) that remains in the hierarchical
clustering, and the corresponding average square error is calcu-
lated. The results of the Auto-MPG, Wine, and Wdbc datasets
are shown in Figure 8. In this figure, the x-axis is the number of
the abstracted clusters whereas the y-axis is the average square
error. The plots clearly show that the average square error via
the multilabel optimization is frequently smaller than or similar to
those obtained via NCuts. The multilabel optimization also usually
performs better than the hierarchical clustering when the number
of clusters is small. However, the hierarchical clustering usually
provides better results when the cluster number increases. One
main reason for this result is that the high-level clusters in the top-
down clustering have defined boundaries for the low-level clusters.
As a result, low-level clusters of low abstraction quality appear
near the boundaries, which can be solved by assigning high values
for both label cost ratio & and expected number of clusters N,
for the clustering. Then, the maximum level of the hierarchy will
decrease and few boundaries will be introduced in the top-down
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clustering. However, this condition will result in a large number of
clusters in high level abstractions. In real applications, we suggest
using the view-dependent clustering in exploring multivariate data
to avoid predefined boundaries and ensure the abstraction quality.

(a) MDS Result

(o O

g

¢
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(d) Multilabel optimization

Fig. 12. Cluster comparison for the Wine dataset. (a) Initial projection.
(b) Hierarchical clustering result with six clusters. (c) NCuts result with
eight clusters. (d) Multilabel optimization result with six clusters.

We also investigate the clustering results by visually compar-
ing them. For example, Figure 12 shows the results for the Wine
dataset. We use different colors as the background to indicate
which cluster each data point belongs. Figure 12(d) shows the
second-level results of six clusters from the multilabel optimiza-
tion. Correspondingly, we generate the same six-cluster result
via hierarchical clustering. For NCuts, we select the fourth-level
results of eight clusters instead, because NCuts only generates
the binary clustering results. The results indicate that hierarchical
clustering generates many small clusters that only contain one

or two points, as indicated by the black arrows in Figure 12(b).
This problem was also discussed by Chen et al. [46] when
they constructed an overview for a dendrogram, which required
additional effort to handle it. This issue is also the reason why
hierarchical clustering usually performs worse than the multilabel
optimization when the clustering number is small. For NCuts,
some clusters that are not visually proper may exist, such as the
cluster indicated by the black rectangle in Figure 12(c), because
NCuts segments data in a binary manner. The comparison results
show that the multilabel optimization method can be effectively
applied to generate abstractions for a multivariate scatterplot.

6.3 Meteorological Observation Data

@ . IC (b) Ev\
— T )—— Y,
WD/ \ /

WS D

Fig. 13. Indicators for the glyph. (a) Indicator for the meteorological data
case. (b) Indicator for the agent simulation data case.

In this subsection, we provide an example of geospatial multi-
variate point data. The data include meteorological observations
on April 16, 2013 collected from weather stations distributed
in Asia, Europe, and Africa. The data also include numerous
variables, from which we select the longitude, latitude, cloud
amount (C), low-level cloud amount (LC), wind direction (WD),
wind speed (WS), and temperature (T) by excluding variables that
exhibit considerable data loss.

We first project the data onto a map based on the longitude and
latitude, as shown in Figure 11. Each point on the map represents
a data record from a weather station, and we obtain a total of 2776
data records in the dataset. Each axis represents a variable in the
data, as illustrated in Figure 13(a). We can obtain a clear overview
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based on Z-Glyph.

of the multivariate data through the radar glyph, as shown in
Figure 11(a). For example, T increases from north to south, as
indicated by the three arrows in Figure 11(a). All three clusters
show high standard deviations in LC, whereas the most northern
cluster presents a lower SD in C compared with that of the two
others. This comparison can be conducted among different data
clusters which are distributed on the entire map. Moreover, we
can easily detect a cluster with mean values that differ much from
others, as indicated by the black arrow in Figure 11(b). The cluster
possesses lower LC and WS than the other clusters. The small
differences among clusters can also be easily discovered through
the glyphs. Thereafter, we can zoom in to explore much detailed
data. For example, Figure 11(c) shows the data in middle China.
The data in the southern areas differ from those in the northern
areas. The southern areas present higher C and LC values than
do the northern areas. Meanwhile, we can easily detect the small
differences among clusters through the glyphs, as indicated in the
black rectangle in Figure 11(d). However, carefully comparing the
glyphs in Figure 11(c) requires much effort.

