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Exploring Evolution of Dynamic Networks
via Diachronic Node Embeddings

Jin Xu, Yubo Tao, Yuyu Yan, and Hai Lin

Abstract—Dynamic networks evolve with their structures changing over time. It is still a challenging problem to efficiently explore the
evolution of dynamic networks in terms of both their structural and temporal properties. In this paper, we propose a visual analytics
methodology to interactively explore the temporal evolution of dynamic networks in the context of their structure. A novel diachronic
node embedding method is first proposed to learn latent representations of the structural and temporal features of nodes in a vector
space. Diachronic node embeddings are then used to discover communities with similar structural proximity and temporal evolution
patterns. A visual analytics system is designed to enable users to visually explore the evolutions of nodes, communities, and the
network as a whole in terms of their structural and temporal properties. We evaluate the effectiveness of our method using artificial and
real-world dynamic networks and comparisons with previous methods.

Index Terms—Graph/Network Data, Data Transformation and Representation, Sequence of Data, Dimensionality Reduction

1 INTRODUCTION

ETWORKS describe the relationships between objects,
Ne.g., social relationships within a group of friends,
conversations and interactions within a population, and
collaborations of researchers in publication records. Because
network structures evolve over time, uncovering the struc-
tural properties in a single timestep, such as communities
and centrality, as well as temporal properties over time, such
as temporal patterns and shifts, can provide insights into the
dynamic network evolution. For instance, the structure of a
collaboration network may evolve over time, as some new
research fields emerge and/or others disappear. Meanwhile,
a researcher’s collaboration relationships also evolve over
time as he/she leaves and joins research fields. Under-
standing the temporal patterns of researchers’ collaboration
relationships in the context of the evolutionary structure
can reveal their career development patterns. However,
one of the biggest challenges in dynamic network analysis
and visualization is finding the optimal trade-off between
revealing the structural properties in any timestep and the
temporal properties over time [1], [2].

Previous works can be summarized into three cate-
gories [3]: (a) animation-based methods that flip through
snapshots (a network in one timestep) and highlight
changes between adjacent timesteps, (b) timeline-based
methods that juxtapose snapshots into the same view ac-
cording to the timeline, and (c) projection-based methods
that characterize network structures with representations in
a vector space and then project these representations for
automatic detection and summarization. Animation-based
methods are adequate to show the structure of each snap-
shot but inadequate to track the temporal patterns over a
long time period. With timeline-based methods, it is difficult
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to determine the number of snapshots, as few snapshots
may lack temporal details, but many snapshots may result
in a loss of structural details. Furthermore, these two types
of methods rely on human cognition ability. Projection-
based methods have been proven successful in the temporal
evolution characterization of networks, but they fail to de-
pict the structural properties simultaneously. It is essential
to interpret how the network evolves while maintaining
the overview of network structures [4]. Currently, there is
a lack of projection-based methods for characterizing and
presenting both the structural and temporal properties for
network evolution analysis. Moreover, communities with
similar temporal patterns are not fully considered in pre-
vious works, but are vital for summarizing the temporal
properties of the evolution of dynamic networks and reduce
the cognitive burden of visual clutter in dynamic network
analysis and visualization.

To this end, we aim to summarize the temporal evolution
in the context of network structures and support the ex-
ploration from the node, community, and network levels to
facilitate comprehensive dynamic network analysis. For the
first requirement, the node representations should preserve
not only the structural proximity of nodes in each timestep
but also the temporal continuity of nodes across time.
Moreover, it is desirable to generate robust representations
in the presence of noise. For instance, a node may have
similar structural characteristics across time with different
but similar neighbors, such as neighbors that belong to
the same community. To meet these needs, we introduce
node embeddings based on neural networks into dynamic
network analysis and visualization for the first time. Owing
to their effectiveness in capturing the structural characteris-
tics of nodes, i.e., neighborhood similarity and community
membership, node embeddings make the robust detection
in static networks viable [5], [6]. However, node embeddings
have not been fully explored to preserve temporal continu-
ity for the visual analysis of dynamic networks. We rely
on neural networks and embedding alignment to generate
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node embeddings, representing nodes as dense vectors in a
high-dimensional vector space with both the structural and
temporal features preserved. These generated node embed-
dings are called diachronic node embeddings in this paper.
For the other requirement, because the generated diachronic
node embeddings can characterize node evolutions, we can
cluster diachronic node embeddings to extract communities
from the structural and temporal properties. From these
two requirements, our method is novel and provides new
insights for dynamic network analysis.

In this paper, we propose a novel visual analytics
methodology based on diachronic node embeddings for
identifying the structural and temporal properties of nodes,
communities, and networks. A diachronic node embedding
generation method is first proposed to represent each node
as a sequence of dense vectors in a high-dimensional vec-
tor space. To exploit diachronic node embeddings, a node
classification method is introduced to identify dynamic and
stable nodes, and two clustering methods are provided
to cluster nodes with structural properties to uncover the
structure of the network as well as temporal properties to
summarize the temporal evolution of the network. Based
on the proposed methodology, we design an interactive
visual analytics system to enable users to effectively explore
the temporal evolution of dynamic networks in the context
of their structural properties. Two new visual designs are
proposed: a stream-based design for showing an overview
of the temporal evolution in the context of the structure, and
a mapping time-to-color glyph for exploring the dynamic
network in a specific time period.

In summary, this paper offers three main contributions:

e A diachronic node embedding generation method
is proposed to represent the structural characteris-
tics of each node in each timestep as a point in a
high-dimensional vector space while preserving the
structural proximity in the network and the temporal
consistency of stable nodes over time.

e Two diachronic node-embedding-based clustering
methods, which cluster nodes with similar structural
and temporal properties, are provided for the ex-
ploration of dynamic networks from the community
level.

e An interactive visual analytics system based on our
methodology enables users to intuitively explore dy-
namic network temporal evolution in the context of
the structure.

2 RELATED WORK

As our work is a node-embedding-based visual analytics
methodology for dynamic networks, we review related
works from two perspectives: node embedding and dy-
namic network visualization.

2.1 Node Embedding

Node embedding represents the nodes of a network as
vectors in a vector space and is of broad use in network
analysis. It converts network analysis into the analysis of
low-dimensional vectors and makes machine learning mod-
els applicable to tasks such as node classification, clustering,
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and link prediction [7]. These representations can be viewed
as encoding or projecting nodes into a latent space, where
geometric relations in the latent space correspond to con-
nections in the original network [8].

Early methods of node embedding typically exploited
the spectral properties of various matrices representing the
connections of nodes in a network, such as a node adja-
cency matrix, Laplacian matrix, node transition probability
matrix, and Katz similarity matrix. They would construct a
similarity graph for a set of high-dimensional points based
on the neighborhood, and nodes in the graph are embed-
ded in a low-dimensional vector space where connected
nodes are closer to each other. Laplacian eigenmaps [9]
and Locally Linear Embedding (LLE) [10] are examples of
algorithms based on this rationale. From the linear algebra
perspective, these methods can be considered as dimension-
ality reduction techniques, and hence several linear and
nonlinear dimensionality reduction methods are capable
of node embedding, such as PCA [11] and IsoMap [12].
However, these methods have limited scalability and are
time-consuming [7]. Moreover, they are not robust to the
diverse patterns observed in networks [6].

Recent advances in distributed representation learning
for natural language processing (NLP) have inspired the
development of feature learning of discrete objects such
as words. Particularly, Mikolov et al. [13] proposed a neu-
ral language model, called the Skip-Gram model, to learn
distributed feature representations for words. A surge of
research based on these neural language models has been
proposed to generate node embeddings. Aiming to repre-
sent a network as a “document” composed of an ordered
sequence of words, these techniques generally sample walks
of nodes from the underlying network and turn a network
into an ordered sequences of nodes. Perozzi et al. [5] first de-
veloped a random-walk-based method, DeepWalk, to learn
representations for nodes by generalizing neural language
models to preserve the higher-order proximity between
nodes. Walklets [14], focusing on multiscale representation
learning, modified the random walk strategy in DeepWalk
by skipping over some nodes in the network. Node2vec [6]
introduced biased random walks to smoothly interpolate
between walks that are more akin to breadth-first or depth-
first searching to preserve the community structure and
structural equivalence between nodes.

