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ABSTRACT

This paper proposes a co-analysis framework based on biclusters,
i.e., two subsets of variables and voxels with close scalar-value re-
lationships, to guide the visual exploration process of multivariate
data. We first automatically extract all meaningful biclusters, each
of which only contains voxels with a similar scalar-value pattern
over a subset of variables. These biclusters are organized accord-
ing to their variable sets, and further grouped by a similarity metric
to reduce redundancy and encourage diversity during visual explo-
ration. Biclusters are visually represented in coordinated views to
facilitate interactive exploration of multivariate data from the sim-
ilarity between biclusters and the correlation of scalar values with
different variables. Experiments demonstrate the effectiveness of
our framework in exploring local relationships among variables, bi-
clusters and scalar values in the data.
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1 INTRODUCTION

Scientific simulations often generate data sets with multiple vari-
ables for complex physical phenomena. These variables generally
have hidden associations, since they work collectively in the sim-
ulation [3]. For instance, a hurricane is a rapidly rotating storm
system characterized by a low-pressure center, strong winds, and
along with heavy rain in climate simulation. However, the hetero-
geneity of multivariate data make it difficult to extract interesting
associations, which are typically located only in the subspaces of
variables and subsets of voxels. For example, the eyewall clouds
may be strongly associated with the water vapor and cloud mois-
ture [8]. Thus, it would be better to extract hidden associations
between variables locally and detect local features based on associ-
ated variables.

In multivariate data analysis, a broad variety of techniques have
been proposed to explore the global relationships between vari-
ables [14,15,18] and voxels [16,17,19] in the data. These methods
take all variables or voxels into account. Therefore, it may be diffi-
cult to detect features that only depend on a subset of variables, as
other unrelated variables may have a negative impact on clustering
due to the curse of dimensionality. Since a subset of variables may
be strongly associated in a local region, it is desirable to extract
these local associations among variables or the similarity of voxels
in different local regions rather than analyzing the global associa-
tions. To obtain local associations between variables and voxels,
they should be analyzed together rather than separately in previous
methods. On the other hand, multi-dimensional transfer functions
can take both variables and voxels into account to manually clas-
sify features of interest. For example, a feature can be specified by
gradually selecting scalar value intervals of a few variables in the

*E-mail: xiangyanghe@zju.edu.cn
†E-mail: taoyubo@cad.zju.edu.cn (Corresponding author)
‡E-mail: qiruiw@gmail.com
§E-mail: lin@cad.zju.edu.cn

parallel coordinate [5,20] or specifying Gaussian functions in a scat-
ter plot matrix [9]. In this case, these variables may be associated,
and their correlated scalar value intervals provide the definition of
the feature, the voxels of which have a similar scalar-value pattern
over these associated variables. We name it a bicluster between
variables and voxels, that is, two subsets of variables and voxels
with close scalar-value relationships. While a manual specification
provides flexibility for finding a variety of biclusters, it can be labo-
rious and hinder comprehensive coverage of the data in exploratory
analysis. When there are many variables in multivariate data, it be-
comes nearly impossible to find all meaningful features due to the
large size of the search space. This brings a need to find all mean-
ingful biclusters between variables and voxels automatically.

To address these requirements, this paper proposes a co-analysis
framework based on biclusters for exploring multivariate data. Our
framework first generates all biclusters by clustering variables and
voxels simultaneously. Then these biclusters can be organized and
grouped by variable sets for hierarchically exploring variables and
biclusters based on a similarity metric. In order to visually ex-
plore biclusters, we design a visual analysis system to reveal three-
faceted relationships: variables, biclusters and scalar values.

2 RELATED WORK

Many correlation analysis methods have been proposed to find hid-
den correlations in multivariate data and explore the relationships
between variables and scalar values over the years. Information
theory provides a theoretical framework to measure the global cor-
relation between variables. Biswas et al. [2] employed the mutual
information to measure the informativeness of one variable about
the other variable and grouped variables based on the mutual infor-
mation in a graph-based approach. In addition, information theory
also can be extended to time-varying fields. For example, Dutta et
al. [4] extracted important features using mutual information and its
two decompositions in time-varying multivariate data, and multiple
time-varying features were encoded into a field to analyze the track
and characteristic of these features.