6.4 Agent Simulation Data

The agent simulation data describe the action of agents during a
evacuation in an urban area. They are time series and multivariate
data that describe the status of an agent during the evacuation.
In this experiment, we only use the data from one of the time
steps. The data contain 51274 agents distributed on a map and five
attributes, namely x position, y position, velocities (V), effective
velocity ratio (EV) and distance (D). The x and y positions indicate
where an agent is located on the map. We set N, to 40 in this
example because the number of variables is small.

Similar to the meteorological data case, we also first project
the data on the basis of their positions, as shown in Figure 14.
Each point on the map represents an agent data. Given that the
number of the points is large, the clutter problem occurs. Thus,
we can barely obtain a clear view of all data points on the map.
However, Figure 14(a) can effectively provide an overview for

the multivariate data distribution. The relationship between the
axes and the variables is indicated in Figure 13(b). We can easily
locate a cluster of high SDs, as indicated by the black arrow in
Figure 14(a). Another cluster with mean values that differ from
those of others can also be efficiently detected, as indicated by
the black arrow in Figure 14(b). Thereafter, we can zoom into a
smaller area. Figure 14(c) provides a detailed view of the area
indicated by the arrow in Figure 14(a). Then, we can find that
the high SDs in this area are attributed to two types of agents
distributed in different environments, as indicated by the arrows
in Figure 14(c). One type of agents is distributed on the main
street, and these agents have high V and EV; the other type is
distributed in the residential area. The evacuation speed is low
owing to obstacles, such as the houses. Z-Glyph can be used
to detect the small differences among clusters. For example, the
differences between the two clusters indicated by the arrows in
Figure 14(d) can be compared easily. However, this task is difficult
in Figure 14(c). Although these two clusters of agents both lay on
the main street, they still have differences in V and D. Through
such a view-dependent LOD exploration, users can easily obtain a
clear understanding of the data.

6.5 SOl Examples

In this subsection, we provide examples to show the usage of the
glyph-based abstraction in analyzing SOIs on scatterplots.

6.5.1 The UCI Auto-MPG Dataset

In this experiment, we use the UCI Auto-MPG dataset. The dataset
contains 290 records and 8 numerical variables after we remove
the variable of car name. The t-SNE is used to project the dataset
onto the scatterplot. An interesting shape appears in the projection,
as shown in Figure 15(a). This shape represents some underlying
data relationships in the dataset. However, no intuitive methods are
available to analyze such an SOI apart from selecting small sets
of points iteratively and comparing them. With the glyph-based
abstraction and the table lens, we can easily select the sequence
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Fig. 15. The UCI Auto-MPG Data Case: (a) The glyph-based abstrac-
tion for the whole dataset and selected sequence of clusters. (b) The
corresponding table lens for the selected clusters.
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of clusters, as highlighted in Figure 15(a). The corresponding
variable values of the clusters are visualized in the table lens, as
shown in Figure 15(b). From the table lens, we can easily conclude
many possible variable relationships. For example, the mpg may
present a negative correlation with the weight. Additional detailed
analysis can be conducted to confirm this conclusion.

This case shows that the scatterplot and the glyph-based
abstraction can provide an intuitive guide for users to explore the
multivariate data. The SOIs on the scatterplot and the view coor-
dination between the scatterplot and the table lens can effectively
assist users in detecting possible data relationships.

6.5.2 The UCI Shuttle Dataset
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Fig. 16. The UCI Shuttle Dataset Case: (a) An overview of the Shuttle
dataset. (b) A glyph-based abstraction for a subset of points in the
dataset and a sequence of selected clusters. (c) The corresponding
table lens for the selected clusters.

The UCI shuttle dataset contains 14500 records and 10 vari-
ables. The scatterplot generated with t-SNE is shown in Fig-
ure 16(a). Many small clusters of points can be detected from
the projection. Then, we can look into a small cluster, which
is indicated by the red circle in Figure 16(a). A glyph-based
abstraction for this cluster is provided in Figure 16(b). We can
select the sequence of clusters and analyze the data relationship
represented by the SOI of the cluster. The corresponding table
lens is provided in Figure 16(c). From the table lens, we conclude
that v8 may exhibit a positive correlation with v9 and a negative
correlation with v5. Similar analysis can be drawn for other small
clusters. The scatterplot provides an overview of the dataset; thus,
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a subset of the dataset with the glyph-based abstraction can be
analyzed easily.