These methods focused on node embedding for static
network analysis. For dynamic networks, we propose a
novel method to generate diachronic node embeddings
based on node embeddings and alignment, which is intro-
duced into dynamic network analysis and visualization for
the first time.

2.2 Dynamic Network Visualization

Dynamic network visualization has been extensively stud-
ied for a long time. There are three major visual methods:
animation, timeline, and projection-based methods.
Animation-based methods flip through snapshots [15].
Each snapshot is usually visualized based on node-link
diagrams [16] to show its structural properties. The key
idea of these methods is to allow users to better preserve
a mental map in each snapshot [17], [18]. Animation tech-
niques are desirable to reduce the complexity of dynamic
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networks to facilitate visualizing the structure of networks,
but are inadequate to support detailed network analysis and
interpretation of temporal properties [17].

Timeline-based methods display snapshots in any
timestep in a static image. This allows these methods to
provide a better temporal overview of dynamic networks.
Some timeline techniques leverage small multiples that gen-
erate snapshots in every timestep, and matrices [19], node-
link diagrams [20], and node-link based diagrams [21] have
been used for snapshot structure presentation. For small
multiples, it is difficult to determine the number of multiples
in the visualization, as larger images show more structural
properties of the network in each timestep, but more tempo-
ral properties can be revealed when using smaller images.
Other approaches based on node-link diagrams incorporate
the timeline into the diagram [1]. These methods make the
changes in edges over time stand out. For example, Burch et
al. [4] leveraged a bipartite graph layout to place nodes with
fixed vertical positions and computed a scalar density field
to aggregate overlapping edges and provide an overview
of very long graph sequences. These methods are capable
of temporal property visualization, but temporal pattern
discovery is limited by human cognition.

For automatic summarization, recent efforts try to con-
vey graph or node representations for visualization. Van
den Elzen et al. [22] reduced snapshots to points in a high-
dimensional vector space by deriving representations of
snapshots from adjacency matrices and projected snapshots
to the 2D space for network state discovery. Dal Col et al. [3]
represented nodes by the coefficients of graph wavelets for
evolutionary local change discovery. These methods can
present a summary of the temporal evolution of networks,
but it is difficult to understand the temporal evolution as
they fail to interpret temporal patterns in the context of
the structure. Our method stems from the observations of
the above projection-based methods. Most works do not
adequately consider the simultaneous summary of the struc-
tural and temporal properties of dynamic networks, and
the summary is able to bridge the gap between exploring
the structural and temporal properties. Cui et al. [2] fo-
cused on the same challenge as this paper and proposed
a new toolkit for capturing temporal patterns of a group
of nodes while maintaining network structures. However,
this method needs the node category information. We ex-
ploit diachronic node embeddings for better structural and
temporal property preservation and design a system for the
interactive evolutionary exploration of dynamic networks.

Furthermore, in order to facilitate detection of the struc-
ture in any timestep and temporal patterns over time,
clustering methods are incorporated into our methodology.
Various methods have been proposed to find community
structures in any timestep [23], such as random-walk-based
methods [24], [25]. We employ a k-means-based method
to characterize the community structures in stable states.
In contrast, there are few works concerning communities
with similar temporal patterns. Most previous methods
extract community structures and focus on the emergence of
communities over time [26], [27], [28]. However, community
detection with similar temporal patterns is also vital. A new
method based on diachronic node embeddings is proposed
in this paper to detect temporal communities.

3 OVERVIEW

The proposed visual analytics methodology enables an inte-
grated exploration of evolution from the node, community,
and network levels to help analysts understand the struc-
tural and temporal properties of dynamic networks. As our
method is based on node embeddings, it involves two main
issues: 1) how to generate diachronic node embeddings
that are able to preserve both high-order proximity and
temporal consistency and 2) how to use diachronic node
embeddings to analyze the evolution of nodes, communi-
ties, and networks. Fig. 1 shows the high-level workflow of
our methodology.

At the dynamic network construction stage, we first
produce a temporal sequence of snapshots from the dy-
namic network data (A). Next, temporal node embeddings
are generated by a neural language model, and the struc-
tural characteristics of each node in each snapshot are then
represented by a point in a high-dimensional vector space
with geometric relationships reflecting the structure of the
original snapshot (B). Because the generated temporal node
embeddings of each snapshot are not in a common vector
space owing to the randomness of representation learning,
we apply an embedding alignment method to align the
temporal node embeddings, and then diachronic node em-
beddings are generated to represent the evolution of each
node. These diachronic node embeddings efficiently convert
the evolutions of nodes into high-dimensional trajectories
chronologically through their corresponding points (C).

In order to exploit the diachronic node embeddings to
facilitate the exploration of the structural and temporal
properties from the node, community, and network levels,
we provide three methods: node classification (D), structural
node clustering (E), and temporal trajectory clustering (F).
Because the comparison of the diachronic node embeddings
is reduced to simple vector operations between two corre-
sponding points in a vector space, the node classification
method classifies a node as a dynamic or stable node by
identifying whether it has significant changes indicated by
the proximity between its diachronic node embeddings in
adjacent timesteps. Structural node clustering groups stable
nodes into communities where they have close relationships
measured by the proximity between their diachronic node
embeddings in a time period. Temporal trajectory cluster-
ing discovers communities of all the nodes with similar
temporal patterns according to the proximity between their
evolutionary trajectories.

Finally, we design a visual analytics system to explore
the evolutions of nodes, communities, and networks via
dimensionality reduction and time mapping methods (G).

4 DiIACHRONIC NODE EMBEDDINGS

This section introduces the generation of diachronic node
embeddings, including dynamic network construction, em-
bedding generation, and alignment.

4.1 Dynamic Network Construction

Dynamic networks generally contain timestamped activi-
ties, e.g., email communication files. We model a dynamic
network as a sequence of 1" snapshots, where each snapshot
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Fig. 1: Workflow of our methodology. We first extract a sequence of snapshots from the dynamic network data (A). Next,
diachronic node embeddings are produced based on node embeddings (B) and embedding alignment (C). Then, we provide
three methods: node classification (D), structural node clustering (E), and temporal trajectory clustering (F), to facilitate the
analysis of these evolutions of nodes and communities. Finally, the structural and temporal properties can be interactively
analyzed via dimensionality reduction and time mapping methods (G).

is a directed or undirected graph G; = (Vi, Ey,t) and
T is the number of timesteps. The snapshot, G¢, has an
associated time-window [t; — w/2,t; + w/2) with the width
w. We assume that t;; — t; = At is equidistant for all ¢
and At can be set to any time period, usually representing
weeks, days, hours, etc. The graph edge set, £, consists of
all the edges during the time window. We simply set the
number of occurrences of an edge in the edge set as the
weight of the edge in snapshot G;. The node set, V}, is the
union of the nodes that occur in the edge set.

Because the effectiveness of our method would decrease
when missing patterns of the dynamic network owing to
the hard boundaries, we allow time-windows to overlap
with neighboring time-windows. For example, we create a
snapshot every 7 days (At), and the time-window width w
can be chosen larger than 7 days, such as 14 days.

4.2 Embedding Generation

We generate node embeddings to represent the structural
characteristics of nodes in each snapshot. Learning embed-
dings for nodes has been widely studied in static network
analysis as discussed in Section 2.1, while they have not
been fully explored for the visual analysis of dynamic
networks. We propose a novel method to generate temporal
node embeddings based on a neural language model.