Many local correlation metrics have been proposed to capture
the correlation at each voxel, and the correlation between vari-
ables can be measured by the summation of correlation values of
all voxels. Sauber et al. [14] proposed a gradient similarity mea-
sure (GSIM) and a local correlation coefficient to measure the local
correlation at each voxel, and introduced the multifield-graph to
show an overview of the correlation between variables. Nagaraj et
al. [10] presented a gradient-based correlation criterion, the norm
of a partial derivative matrix, to capture interactions between multi-
ple scalar fields, and the correlation field can be visualized to detect
regions with high correlation values. In this paper, we cluster vari-
ables and voxels simultaneously to extract biclusters automatically
and employ biclusters, subsets of voxels instead of all voxels in pre-
vious methods, to better analyze the features in local regions.

For interactive feature classfication, Guo et al. [5] proposed a
novel transfer function design interface combining the parallel co-
ordinate and MDS plots to facilitate feature specification in mul-
tivariate data. Lu and Shen [9] presented a bottom-up subspace
exploration workflow to allow users to design multivariate trans-
fer function interactively, and introduced additional information to
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Figure 1: The co-analysis framework. This example contains eight
variables, A-G, and six voxels, v0-v5. Our framework first gener-
ates all biclusters by analyzing variables and voxels simultaneously.
These biclusters are grouped hierarchically based on a similarity met-
ric in the analysis stage. Four coordinated views are designed to
visually explore the local relationships.

guide users to choose subspaces and discover interesting features.
While it is flexible to interactively specify features, it can be time-
consuming and challenging to search for all meaningful features. In
this paper, we extract all meaningful biclusters automatically, and
visually explore the similarities of biclusters in the scatter plot as
well as the correlation of scalar values in a bicluster in the parallel
coordinate.

3 OUR FRAMEWORK

As shown in Fig. 1, our co-analysis framework is based on biclus-
ters to explore the local relationships, since each bicluster contains
a local relationship among variables, voxels, and scalar values.

3.1 Bicluster Analysis
A local feature/phenomenon in multivariate data may have a similar
scalar-value pattern over several variables, i.e., a bicluster. A biclus-
ter is composed of a subspace of variables and a subset of voxels,
and these voxels have a similar scalar-value pattern on these vari-
ables, which provides a local association of variables and scalar val-
ues in the voxels. In the data mining field, the biclustering method
can effectively extract cohesive objects with a similar scalar-value
pattern over a subset of attributes.

The variance minimization method [11] is effective in extracting
the pattern-based biclusters automatically by analyzing variables
and voxels simultaneously. In this paper, we use MaPle [13], one
important algorithm in the variance minimization method, as the
basis of our co-analysis framework to generate biclusters. These
biclusters provides specific value combinations of several variables,

and can be used to analyze the interaction of variables in the simu-
lations.

One parameter of MaPle is the number of voxels of a bicluster.
A bicluster may be statistically insignificant if it contains a small
number of voxels, and this can reduce the searching time of biclus-
ters. The minimal number of voxels for biclusters is specified as
0.2% of the total voxels of the explored volume to capture small
features. In most simulations, biclusters corresponding to the back-
ground generally have a large number of voxels, and we filtered
these less interesting biclusters by the number of voxels (10% of
the total voxels) to improve the efficiency of the co-analysis frame-
work.

Since the biclustering method guarantees the completeness of
the bicluster search, we acquire all biclusters in multivariate data.
Each bicluster is associated with one variable set, and one variable
set is generally associated with multiple biclusters. Thus, we first
hierarchically organize biclusters based on their variable sets and
iteratively expand the variable set from two variables to multiple
variables to reduce the complexity of bicluster analysis. In addi-
tion, some of the biclusters may overlap with each other, especially
biclusters with the same variable set, as a voxel/variable can ap-
pear in more than one bicluster. To facilitate visual exploration of
biclusters, we then group biclusters with the same variable set hi-
erarchically to yield a smaller set of mutually sufficiently different,
yet individually interesting groups of biclusters for interactive ex-
ploration. The grouping quality mainly depends on the similarity
metric between two biclusters. In this paper, we use the spatial
overlap as our similarity metric between two biclusters. If two bi-
clusters have a large spatial overlap, they are more similar to each
other. The similarity metric is defined as the Jaccard similarity co-
efficient:

J(A,B) =
|VA

∩
VB|

|VA ∪VB|
, (1)

where VA and VB are the voxels of two biclusters A and B, respec-
tively.