6.6 User Study and Feedback
6.6.1 User Study for Glyphs

A user study is carried out to compare the usability of the glyph
alternatives (Figure 6) in supporting multivariate data exploration
and analysis. The advantages and disadvantages of the bar chart-
based and the radar chart-based glyphs in visualizing multivariate
data have been extensively discussed in many previous studies.
Cao et al. [41] validated the advantage of Z-Glyph compared
with the commonly used radar glyph in detecting data outliers.
Therefore, we do not repeatedly compare them in this user study.
Moreover, we find that the glyphs in Figure 6(a) and (b) can act
similarly in helping users obtain an overview for the data through
a pilot user evaluation. Both can provide an intuitive visualization
for the mean and SD values of a cluster of data. Thus, we mainly
discuss the usability of the glyphs in detecting clusters of interest
during the data exploration.

Prior to the user study, we first generated 16 sets of data with
eight variables, by adding small perturbations to specified mean
and SD values. Thereafter, we randomly selected three sets and
added great perturbations to the mean values of three randomly
selected variables. Again, we randomly selected three other sets
and added great perturbations to the SD values of three randomly
selected variables. Then, the data were used for the subsequent
user study.

A website was developed for conveying the visualizations and
supporting users in completing related tasks in the user study. The
16 sets of data were randomly placed in a web page, as shown in
Figure 4. We provided an independent web page for each of the
glyphs in Figure 6 and for each task. Users were expected to select
three glyphs that best satisfy the task requirements during the user
study. They were asked to complete two tasks depending on the
two types of clusters which users may be interested in.

T1 Select three glyphs with higher SDs than those of the
others.

T2 Select three glyphs with mean values that differ from
those of the others.

The glyphs in Figures 6(c)-(f) did not convey the SD information;
thus, they were not employed for T1. After the users completed
the selection, we asked them to rate the usability of the glyphs for
the corresponding tasks. The rating is an interval scale between 1
and 5 with an equal interval of 1. 1 stands for the worst usability,
which means they can barely judge based on the glyph; 5 stands
for the best usability, which means they can complete the selection
very intuitively. Selection accuracies and user feedback are also
recorded after the user study.

Fifteen users participate in the user study. They were all master
or PhD students majoring in computer science and currently
performing research on visualization. They were all trained to
learn about all the glyphs and asked to conduct a test user study
with another test dataset before the formal user study. The detailed
statistics of the user study, which are mean and SD, are provided
in Table 2. We also perform dependent t-test for the results from
T1 and repeated measures analysis of variance (RM-ANOVA) for
those from T2. There is a statistically significant effect of glyphs
onrating in T1 (#(14) = —2.779, p ~ 0.015). Glyph(b) achieves an
improvement of 0.533 +0.743 in rating compared with Glyph(a).
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TABLE 2
User Study Ratings and Accuracies

Glyph T1 Accuracy T2 Accuracy
(@ BB 4264070 95.6+11.7% 3.734£0.70  93.3+18.7%
® O 4.80+041 100-£0% 2.93+1.22  75.6+40.8%
© * * 4.87+0.35 100+0%
(d * * 4.53+0.64 97.848.61%
e - * * 4.734+0.59 100£0%
® £ * * 4.87+0.35 100+£0%

However, the effect of glyphs on accuracy in T1 is not statistically
significant (#(14) = —1.468,p ~ 0.164). Overall, Glyph(b) per-
forms better than Glyph(a) in T1. Moreover, there is a statistically
significant effect of glyphs on rating (F(5,70) =20.29, p < 0.001)
and accuracy (F(5,70) = 4.609, p ~ 0.001) in T2. Post hoc tests
using the Bonferroni correction reveals that Glyphs(a) and (b)
are statistically significantly different from the other glyphs on
rating (p < 0.05) in T2. Their ratings are lower than those of
the other glyphs. Although their accuracies are not statistically
significantly different from those of the other glyphs. A few users
(2 for Glyph(a) and 5 for Glyph(b)) performed incorrect selections
in T2 with their assistance. Furthermore, Glyphs(c)-(f) all perform
well in T2 with high ratings and accuracies, whereas one user
performed an incorrect selection using Glyph(d). The differences
in their ratings and accuracies are not statistically significant
(p > 0.05).