A neural language model embeds words in a high-
dimensional vector space. Since the Skip-Gram model [13]
has been widely used in node embedding generation, we
adopt this model to learn node embeddings. We first pro-
vide an overview of the Skip-Gram model, and then illus-
trate the adaptation of the Skip-Gram model for temporal
node embeddings generation.

4.2.1 Skip-Gram Model

The Skip-Gram model is trained by a large amount of text to
produce high-dimensional representations of words incor-
porating both syntactic and semantic information. The Skip-
Gram model uses the given word to predict the surrounding
words.

In particular, a training corpus is a sequence of sentences
composed of training words that belong to a vocabulary V
whose size is |V|. The context of a word consists of both the
n words before and after the target word w; in a sentence
and the context-window size is 2n + 1. We associate word
w; € V with a vector z,, € R?% and context w; with a
vector Z,, € R? where d << |V|. The Skip-Gram model
tries not only to maximize the occurrence probability of
word pairs (w;,w;) that occur in the training corpus, but
also to minimize the occurrence probability of any other
word pair (w;,w,,) that does not occur in the training
corpus. To reduce the time complexity, “negative sampling”
is applied to randomly draw w;,, from some distribution P,
which is typically viewed as the unigram distribution over
V (normalized word counts) [29]. Therefore, the objective
function is defined as follows:

V|
(log (0 (2, Zuiy;)) + N (2w,))),

MZ 2

i=1 —nj<n,#0

@
N(z) = Z(]E P(1 = log(o(2"24)))), @

where M is the number of negative samples for each word
(usually between 5 and 20) and o is the sigmoid func-
tion o(x) = m. The first term encourages word-
contexts that co-occur to have a high likelihood, and are
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consequently close in the embedding, whereas the second
term N (z) encourages words to be sufficiently distinct from
randomly drawn contexts, and consequently far apart in the
embedding.

4.2.2 Temporal Node Embedding Generation

Algorithm 1 Generation(Gy, 7,1, n, d)

Input:
snapshot G(V;, Ey,t), walks per node r, walk length !
context-window size 2n + 1, node embedding size d
Output:
matrix of node embeddings U; € RIV:Ix4
: walks = Empty
: fori =0tordo
O = Shuf fle(Vs)
for each v; € O do
walk = WeightedRandomWalk (G, v;, 1)
Append walk to walks
end for
: end for
: if t == 0 then
Initialize U; randomly
: else
Up = Ui
: end if
: SkipGram(Uy, walks, n)

D AR R o

N e =~

The basic idea of neural-model-based methods for static
networks is to take nodes as words and random walks as
sentences in a document, and then apply the Skip-Gram
model to process the set of random walks to generate node
embeddings. Thus, there are two components, the random
walk generation and the Skip-Gram algorithm. Owing to
the different objectives, various walk-strategy-based meth-
ods have been proposed, such as DeepWalk [5] based on
unbiased random walks and node2vec [6] based on biased
random walks. As our goal is to preserve the higher-order
proximity between nodes and temporal continuity of nodes,
we extend DeepWalk to dynamic networks.

The pseudocode is given in Algorithm 1. For each node
in every snapshot, we generate r random walks with a fixed
length [. For weighted networks, we replace the random
walk strategy in DeepWalk with a weighted-random-walk
strategy to control the likelihood of visiting a neighbor
node according to the weight of the edge (lines 1-8). This
would better preserve the community structure in weighted
networks. These walks are treated as sentences.

For the walks of each snapshot, we apply the Skip-Gram
model to learn node embeddings with the same objective
function as in Equations 1 and 2. The node embeddings are
generally initialized randomly in static networks. However,
to preserve the temporal continuity of the node embeddings
for dynamic network analysis, we initialize the node embed-
dings U; in the snapshot G (¢ > 0) with the generated node
embeddings U;_; of G;_; (lines 9-14).

Based on the experimentation in DeepWalk, the number
of walks per node r is 10, the walk length [ is 40, the context-
window size is 5 (n = 2), and the node embedding size d
is 64 in our experiments. We compare the random initializa-
tion method and the proposed initialization method using
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the email communication dataset (discussed in Section 6.3).
The temporal continuity is measured by the mean Euclidean
distance between pairs of node embeddings of each node in
adjacent timesteps. The results are 0.984-0.01 and 0.374-0.01
for the random initialization method and our method, re-
spectively. Thus, we find that a good initialization better
preserves the temporal continuity.

4.3 Embedding Alignment

Although we initialize node embeddings with the learnt
result of the previous snapshot to keep them temporally
consistent, they may still not be comparable with one an-
other. The reason for this is that the learning process is
inherently stochastic and the resulting embedding sets are
invariant under rotation [30]. Therefore, diachronic node
embeddings are achieved by further aligning these temporal
node embeddings to one vector space.

Different methods have been employed for embedding
alignment. Kulkarni et al. [31] leveraged a local linear re-
gression by fitting a sample of vectors from the neighbor-
hood of a focal word and minimizing the mean squared
error. This method poses a potential drawback: it must be
applied separately for each focal word. Hamilton et al. [32]
applied orthogonal Procrustes, which is similar to linear
regression, aiming to learn a transformation of one vector
space onto another and minimizing the distance between
pairs of vectors, to the full space by using a different
mathematical method. As this can achieve the best rotational
alignment, we adapt orthogonal Procrustes to further align
the node embeddings of dynamic networks.

When aligning the vector space of G; to the base vector
space of (G}, the intersection of vertex set V;, is first ex-
tracted. Two matrices, M; € RIVinlxd and M, € RlVinlxd
are established by stacking node embeddings in G; and Gy,
respectively. We then leverage orthogonal Procrustes to find
an orthogonal matrix {2 that most closely maps M, to M.
Specifically, we aim to minimize ||M;Q2— M,||r, where ||x||
is Frobenius norm.

The assumption of embedding alignment is that two
snapshots should have small changes of structure. We have
different choices for the base vector space. One is to select
one vector space, such as in the timestep with the most
nodes, and all the other vector spaces are aligned to the
selected vector space. This choice would achieve better per-
formance in dynamic networks with small changes. Another
choice is to select an adjacent vector space as the base vector
space and multiply the corresponding orthogonal matrices
to align all the vector spaces to the vector space in the first
timestep. As adjacent timesteps may have small changes,
this choice would achieve the least error when aligning two
adjacent vector spaces. However, as the cumulative error
increases, this method is inadequate when the dynamic
network has too many timesteps. The last choice is to select
a base vector space every several timesteps, such as every
three or five timesteps. In contrast to the second choice, this
method can reduce the cumulative error.

We compare the accuracy of the three choices for the
base vector space using the email communication dataset:
the vector space of the snapshot with the most nodes,
the adjacent vector space, and the vector space every two
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timesteps. The alignment errors of the three choices are
0.2740.01, 0.234+0.01, and 0.3040.01, respectively. We find
that the adjacent vector space achieves the best embedding
alignment for this dynamic network.

Generally, we can select the adjacent vector space as
the base vector space for embedding alignment. In practice,
the base vector space can be chosen based on the domain
knowledge and features of dynamic networks.

5 NODE CLASSIFICATION AND CLUSTERING

This section describes the utilization of diachronic node
embeddings to facilitate the dynamic network exploration
from different levels.

5.1 Node Classification

Diachronic node embeddings have been generated and we
can use them to classify stable and dynamic nodes in the
dynamic network. Intuitively, stable nodes are more likely
located at the same position in a vector space or have small
changes over several timesteps. In contrast, dynamic nodes
have significant changes, and their node embeddings form
evolutionary trajectories in a vector space. This classification
allows users to focus on dynamic nodes to reduce the
analysis burden when exploring large dynamic networks.

The distance between two node embeddings can be
quantified by many methods, such as the cosine similarity
and the Euclidean distance. Since the Euclidean distance
is widely used for NLP tasks, we use it to measure the
distance between two node embeddings. Given two node
embeddings, u, and u,, the Euclidean distance between
them is defined as:

d(ug, ty) = [[ue — uy|l2- ®)

The distance between two node embeddings can be used in
node classification, structural node clustering, and temporal
trajectory clustering.

The evolution of a node v; in a selected time period
[tj,tj+m] is represented by a temporal sequence of di-

1 temy .
Tl L ul ™). The evolu-

achronic node embeddings (u],u
tion value of the node between adjacent timesteps can be
evaluated by d(ufﬁl, u?), where p € [j + 1,7 + m]. If any
evolution value between adjacent timesteps is above the
threshold 0, then this node is classified as a dynamic node.
Otherwise, this node is a stable node in this time period.
The dynamic node set D is defined as:

D= {uldw! " ul) >0, 3pej+Li+m}. @
Different dynamic networks may require different thresh-
olds to classify nodes. Thus, the threshold is interactively
specified by the user during dynamic network analysis.

5.2 Structural Node Clustering

Many dynamic networks evolve over time but still have
stable states. A stable state of a dynamic network is
regarded as a state with a few nodes evolving and most
nodes remaining unchanged during a time period [t;, ¢ 4+m ).
It is desirable to reveal the network structure (communities
of stable nodes) and evolutions of dynamic nodes (evolu-
tionary trajectories among communities) in stable states.
For the network structure, there are many methods on
static community detection [33]. As node embedding based
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on k-means clustering has consistently better accuracy for
static networks [34], we compute a mean diachronic node
embedding of each stable node in a time period and perform
k-means clustering on these mean vectors of stable nodes to
extract the stable communities as the network structure.

In a stable state of the network, dynamic nodes are
still evolving in the time period, and we highlight their
evolutionary trajectories among the stable communities.
Dynamic nodes also have stable states. A stable state of a
dynamic node is described as a state, belonging to a stable
community with small changes. To characterize their stable
states, we identify whether a dynamic node v; belongs to
a community in each timestep by the distance d(u?,u.),
where u, is the centroid of a stable community. d. is the
maximum distance between its member nodes and wu.. If
d(u?,uc) < d., v; belongs to the community and stays in
a stable state in the timestep ¢, € [t;,t;+m]. Otherwise, the
dynamic node is in a transition pattern, changing from one
community to another or is occurring anomalously.

5.3 Temporal Trajectory Clustering

As there are various temporal behaviors of nodes, discover-
ing communities of nodes with similar evolutionary trajec-
tories enables the summarization of the temporal patterns of
dynamic networks. An evolution of a node is represented by
a temporal sequence of diachronic node embeddings. This
temporal sequence can be regarded as a trajectory through
these points in a high-dimensional vector space. Therefore,
we aim at clustering similar trajectories.

K-Nearest Neighbor Graph (K-NNG) is used to construct
partitions with similar trajectories for the following reasons.
First, K-NNG does not require the number of clusters as an
input. Second, because some trajectories may be abnormal
and these trajectories should not be allocated to communi-
ties, K-NNG is adequate for this problem. Finally, consider-
ing the time efficiency and interactions with users, K-NNG
is able to provide different scales of clustering results by
changing the parameter K.

First, we need to define the distance function between
two trajectories. Different distance functions have been pro-
posed for trajectory clustering according to different analy-
sis goals, such as similar routes and similar directions [35].
Because we focus on identifying similar trajectories, we
compute the Euclidean distance of the pair of points in the
same timestep and take the average distance as the distance
between two trajectories.

The basic idea of K-NNG is to find the K most similar
neighbors for each trajectory and then add its neighbors
to the partition to which the trajectory belongs. In order
not to allocate abnormal trajectories to communities, we set
a distance threshold 0x_nng (0.3 in our experiment) to
determine whether a trajectory’s neighbors can be added
to a partition. Obviously, the higher the value of K is, the
smaller is the number of temporal communities. Different
values of K can uncover temporal patterns of dynamic
networks on different scales. The evolution of a temporal
community can be represented by the average trajectory
of its member nodes. Therefore, a temporal community
summarizes similar temporal patterns of its member nodes.
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Fig. 2: Our visual analytics system for dynamic network analysis: (A) the control panel allows users to adjust different
parameters, (B) the statistical view provides a high-level evolution overview of the network, (C) the trend view depicts an
overview of the structural and temporal properties of nodes and communities, (D) the node view shows dynamic nodes
in each timestep, (E) the structure view presents the structure of the network in a time period, and (F) the snapshot view

displays the original network structures.

6 USER INTERFACE

To enable visual exploration of dynamic networks, we
propose a visual analytics system for identifying temporal
patterns in the context of the structure from the node,
community, and network levels based on diachronic node
embeddings. In particular, we propose five goals (G) for our
system, which are inspired by the dynamic network tasks
taxonomy by Bach et al. [18] and Dal Col et al. [3]:

G1: The evolution analysis of the network as a whole.
An evolution summary of the whole network over time
could guide the user to focus on the important time periods.
Because each node in every timestep is represented as a
point in a high-dimensional vector space, we can sum the
evolution change of each node to generate the evolution
change of the network.

G2: The evolution analysis of dynamic nodes. Un-
covering dynamic nodes in each timestep could facilitate
identifying which nodes are changing in each timestep.
Furthermore, showing the evolutions of nodes could reveal
how a node evolves over time, including stable states and
transition patterns among stable communities.

G3: The temporal analysis of temporal communities.
Characterizing temporal communities facilitates the sum-
marization of the temporal patterns of the network. Nodes
are clustered with similar temporal patterns as temporal
communities based on the temporal trajectory clustering,
and the temporal patterns should be analyzed from the
community level.

G4: The structural analysis of stable communities. In a
stable state of the dynamic network, stable communities—
groups of nodes that often correspond to functional
modules—are crucial to understanding the network struc-
ture. Nodes are clustered with close structural properties as
stable communities based on the structural node clustering
in a stable state, and the structural properties should be

visually explored from the community level.

G5: Relate the analysis to the original networks. It is
vital for users to be able to retrieve the original dynamic
networks at any stage of the analysis process. Moreover, this
can also verify the analysis results of our method.

These goals are reflected in the proposed visual analytics
system with six interactive views in Fig. 2: control panel (A),
statistical view (B), trend view (C), node view (D), structure
view (E), and snapshot view (F). They are connected by
brushing and linking to allow for flexibly exploring how
the nodes, communities, and networks evolve over time.
The statistical view provides a high-level overview of the
evolution of the network as a whole (G1). The node view
facilitates dynamic node identification (G2). The trend view
is the fundamental view, providing an overview of the
structural and temporal properties simultaneously from the
node and community levels (G3). The structure view en-
ables users to focus on the structure of the network and
the evolutionary trajectories of dynamic nodes (G4). The
snapshot view provides the original network (G5).

6.1

The statistical view provides a high-level overview of the
evolution of the network as a whole and the statistical
information of nodes to support quick identification of the
important time periods, as shown in Fig. 2(B).

The evolution value of the network in each timestep is
defined as the sum of the evolution value of each node
between adjacent timesteps. When the evolution value is
low, the network is in a stable state. When it is high, the
network is undergoing a large change.

We employ the widely used line chart to present the
time-evolving trend of the evolution of the whole network.
The horizontal and vertical axes are encoded with the
time and the evolution value, respectively. Dynamic nodes,

Statistical View
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newly joined nodes, and disappearing nodes are important
for network evolution analysis. Their numbers are shown at
the bottom of the statistical view via stacked bars, colored
in red, green, and purple, respectively. The time period of
interest, such as a stable state of the network, can be selected
via brushing in the line chart, and the following trend view,
node view, structure view, and snapshot view are updated.