After the formal user study, we also interviewed the par-
ticipants about their selections and collected their feedback on
the glyphs. Most of them pointed out that the color bands in
Glyph(a) and (b), which were used to encode the SDs, became
obstacles in comparing the mean values. This restriction may be
the main reason for the low rating, low accuracy and high SD
when users completed T2 with Glyph(b). Some of them pointed
out that Glyph(c) outperformed Glyph(e) in T2. The colors used
in Glyph(c) can help them clearly distinguish different variables.
This task is difficult with Glyph(e). On the contrary, Glyph(d) and
(f) can handle this problem appropriately. They used the angles
and axes to encode the different variables. Moreover, Glyph(f)
was more intuitive than Glyph(d) because the colors were used as
additional visual cues for comparison.

The statistics and the user feedback indicate that Glyph(b)
can effectively support T1, and Glyph(c) and (f) can effectively
support T2. To maintain the consistency of the glyphs in the
system, Glyph(b) and (f) are selected because they are both radar
chart-based glyphs.

6.6.2 User Evaluation for System

Eight participants were also asked to use our system and provide
feedback on its usability. They were all trained to use our system
with the Wine dataset until they were familiar with the system.
Thereafter, they were asked to complete three tasks.

T1 Describe the entire dataset in brief.

T2 Find a cluster with mean values that differ from those of
others.

T3 Find a cluster with high SDs and further explore that
cluster of data.
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TABLE 3
Time Costs of The Cases (ms)

Super Pixel Number

Dataset Raw Data 500 1000 2000
Wine 52 * * *
Auto-MPG 152 * * *
Wdbc 1042 * * *
Shuttle * 17 56 170
MetObs * 57 202 579
Agent * 68 256 897

We collected their comments on the system when they were
performing these tasks and discussed about the system with them
after they completed the tasks.

All the participants believed that the glyphs were helpful for
the LOD exploration of large scale data, as long as the clutter
problem existed. However, at the very beginning of the user study,
some of them were confused after they zoomed into detailed
data areas and new glyphs appeared. This problem disappeared
only after they familiarize themselves with the system. Some of
them suggested that percentile data should be used instead of the
mean and SD. Additional flexible control of the glyphs and their
encodings may be implemented to help improve the usability of
the system. Some of them also suggested that the system should
allow users to manually define some clusters and automatically
cluster other data. This issue is out of the scope of the current
study but will be tackled in the future.

7 DISCUSSIONS

In this section, we discuss several related problems of the method.

7.1 Performance and Scalability

A problem with the glyph-based abstraction is the performance
and scalability of the algorithm and system. The time cost for the
entire system contains three main parts, namely the projection, the
super pixel construction and the multilabel optimization. The time
cost for the projection relies on the projection method. Discussions
on the time cost can be found in related corresponding papers. The
time cost for the super pixel construction comprises the time for
the image-based mapping and the SLIC super pixel generation.
The complexity for both processing procedures is O(N), where
N is the number of data points and image pixels for the image-
based mapping and super pixel generation, respectively. This can
be completed in a very short time. Although the solution for the
multilabel optimization is heuristic and time consuming when
the number of node in the graph is large, the super pixel-based
processing significantly decreases the time cost. Detailed time
costs of the multilabel optimization for the cases in the study
are also recorded, as listed in Table 3. These time costs are the
optimization time for the entire dataset displayed in a single view.
The experiments are carried out on a desktop computer with an
Intel Core i7-3770 CPU and 32G memory. In all the experiments,
if the number of points is greater than 2000, then the super pixel-
based method is utilized; otherwise, the scatter points are directly
used in the optimization. From the table, we can find that the
optimization time is generally less than a second. With a proper
number of expected super pixels (e.g., 500 in our experiments),
the system can support interactive data exploration for even large
scale data.
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7.2 Cluster-Based Data Analysis

The clusters are used as the basis for the analysis of SOIs in our
system. Similar attempts in data mining research area have been
conducted previously. For example, Tung et al. [47] attempted
to find and visualize non-linear correlation clusters. They first
clustered the data and then visualized them to assist users in
analyzing data relationships. Alternatively, we first conduct the
projection and then cluster the data. The scatterplot works as a
guideline for users to explore the data in an LOD manner. The
use of this approach is more intuitive for the users, than directly
providing the clustering results. There is a difference between the
clustering-based visualization and our projection-based clustering.
We will try to provide detailed research and discussions on this
topic in our future work.