6.2 Node View

The node view shows the dynamic nodes with large evo-
lution values in each timestep to reveal what is changing
significantly in a time period, as presented in Fig. 2(D).

The horizontal axis is encoded with the time, which
is aligned with the time in the statistical view. Because
dynamic nodes are the primary focus in this view, the
vertical axis from the bottom to the top is scaled to the
range from the threshold 6§ in the node classification to the
largest evolution value of nodes between adjacent timesteps.
Therefore, stable nodes are not displayed in this view. A
circle represents a node that has a large change compared
with the previous timestep, and its color from yellow to red
is used to encode the change from small to large. If a node
has large changes in successive or intermittent timesteps, the
circles representing the same node are connected by a solid
or dashed line, respectively. This view is updated when the
threshold 6 changes. It is used to reveal which nodes have a
dramatic evolutionary process over time.

6.3 Trend View

The trend view provides the temporal evolution in the con-
text of the structure from the node and community levels,
as shown in Fig. 2(C). The evolutions of nodes are high-
dimensional trajectories, which are difficult to comprehend
and visualize. Thus, we leverage a dimensionality reduction
method to project these trajectories to a lower subspace.

Many dimensionality reduction techniques have
been proposed, including principal component analysis
(PCA) [36], multidimensional scaling (MDS) [37], and
t-distributed stochastic neighbour embedding (t-SNE) [38].
Because a comparative review mentions that the linear
dimensionality reduction technique PCA was desirable
for real-world dataset analysis [39], we utilize PCA in our
methodology and project all the node embeddings in all
timesteps to a 1D space simultaneously.

Stream-based designs are often used to show evolutions
while encoding time to the vertical or horizontal axis. We
propose a stream-based trend view by mapping the pro-
jected points to the vertical axis and then positioning them
along the horizontal time axis, as shown in Fig. 2(C). This
allows the vertical space to present the structure of each
snapshot; if two nodes have two nearby vertical positions,
this indicates that they have close structural properties in
the timestep. The evolution of each node is represented by
a line connecting its corresponding points chronologically
in a 2D space. As the color can be used to reveal patterns
in the data [1], different colorings are applied in the trend
view. We propose to color the lines based on the absolute
time, lifetime of each node, node classification, evolution
values between adjacent timesteps, stable communities, and
temporal communities, and these colorings can be switched
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by clicking different color bars in the control panel. The
parameter K in the temporal trajectory clustering can be
interactively adjusted to present the temporal communities
in the trend view.
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Converging pattern Splitting pattern Static pattern Transition pattern

Fig. 3: Converging and splitting patterns indicate that
nodes/communities gather together or fall apart, respec-
tively. Static and transition patterns demonstrate that
nodes/communities remain stable or evolve from one com-
munity to another community, respectively.

The trend view can reveal the temporal patterns of
evolutions of nodes in the context of the structure, and the
pattern classes are defined in Fig. 3. A converging pattern in-
dicates that nodes/communities approach each other, such
as if they tend to have frequent contacts and close relation-
ships. A splitting pattern corresponds to the inverse con-
verging pattern and demonstrates that nodes/communities
tend to have few contacts and remote relationships. A static
pattern describes a stable state of nodes/communities. A
transition pattern shows that one node/community moves
from one community to another community.
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Fig. 4: Different color encodings in the trend view. The color
from green to red is encoded to the absolute time and the
lifetime of each node in (a) and (c), respectively. The blue
and red lines represent trajectories of stable and dynamic
nodes in (b) or temporal communities in (e). The color
from light red to dark red represents the evolution values
from small to large in (d). Stable nodes are colored by their
associated stable communities in (f).

We use an artificial dynamic network to demonstrate the
capabilities of the trend view. The network contains 107
nodes and 85 timesteps. First, the network consists of 100
nodes belonging to one community. Next, the community
starts to split and two communities emerge. Then, the two
communities start to converge into one community. After
that, the community falls apart, and three communities
emerge. In this stable state, there are seven newly joined
nodes with different temporal patterns. Finally, seven nodes
are removed, and the three communities converge into one
community. Fig. 4 shows the evolutions of the artificial
dynamic network with two splitting and two converging
patterns. There are transition patterns during the stable state
of the network, which is consistent with the construction of
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the artificial dynamic network. We encode the color from
green to red to the absolute time and the lifetime of each
node in (a) and (c), respectively. The green lines reveal the
newly joined nodes, marked in the purple rectangle in (c).
The blue and red lines represent trajectories of stable and
dynamic nodes in (b) or temporal communities in (e). The
color from light red to dark red corresponds to the evolution
values from small to large, and the two time periods with
large evolution values are marked in two purple rectangles
in (d). Stable nodes are colored by their associated stable
communities in (f).

6.4 Structure View
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Fig. 5: (a) The structure view shows three stable communi-
ties and evolutionary trajectories of dynamic nodes among
these stable communities in a selected time period, (b)
displays a trajectory of a selected dynamic node, and by
clicking on a combined circle, its detailed trajectory in the
stable state is presented in (c).

In contrast to the trend view for temporal properties,
the structure view supports further exploration of a specific
time period and visualizes the network structure based on
structural node clustering, including the stable communities
of stable nodes and evolutions of dynamic nodes in a stable
state. In order to depict the relationships of more than two
communities, we project them to a 2D space in the structure
view using PCA, as shown in Fig. 2(E).

Because a stable node stays in a nearby region in the
stable state of the network, it is represented by a gray circle
in the center position of its corresponding projected points.
Circles that are close to each other indicate that the nodes
have close relationships. To indicate its stability, we map the
size of each circle to the variance of the node embeddings
in the time period. A large circle means that the node has a
relatively large evolution. A convex hull of the circles in the
same stable community represents a stable community, and
different colors correspond to different stable communities.

A dynamic node is represented by a trajectory in the
context of stable communities. Traditionally, there are two
common methods to visualize trajectories: time-to-space
and time-to-color mappings. The trend view maps time-
to-space to emphasize the temporal patterns, whereas in
the structure view, we use a time-to-color mapping from
green to pink to describe the evolutionary trajectories. Thus,
an evolutionary trajectory of a dynamic node is a line
chronologically through its corresponding projected points.
Moreover, we combine the points in a stable state to one
circle sized according to the duration of the stable state to
represent a stable state of a dynamic node and reduce visual
clutter.
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When a node first appears or reappears, it is highlighted
with a bold border. A detailed evolutionary trajectory of a
stable/dynamic node can be displayed via interactions.

Fig. 5 shows the structure view in the selected time
period in Fig. 4(f). Three stable communities are highlighted
with different colors, and evolutionary trajectories and cir-
cles in each timestep of dynamic nodes are displayed with
colors from green to pink encoded to time. Fig. 5(b) displays
a trajectory of a selected dynamic node, which starts with
Community 3, moves to Community 1 and Community
2, and finally returns to Community 3. Then we select a
combined circle with a bold border. We find its detailed
evolutionary trajectory in Fig. 5(c) and it disappears for a
while before joining Community 3. This design can effec-
tively present relationships between a dynamic node and
stable communities and reveal more detailed information
about the temporal properties.

6.5 Snapshot View

The snapshot view shows the structure of each snapshot.
We propose a new method to layout the nodes in each
snapshot, which better preserves the mental map compared
with previous methods. Because the nodes in each snapshot
are represented by diachronic node embeddings, projecting
these embeddings to a 2D space using PCA can preserve the
graph information and keep stable nodes fixed. As shown
in Fig. 2(G), each node is represented as a circle in each
snapshot and the snapshots of all the time periods are
placed along the vertical time axis. The color of each circle
from light red to dark red and its size are encoded to the
evolution values from the previous adjacent timestep from
small to large. When hovering the mouse over a node, its
occurrences in all snapshots are linked by blue lines and its
neighborhoods are highlighted in each snapshot view.

7 UsE CASES

We apply our visual analytics system to artificial and real-
world datasets to demonstrate the effectiveness and use-
fulness of our methodology based on diachronic node em-
beddings. The datasets cover a range of network domains,
network sizes, and evolution types. By analyzing and ex-
ploring these datasets, our method enables users to better
understand the structural and temporal properties of the
evolution from the node, community, and network levels.

7.1 Artificial Dynamic Networks

We first evaluate our method on an artificial dynamic net-
work. The Stochastic Block Model (SBM) has been widely
used in network analysis and we use it to generate exper-
imental dynamic networks. We first define the number of
timesteps, number of communities in different timesteps,
and stable nodes of each community. Next, we add new
nodes and create evolutionary changes for these dynamic
nodes. Specifically, for a dynamic node, we create its stable
states based on when and how long it belongs to a com-
munity and its transition patterns by interpolating between
the stable states over a predefined number of timesteps. In
this case, we create a dynamic network with 95 timesteps.
First, the network consists of 100 nodes belonging to one
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Fig. 6: (a) The trend view provides an overview of the
evolution of the artificial network and reveals splitting,
converging, and transition patterns. (b) and (c) summarize
the temporal patterns and present the evolution from the
community scale when K is set to 1 and 2 respectively in
the temporal trajectory clustering.

community. Next, the community starts to split and two
communities emerge. Then, the two communities start to
converge into one community. After that, the community
falls apart again, and two communities emerge with differ-
ent nodes. The larger community is then divided into two
communities. In this stable state with three communities,
there are 10 newly joined nodes with different temporal
patterns. Finally, the 10 nodes are removed, and the three
communities converge into one community.

We first demonstrate how our method can effectively
characterize the evolutions of nodes, communities, and net-
works from their temporal properties. As shown in Fig. 6(a),
the line chart shows five high peaks and a time period
with relatively small evolution values (G1). The trend view
displays the evolutionary trajectories of each node in the
context of the network structure over time. The five high
peaks demonstrate the time of the splitting and converging
patterns, and the relatively small evolution values reveal
the time of the stable states of the network with some nodes
in the transition pattern (G2). According to the temporal
patterns, we infer that the network contains one community
at the start, and then two communities, one community, two
communities, three communities, and finally one commu-
nity. The analysis results are consistent with the snapshot
view and network construction (G5). When K is 1 in the
temporal trajectory clustering, the nodes with the most
similar trajectories over time are clustered, and the central
line of each temporal community is shown in Fig. 6(b). The
temporal communities at this scale greatly reduce the visual
clutter and highlight the trajectories with large evolution
values, such as Trajectory 1 and 2. When K is 2, the three
main temporal communities reveal the evolution summary
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Fig. 7: (a) Three stable communities are shown in the struc-
ture view, and their corresponding temporal trajectories are
presented in the trend view. (b) The detailed evolutionary
trajectory and its neighborhood of a selected dynamic node
are highlighted in the structure view.

of the network, and the splitting and converging patterns
are clearly visible in Fig. 6(c) (G3).

We further explore the network structure and dynamic
node evolutions in the stable state of the network in the
selected time period marked by a rectangle in Fig. 6 (G4). As
shown in Fig. 7(a), three stable communities are extracted
and displayed in the structure view and their temporal
patterns over the whole time are highlighted in the trend
view with the same color encoding. We find that the nodes
in the same stable community have similar temporal pat-
terns, as communities of stable nodes are consistent with
the temporal communities in Fig. 6. As we would like to
explore the evolutions of dynamic nodes, we select Node
100 and its detailed path is displayed in Fig. 7(b). It starts
from Community 1, moves to Community 2, disappears for
a while, reappears in Community 3, and finally moves to
Community 1. By hovering the mouse over a pink circle in
Fig. 7(b), its neighbors in this timestep are highlighted and
we see that most of them belong to Community 3 when
Node 100 belongs to Community 3.

Through this case study, we demonstrate the usefulness
of our method for the exploration of the artificial dynamic
network. At the network level, the evolution overview of
the network as a whole is provided, which quickly guides
users to the time period of interest. At the node level, the
evolutionary trajectories with low-dimensional projections
facilitate the evolution analysis of nodes. At the community
level, the structural and temporal communities present a
summary of the structural and temporal properties for a
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better understanding of the evolution of the network.

7.2 School Contact Network

In this case study, we show how our system explores the
evolution of dynamic networks with significant changes.
The school contact network dataset is a collection of face-to-
face contacts between students and teachers from a school
during two school days [40]. This school has five grades
with each grade divided into two classes, and each class
has an assigned teacher. The original data provides the class
information of 232 students and 10 teachers. There is a lunch
break and two breaks around 10:30 and 15:30 on a school
day. As the results of the two days are similar in nature, we
restrict our attention to the first day. We create a snapshot
every 6 minutes (At) and choose a window width of 60
minutes (w) with an overlap. Thus, we finally create 89
undirected snapshots where nodes and edges exist. We first
explore temporal evolution of networks, then compare our
method with related methods, and finally introduce more
unique findings of our method.

We first explore the temporal evolution of the network
using the trend view in Fig. 8(a) (G2, G3, and G5). We see
that some temporal communities evolve over time. After
the temporal trajectory clustering with K = 2, ten temporal
communities are extracted and displayed in Fig. 8(b), and
they may correspond to ten classes. To verify this hypoth-
esis, we color the trajectory of each node with two color
encodings, mapping color to the temporal community and
the class information in this dataset, which are shown in
Fig. 8(c) and (d), respectively. We find that the temporal
communities are consistent with the classes as expected. In
addition, the teachers (black lines in (d)) are also grouped
with the students of their assigned classes. This indicates
that the individuals in the same class have similar temporal
patterns owing to the class schedules.

Furthermore, because the trajectories of the temporal
communities corresponding to the classes in the same
grades are close, as shown in Fig. 8(b), this indicates that the
classes in the same grades have frequent contacts and tend
to have similar class schedules, including Classes 5A and 5B,
Classes 3A and 3B, and Classes 2A and 2B. However, the
trajectories of the temporal communities corresponding to
Classes 4A and 4B, as well as 1A and 1B are placed relatively
far away.

Thus, we further explore how the ten temporal commu-
nities evolve over time and analyze the differences between
them. As shown in Fig. 8(d), after 10:00, the temporal
communities of Classes 5A, 5B, and 4A are separated, but
the temporal communities of the other classes are closer
together. This may be due to the two breaks. As only some
of the classes have breaks at the same time due to the
limited playground space, the breaks of the classes except
for Classes 5A, 5B, and 4A, may be arranged around 10:30.
Correspondingly, the temporal communities of the classes
except for Classes 2A, 2B, and 1B get closer starting from
15:30, and this indicates that these classes have breaks
around 15:30. Thus, we can infer that the reason for the
differences between trajectories of Classes 4A and 4B, as
well as Classes 1A and 1B is the different schedule of
breaks. Between 12:00 and 14:00, there are no clear temporal
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Fig. 8: (a) The temporal evolution of the school contact net-
work. (b) Ten temporal communities corresponding to ten
classes after the temporal trajectory clustering with K = 2.
(c) Each trajectory colored by its temporal community, and
(d) each trajectory colored by its class. (e) The network
analyzer view from WaveletVis. (f) The original networks in
four different timesteps are shown in four snapshot views.

communities with many nodes removed after 12:00 and
added before 14:00, as shown in the bar chart (G1). This
is explained by the fact that many students leave the school
during the lunch break. These findings about the network
evolution are reflected in the original networks in the snap-
shot view in Fig. 8(f). Previous research [40] describes the
spatiotemporal trajectories of some classes, which are also
generally consistent with our findings. This demonstrates
the usefulness of the trend view for characterizing the
temporal evolution of temporal communities.