7.3 Curse of Dimensionality

The curse of dimensionality is a common problem for multivariate
data analysis based on data projections. Various methods have
been proposed to assist users in effectively analyzing high di-
mensional data in a low-dimensional space, such as dimension
reduction, linear or non-linear data projections and user driven
data projections [16]. Researchers have also attempted to use
several projections together to provide a full illustration for
the high dimensional data [15]. Instead of directly solving the
curse of dimensionality, our method attempts to enhance the
data analysis on the low-dimensional representations of the high-
dimensional data. Our method can be smoothly combined with
existing scatterplot-based high-dimensional data analysis methods
and helps users explore and analyze the data intuitively.

7.4 View-Dependent and Top-Down Clustering

Two types of clustering are supported in our system. They should
be selected according to the requirements in real applications.
The view-dependent clustering should be used when computing
resources are sufficiently powerful to support nearly real-time
processing of the data. This type of clustering can usually pro-
vide better abstractions of high quality than does the top-down
clustering, as discussed in Section 6.2. Meanwhile, the top-down
clustering can be used when preprocessing is required to ensure
the smooth interactions during the data exploration.

8 CONCLUSION AND FUTURE WORK

In this study, we introduce a cluster-based visual abstraction
for multivariate scatterplots. We can assist users in efficiently
obtaining an overview of multivariate data distributions on a
scatterplot and analyzing SOIs. A pair of glyphs is used in the
system to guide users in exploring the scatterplot interactively, and
the coordinated views are provided to support multivariate data
analysis. The comparison of the multilabel optimization with other
popular methods shows that this optimization method can ensure
a good data abstraction quality for the scatterplot. The usage of
the system is also demonstrated through case studies on a series of
datasets, including UCI multivariate datasets, geospatial datasets
and a volume dataset. Finally, we discuss related problems with
our system and its potential adaptations for other applications.

An existing problem with the LOD glyph-based visualization
is the appearance of popping artifacts during the zooming and
panning. This problem affects the effectiveness of our visualiza-
tion design to some degree. We will study this problem system-
atically and eliminate the artifacts in the future. Given that LOD
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abstractions for multivariate data are provided, various conclusions
can be drawn from different levels of visualizations. In our future
work, we will analyze the differences among these conclusions
and attempt to provide co-analysis methods using different levels
of abstractions.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foundation
of China (61572274, 61272225, 61502416, U1609217), National
973 Program of China (2015CB352503), Zhejiang Provincial
Natural Science Foundation (LR18F020001) and the National
Key Technologies R&D Program of China (2015BAF23B03). The
authors would like to thank the reviewers and all the other friends
who help improve the paper.

REFERENCES

[1] L. der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008.

[2] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” International journal of computer
vision, vol. 96, no. 1, pp. 1-27, 2012.

[3] S.Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci, “Visualizing
high-dimensional data: Advances in the past decade,” in State of The Art
Report. Eurographics Conference on Visualization (EuroVis), 2015.

[4] D. A. Keim, M. C. Hao, U. Dayal, H. Janetzko, and P. Bak, “Generalized
scatter plots,” Information Visualization, vol. 9, no. 4, pp. 301-311, 2010.

[S] H. Janetzko, M. C. Hao, S. Mittelstadt, U. Dayal, and D. Keim, “Enhanc-
ing scatter plots using ellipsoid pixel placement and shading,” in System
Sciences, International Conference on. 1EEE, 2013, pp. 1522-1531.

[6] M. C. Hao, U. Dayal, R. K. Sharma, D. A. Keim, and H. Janetzko,
“Visual analytics of large multidimensional data using variable binned
scatter plots,” in IS&T/SPIE Electronic Imaging. International Society
for Optics and Photonics, 2010, p. 753006.

[71 A. Mayorga and M. Gleicher, “Splatterplots: Overcoming overdraw in
scatter plots,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 19, no. 9, pp. 1526-1538, 2013.

[8] A. Inselberg and B. Dimsdale, “Parallel coordinates,” in Human-Machine
Interactive Systems. Springer, 1991, pp. 199-233.

[9] E. Kandogan, “Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions,” in Proceedings of the IEEE
Information Visualization Symposium, vol. 650. Citeseer, 2000, p. 22.