Several methods of presenting a summary of the tempo-
ral evolution of networks have been proposed recently, and
we compare our method with three state-of-the-art methods:
WaveletVis [3], RSP [22], and TimeArcs [41], as illustrated in
Fig. 8 and Fig. 9. The dataset of this case was chosen because
of three factors: it was used in the released system although
not used in the paper of WaveletVis, it is a collection of
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Fig. 9: (a) RSP and (b) TimeArcs methods are applied to the
school contact network.

school contacts similar to the dataset used in RSP with
the same parameters in the dynamic network construction,
and it has not been used in other works on the evolution
visualization of dynamic networks.

WaveletVis applies graph wavelets to analyze the net-
work. In Fig. 8 (e), each circle represents a snapshot, and a
circle with a high position or color close to red represents
an event or the occurrence of significant changes to the
network.

We see that WaveletVis is able to reveal the important
timesteps falling in the two breaks, but it is inadequate to
uncover the structural differences between different events.
In addition, there are many red circles between 12:00 and
14:00, which stands out and indicates there are significant
changes occurring in this time period. As discussed above,
this is due to the lunch break, but the structural characteris-
tics of students at school generally remain stable in this time
period.

RSP reduces snapshots to points for dynamic network
exploration, with the distance between two points corre-
sponding to the structural similarity of two snapshots. In
Fig. 9(a), each circle represents a snapshot, and the trajectory
composed of circles close to yellow describes the evolution
of the network on the first day. We find the transitions of the
network during three time periods, between 10:00 and 11:00
and between 15:30 and 16:30, corresponding to the times of
the two breaks, and between 12:00 and 14:00, corresponding
to the lunch break. However, some stable states are not
easily identified, such as during class time between 14:00
and 15:00, and the transitions between states are difficult to
interpret without the context of the network structure.

TimeArcs utilizes constraints on a force-directed layout
algorithm to show the evolutions of nodes and highlight
communities of nodes. In Fig. 9(b), the horizontal axis is
encoded to the time, and blue arcs represent edges. Indeed,
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Fig. 10: The trend view in (a) shows that evolutionary
trajectories are colored from light red to dark red corre-
sponding to the evolution values of nodes between adjacent
timesteps from small to large. The trend views in (b) and
(c) highlight the evolutionary trajectories of Students 210
and 233 selected in the node view, respectively. The top
trend view in (d) displays that evolutionary trajectories are
colored from green to pink corresponding to the lifetime of
each node, and the bottom view highlights the evolutionary
trajectory of Student 34.

we see the evolution of the communities between 14:00 and
16:00, around the breaks. However, it is difficult to trace the
evolution of a node, and it is limited by the length of time
with long arcs interfering with that of other time slices.
Compared with these three methods, our method pro-
vides an overview of the temporal evolution in the context
of the network structure in the presence of noise. This facili-
tates understanding and interpreting the temporal patterns.
Moreover, our method extracts similar temporal evolutions,
which reduces the burden of a high cognitive load and
enables users to explore the network from different scales.
Our method can further explore temporal patterns of
nodes (G2). In the trend view in Fig. 10(a), the color of the
evolutionary trajectories of nodes from light to dark red is
encoded to the evolution values from small to large. The
time periods when most nodes have large evolution values
are revealed, such as the time period between 11:00 and
12:00. Together with the node view in Fig. 10(b), we quickly
find that Student 210 has the largest change between 11:00
and 12:00 and its evolutionary trajectory is highlighted in
the trend view in Fig. 10(b). In addition, the node view also
reveals that there are many students with large evolution
values between 13:45 and 13:51. When selecting Student 233
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Fig. 11: Between 14:00 and 17:30, the lines are colored
according to their stable communities in the trend view (a),
and ten stable communities are shown in the structure view
(b), which are consistent with the temporal communities.
The detailed evolutionary trajectory of a student is shown
in (c) and his neighborhoods at 17:00 are shown in (d).
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Fig. 12: Temporal evolution of the email communication
network with the color representing the temporal trajectory
community.

with the largest evolution value at 13:45, its evolutionary
trajectory is highlighted in the trend view in Fig. 10(c) and
it disappears for a while in the afternoon. This indicates
that many students have large evolution values in this time
period due to the lunch break. In the top trend view in
Fig. 10(d), the color of evolutionary trajectories from green
to pink is encoded to the lifetime of each node. The students
leaving the school early are uncovered, such as Student 34
in Class 5A. Its evolution is highlighted in the bottom trend
view.

We finally explore the network from the structural aspect
(G4). As shown in Fig. 11, the time period of the afternoon
(14:00-17:30) is selected. The network structure with ten
stable communities is displayed in the structure view in
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Fig. 11(b). By coloring the trajectories according to the stable
communities in the trend view in Fig. 11(a), we see that the
ten stable communities are consistent with ten classes and
temporal communities. This indicates that the students in
the same class have close face-to-face contacts and similar
temporal patterns over time. Moreover, in the structure
view, most nodes, colored gray, remain stable and have
close relationships with their classmates, whereas there are
still some dynamic students with changes over time in each
class, represented by evolutionary trajectories or combined
circles from green to pink. We notice that Class 2A has the
most dynamic students (green circles). We further select a
student in Class 5B and his detailed evolutionary trajectory
is shown in Fig. 11(c). When hovering the mouse over the
pink circles, we find that the student has frequent contacts
with Students 103 and 194 in Class 3A and Students 191 and
197 in Class 5A after school (16:30). We infer that they may
be friends.

This case study demonstrates that when network struc-
tures radically change over time, our method can effec-
tively explore the evolutionary trajectories of nodes in the
context of structure and detect similar temporal trajectory
communities as well as stable structural communities. Com-
pared with state-of-the-art methods, our method presents
the evolution of the network from the node, community,
and network levels, simultaneously. This bridges the gap
between the exploration of different levels and uncovers
events with noise removed and cognitive load reduced.

7.3 Email Communication Dynamic Network

In this case study, we demonstrate how our system can
effectively gain insights into the evolution of dynamic net-
works with small changes. We use a collection of emails
between members of different departments at a large Eu-
ropean research institution [42]. The dataset contains 986
nodes and 332,334 temporal edges over 803 days. Owing to
privacy protection, people’s department information is not
provided. We create a snapshot every 7 days (At), choose a
window width of 14 days (w) with an overlap, and use the
contact frequency as the weight of edges. We finally create
76 directed and weighted snapshots.

Fig. 12 shows the temporal evolution of nodes. In the
statistical view, the line chart shows that the network
evolves smoothly across time and only has large evolution
values during the 59th week with many newly joined nodes
presented in the bar chart (G1). In the trend view, the trajec-
tories are colored according to the temporal communities,
and one can see that most nodes (yellow lines) have similar
temporal behaviors; that is, the relationships of most nodes
remain stable without significant changes over time. Other
nodes with very distinctive temporal patterns are extracted
and can be taken as outliers (G3). The node view displays
dynamic nodes with large evolution values in each timestep.
These views quickly guide users to these nodes (G2).

Because the network remains stable over time, we select
the whole time period and explore the network from the
structural aspect (G4). In Fig. 13, the trend view high-
lights the evolutionary trajectories of dynamic nodes in
red while preserving the color of other lines according to
their stable communities, and the structure view depicts
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Fig. 13: In the whole time period, five stable communities
are shown in the structure view, and their corresponding
trajectories are displayed in the trend view.

that the network consists of five stable communities with
Community 3 located in the middle. Community 3 may
have frequent contacts with the other four communities.
Furthermore, the transition patterns of the dynamic nodes
mostly occur between Community 3 and other commu-
nities, and most nodes move to other communities and
finally return to Community 3. This reveals that there are
the most email communications between Community 3 and
the other communities. Considering different departments
in this dataset, Communities 1, 2, 4, and 5, may correspond
to four departments and Community 3 may be composed
of the nodes from each department responsible for the con-
tact with other departments. Community 2 has few nodes
leaving or joining, which indicates that Community 2 may
be an independent department and its research may be very
different from the other departments.