[10] P. Hoffman, G. Grinstein, K. Marx, 1. Grosse, and E. Stanley, “Dna
visual and analytic data mining,” in Proceedings of the conference on
Visualization. 1EEE Computer Society, 1997, pp. 437-441.

[11] R.Rao and S. K. Card, “The table lens: merging graphical and symbolic
representations in an interactive focus+context visualization for tabular
information,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 1994, pp. 318-322.

[12] J. E. Nam and K. Mueller, “TripAdvisor’{N-D}: A Tourism-Inspired
High-Dimensional Space Exploration Framework with Overview and
Detail,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 19, no. 2, pp. 291-305, 2013.

[13] S. Cheng and K. Mueller, “The Data Context Map: Fusing Data and
Attributes into a Unified Display,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 22, no. 1, pp. 121-130, 2016.

[14] X. Yuan, P. Guo, H. Xiao, H. Zhou, and H. Qu, “Scattering points
in parallel coordinates,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 15, no. 6, pp. 1001-1008, 2009.

[15] D. Lehmann and H. Theisel, “Optimal Sets of Projections of High-
Dimensional Data,” Visualization and Computer Graphics, IEEE Trans-
actions on, vol. 22, no. 1, pp. 609-618, 2016.

[16] H. Kim, J. Choo, H. Park, and A. Endert, “InterAxis: Steering Scatterplot
Axes via Observation-Level Interaction,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 22, no. 1, pp. 131-140, 2016.

[17] S. Liu, B. Wang, J. J. Thiagarajan, P.-T. Bremer, and V. Pascucci,
“Visual exploration of high-dimensional data through subspace analysis
and dynamic projections,” Computer Graphics Forum, vol. 34, no. 3, pp.
271-280, 2015.

[18] R.Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser,
M. Ward, and M. Chen, “Glyph-based visualization: Foundations, design
guidelines, techniques and applications,” Eurographics State of the Art
Reports, pp. 39-63, 2013.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

T. Ropinski, S. Oeltze, and B. Preim, “Survey of glyph-based visual-
ization techniques for spatial multivariate medical data,” Computers and
Graphics, vol. 35, no. 2, pp. 392-401, 2011.

Y. Albo, J. Lanir, P. Bak, and S. Rafaeli, “Off the radar: Comparative
evaluation of radial visualization solutions for composite indicators,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 22,
no. 1, pp. 569-578, 2016.

Q. Cui, M. O. Ward, E. A. Rundensteiner, and J. Yang, “Measuring data
abstraction quality in multiresolution visualizations,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 12, no. 5, pp. 709-716,
2006.

E. Bertini, A. Tatu, and D. Keim, “Quality metrics in high-dimensional
data visualization: An overview and systematization,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 17, no. 12, pp. 2203—
2212, 2011.

E. Bertini and G. Santucci, “By chance is not enough: preserving relative
density through nonuniform sampling,” in Proceedings of the eighth
international conference on Information Visualisation, July 2004, pp.
622-629.

G. Ellis and A. Dix, “Enabling automatic clutter reduction in parallel
coordinate plots,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 717-723, 2006.

H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-
L. Ma, “Visual Abstraction and Exploration of Multi-class Scatterplots,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 20,
no. 12, pp. 1683-1692, 2014.

M. Kreuseler, N. Lopez, and H. Schumann, “A scalable framework for in-
formation visualization,” in Information Visualization. IEEE Symposium
on. IEEE, 2000, pp. 27-36.

B. Heckel, G. Weber, B. Hamann, and K. I. Joy, “Construction of vector
field hierarchies,” in Proceedings of the conference on Visualization.
IEEE Computer Society, 1999, pp. 19-25.

A. Telea and J. J. Van Wijk, “Simplified representation of vector fields,”
in Proceedings of the conference on Visualization. ~IEEE Computer
Society, 1999, pp. 35-42.

Q. Du and X. Wang, “Centroidal Voronoi tessellation based algorithms
for vector fields visualization and segmentation,” in Proceedings of the
conference on Visualization. 1EEE Computer Society, 2004, pp. 43-50.
Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Structure-based
brushes: A mechanism for navigating hierarchically organized data
and information spaces,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 6, no. 2, pp. 150-159, 2000.

Z. Peng and E. Grundy, “Mesh-driven vector field clustering and vi-
sualization: An image-based approach,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 18, no. 2, pp. 283-298, 2012.