As there is only one trajectory of a dynamic node in
Community 1 in the trend view, we click the corresponding
combined green circle in the structure view in Fig. 13 and its
detailed evolutionary trajectory among the stable communi-
ties is shown in Fig. 14(a). We see that the node is evolving
in Community 1, then moves to Community 3, and returns
to Community 1. Before moving to Community 3, it has
contacts with Nodes 487 and 692 that belong to Community
3 in Fig. 14(b). When it belongs to Community 3, it has many
contacts with nodes in Community 3, including Node 692,
and some contacts with the other communities in Fig. 14(c).
After returning to Community 1, we find that it has few
contacts with the other communities, but still has contacts
with Node 692. This reveals that the node has close relations
with Node 692 and their research may have intersections.

This case study describes that when network structures
remain stable, our method is able to detect abnormal tem-
poral patterns based on the temporal trajectory clustering
and discover relationships of stable communities based on
the structural node clustering and the structure view.

8 DISCUSSIONS AND LIMITATIONS

Our experiments show that our method is adequate to
explore the evolution of dynamic networks in these cases

14

& 7o
—?.;_-7—1‘-.:--—

Stable community ]

@ @ t @

- &o %0
@ 8%
@
Starting mEmEmssssmsmsE Terminal (a)
- - - = —— == bl
| @ |
| |
| @ f=t-u o g% c@ I
: I 5= | % &’s&_é gi;f‘xo": N & :
| s = I
L 2 |
[ ey T T T T T T T T T T T
| @ |
|
[ b D
1 ol i T AT :
| ey
| |
|
L "SST @2 _________ I
<
@
©)
e e D
| ERE— | 2221

Fig. 14: When selecting a node in the structure view, (a)
displays its detailed evolutionary trajectory, starting from
Community 1, moving to Community 3 and returning to
Community 1, in the structure view and trend view. (b), (c),
and (d) show its neighborhoods in different timesteps.

covering a broad range of network domains, including face-
to-face contacts and email communications.

Parameter Study. Our visual analytics system supports
interactive parameter specification for the threshold 6 to
identify stable or dynamic nodes in the node classification
and the parameter K to uncover temporal patterns at dif-
ferent scales in the temporal trajectory clustering. The trend
view changes with these parameters and users can adjust
their values according to the trend view to find dynamic
nodes and temporal communities of interest. The larger ¢
is, the smaller the number of dynamic nodes is, and the
higher K is, the smaller the number of temporal communi-
ties is. Moreover, the number of stable communities in the
structural node clustering can be determined iteratively ac-
cording to the overview in the trend view and the structure
view. For example, in Section 6.2, ten stable communities are
depicted clearly in the first structure view in Fig. 8(f). These
parameters provide flexibility to our method for a broad
range of datasets.
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Scalability of the Visualization. We design the trend
view to present temporal patterns in the context of struc-
tures of dynamic networks. There are two types of visual
scalability concerns in this view: the number of nodes and
number of timesteps. If the number of nodes is large, the
temporal trajectory clustering can be applied to combine
similar evolutionary trajectories, which enables users to
explore the network from different scales and reduce visual
clutter. Moreover, filtering can be used to only display the
evolution of important dynamic nodes. If the number of
timesteps is large, we propose an interaction via brushing
to enable users to focus on the temporal properties in the
selected time period of interest. Furthermore, clustering
timesteps with similar network structures can be used to
reduce the timesteps and present more information in the
limited screen space.

K=1 K=2 K=3
Artificial Network 10+ 1 ms 10 £ 1 ms 10+ 1 ms
School Contact 45+1ms | 46+1ms | 49+ 1ms
Network
Email Communication | g7y 1 o) 1o | 879 4 20 ms | 875 + 10 ms
Network

TABLE 1: Computation times of temporal trajectory cluster-
ing with different K.
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network topology of neighboring snapshots by adjusting the
overlaps of the time-windows when constructing dynamic
networks. Secondly, for large dynamic networks with tens
of thousands of nodes, the computation efficiency of struc-
tural node clustering and temporal trajectory clustering is
still a challenge. One possible solution is to perform these
clusterings under common parameters in the preprocessing,
such as K from 1 to 3. Thirdly, although the snapshot view
can highlight the neighborhoods of nodes over time, it fails
to uncover the changes in edges. More animation techniques
can be adopted into the snapshot view in the future. Finally,
our method is designed to explore the temporal evolution
in the context of the structure. When the structure is not
very clear, such as in the case of one chaotic community,
we can still classify dynamic nodes and cluster nodes with
similar temporal trajectories. However, it would be difficult
to interpret and understand the evolution of dynamic nodes
and temporal communities in the chaotic structure. Instead
of showing all nodes, we can only display neighbor nodes
of dynamic nodes in each timestep to reduce visual clutter
and better reveal their semantic structural changes, which
would be our future work.

9 CONCLUSION

In this paper, we have proposed a novel methodology based

on diachronic node embeddings to interactively explore
temporal patterns in the context of the structure of dynamic

t=20 t=30 t=40
Artificial Network 15+ 1ms 18 £ 1 ms 20 &+ 1 ms
School Contact
Network 44+ 1 ms 50 £+ 1 ms 57+ 1ms
Email Communication | g5 | 50 16 | 230+ 20 ms | 330+ 20 ms
Network

networks from the node, community, and network levels.

TABLE 2: Computation times of structural node clustering
with different time periods.

Scalability of Node Embedding and Analysis. Our
experiments are evaluated on a computer with a 3.20 GHz
Intel Core i5 CPU and 32 GB of memory. Diachronic node
embeddings are trained in the preprocessing and requires a
relatively long time depending on the network size. For the
example of the email communication use case, this process
costs approximately 40 minutes. Temporal trajectory cluster-
ing and structural node clustering are performed during the
exploration of dynamic networks, and hence, they should
meet the needs of real-time interactions. We compute node
distances in the preprocessing and the time complexities of
the two clustering methods are O(log(|V|)+ K?log(K)) and
O(k|V), respectively. For the three datasets in our use cases,
they contain 105 nodes and 95 timesteps, 242 individuals
and 89 timesteps, as well as 986 people and 76 timesteps,
respectively. Their computation times for temporal trajec-
tory clustering and structural node clustering are shown in
Table 1 and Table 2, respectively. Our method can achieve
interactive clustering on the current networks, but more
efficient clustering methods would be required for larger
dynamic networks.

Limitations. Firstly, as our method is based on node
embeddings and alignment, it is less effective for dynamic
networks with few edges (hard to train node embeddings)
and with random and significant changes between neigh-
boring timesteps (difficult to align node embeddings). To
reduce the impact of edges, our method can control the

Diachronic node embeddings are employed to analyze dy-
namic networks for the first time. These diachronic node
embeddings are able to preserve both the structural proxim-
ity and temporal consistency of the evolutions of nodes. Two
clustering methods are provided to extract nodes from the
temporal and structural properties for the summarization of
the temporal patterns across time and the network structure
in a time period. A new stream-based temporal overview
is designed to display the temporal patterns in the context
of the network structure from different scales, and a new
structural overview design maps time to color to present the
structure of stable communities and the evolutionary trajec-
tories of dynamic nodes. Our method is applied to artificial
and real-world dynamic networks and compared with the
state-of-the-art methods to demonstrate its effectiveness and
usefulness.

In the future, we plan to improve the evolution extrac-
tion method to better capture the temporal features of nodes
by jointly computing the node embeddings and alignment.
Clustering timesteps with similar network structures can be
adopted to reduce timesteps in the future.
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