M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt, “Interactive
level-of-detail rendering of large graphs,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 18, no. 12, pp. 2486-2495, 2012.
M. Balzer and O. Deussen, “Level-of-detail visualization of clustered
graph layouts,” in Visualization. International Asia-Pacific Symposium
on. IEEE, 2007, pp. 133-140.

J. Abello, F. Van Ham, and N. Krishnan, “Ask-graphview: A large scale
graph visualization system,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 669-676, 2006.

D. Battista, P. Eades, I. G. Tollis, and R. Tamassia, Graph drawing:
algorithms for the visualization of graphs. Pearson, 1998.

Y. Zhou, O. Grygorash, and T. F. Hain, “Clustering with minimum
spanning trees,” International Journal on Artificial Intelligence Tools,
vol. 20, no. 01, pp. 139-177, 2011.

I. Herman, G. Melancon, and M. Marshall, “Graph visualization and
navigation in information visualization: A survey,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 6, no. 1, pp. 24-43,
2000.

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 23, no. 11, pp. 1222-1239, 2001.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk, “SLIC
Superpixels,” EPFL, Tech. Rep., 2010.

C. Y. Ip, A. Varshney, and J. JaJa, “Hierarchical Exploration of Volumes
Using Multilevel Segmentation of the Intensity-Gradient Histograms,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 18,
no. 12, pp. 2355-2363, 2012.

N. Cao, Y.-R. Lin, D. Gotz, and F. Du, “Z-glyph: Visualizing outliers in
multivariate data,” Information Visualization, vol. 0, no. 0, pp. 0-0, 0.
[Online]. Available: http://dx.doi.org/10.1177/1473871616686635

B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. Rodgers, “Visualizing sets and set-typed data: State-of-the-art and fu-

[43]

[44]

[45]

[46]

[47]

14

ture challenges,” in Eurographics conference on Visualization (EuroVis)—
State of The Art Reports, 2014, pp. 1-21.

M. Ankerst, S. Berchtold, and D. A. Keim, “Similarity clustering of
dimensions for an enhanced visualization of multidimensional data,” in
Information Visualization. IEEE Symposium on. 1EEE, 1998, pp. 52-60.
M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

M. Wijerathne, L. Melgar, M. Hori, T. Ichimura, and S. Tanaka, “Hpc
enhanced large urban area evacuation simulations with vision based
autonomously navigating multi agents,” Procedia Computer Science,
vol. 18, pp. 1515-1524, 2013.

J. Chen, A. M. MacEachren, and D. J. Peuquet, “Constructing overview+
detail dendrogram-matrix views,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 15, no. 6, pp. 889-896, 2009.

A. K. H. Tung, X. Xu, and B. C. Ooi, “Curler: finding and visualiz-
ing nonlinear correlation clusters,” in Proceedings of the international
conference on Management of data. ACM, 2005, pp. 467-478.

Hongsen Liao received the B.S. degree in Com-
puter Software from Tsinghua University, Bei-
jing, China. He is currently pursuing the Ph.D.
degree from the School of Software, Tsinghua
University, Beijing, China. His research interests
include scientific visualization and visual analyt-
ics.

Yingcai Wu is an assistant professor at the
State Key Lab of CAD & CG, Zhejiang University,
Hangzhou, China. He received his Ph.D. de-
gree in Computer Science from the Hong Kong
University of Science and Technology (HKUST).
Prior to his current position, Yingcai Wu was
a researcher at the Internet Graphics Group
in Microsoft Research Asia, Beijing, China. His
primary research interests lie in visual behavior
analytics, visual analytics of social media, visual
text analytics, uncertainty-aware visual analyt-

ics, and information visualization. For more information, please visit
http://www.ycwu.org.

Li Chen received the Ph.D. degree in visual-
ization from Zhejiang University, China, in 1996.
She is currently an Associate Professor with the
Institute of Computer Graphics and Computer
Aided Design, School of Software, Tsinghua
University, China. Her research interests include
data visualization, image processing, and paral-
lel algorithm.

Wei Chen is a professor at the State Key
Lab of CAD & CG, Zhejiang University. Profes-
sor Chen received his PhD from the Zhejiang
University in 2002. His research interests in-
clude visualization, visual analytics, and biomed-
ical image computing. Professor Chen presently
serves on the steering committee of IEEE Paci-
ficVis. For more information, please refer to
http://www.cad.zju.edu.cn/home/chenwei.