With the similarity metric, the agglomerative hierarchical clus-
tering [7] is applied to group biclusters. The distance between two
biclusters A and B is defined as d(A,B) = 1− J(A,B). When com-
bining two groups of biclusters, a weighted average linkage crite-
rion, a recursive definition for the distance, is used to compute the
distance.

3.2 Bicluster Exploration

We propose a visual analytics systems to assist users in interactively
exploring biclusters including the association matrix, the bicluster
view, the scalar-value view and the spatial view.

Association matrix. We propose an association matrix to dis-
play the hierarchical structure of variable sets. Each column in the
association matrix corresponds to a variable of multivariate data,
and each row corresponds to a variable set. The rows without as-
sociated biclusters are hidden by default, but they can be shown
on demand during visual exploration. The variable in the variable
set is encoded with a filled dark circle, otherwise a light-gray cir-
cle, as shown in Fig. 2(a). Additional attributes of the variable set
could be displayed and sorted via the bar chart on the right of each
row, and the length of the bar is proportional to the value of the
attribute, which can guide users to choose interesting variable sets.
The sorting attributes mainly contain the number of biclusters and
the correlation of the variable set, i.e., the minimal absolute value of
Pearson correlation coefficient [15]. We also support drilling down
from one variable set to it children variable sets to explore biclus-
ters hierarchically. As shown in Fig. 2(b), the variables in the ex-
panded variable sets are encoded by smaller dark circles, and other
variables are encoded by dark points. The bars associated with ex-
panded rows have a reduced width to distinguish different levels,
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Figure 2: Visual exploration of the local relationships in the deep water impact data set with 27th time step and 150×150×150 resolution. (a-b)
The association matrix is sorted by the number of biclusters and the variable set {snd, tev, v02} is on the top of the list. (c) Corresponding
biclusters. (d) The spatial and scalar-value distributions of the groups A (a high temperature, high sound speed, and low water fraction in the air),
B (a low temperature, low sound speed, and high water fraction in the air), and C (a low temperature, high sound speed, and high water fraction
in the water). (e) The local features in the groups A, B and C. (f) The result of GSIM [14] for the correlation of the variable set {snd, tev, v02}.

and these children variable sets can be sorted by another attribute
for visual comparison.

Bicluster view. When one variable set is chosen in the asso-
ciation matrix, we need to analyze and compare its biclusters, es-
pecially the similarity between them. We apply MDS [6], one of
the widely used dimensionality reduction methods, to project the
biclusters of the variable set based on the spatial overlap similar-
ity in the bicluster view. The scatter plot provides an overview of
the similarity between biclusters, as shown in Fig. 1. Each cycle
is a bicluster, and its size is proportional to the number of voxels
in the bicluster. Each group is encoded by a light-blue and convex
region, which covers all biclusters in the group. The representative
bicluster of each group, the one with the largest number of voxels,
is highlighted by orange halos to distinguish different groups. Due
to the projection error, the regions of groups may be overlapped
and result in the confusion. Thus, when hovering with the mouse
over the region of one group, its biclusters are highlighted to show
the membership. Users could select one group or one bicluster by
clicking on corresponding region to verify its distribution both in
the scalar value and space. Through these refinements, we can bet-
ter understand the similarity of biclusters and identify meaningful
local correlations interactively.

Scalar-value view. When one group or bicluster is selected, we
employ the parallel coordinate to display its scalar-value distribu-
tion over its variables in the scalar-value view to better analyze the
correlation between numerical values, as shown in Fig. 1. The axis
of each variable in the variable set is moved to the front, or the axes
of other variables are hidden to facilitate the correlation analysis
between the scalar values and variables, as shown in Fig. 2(d).

Spatial view. Besides the scalar-value distribution of one group
or bicluster, the spatial distribution is also important for the local
correlation analysis. The probability of the voxels belonging to a
group or bicluster is calculated. The probability volume is visual-
ized by direct volume rendering to display the spatial distribution.

4 RESULTS

Two representative multivariate data sets in different domains were
used to verify the effectiveness and usefulness of our framework
in analyzing the local relationships in variables, biclusters, and
scalar values. We performed all experiments on an Intel Core i7-

7700K 4.20GHz CPU equipped with an NVIDIA GeForce GTX
1070 GPU.

4.1 Deep Water Impact Data Set
Six variables of the deep water impact data set [12] were used for
the experiment: pressure (prs), density in grams (rho), sound speed
(snd), temperature (tev), volume fraction water (v02), and velocity.

Domain experts are interested in the effects of the phenomena on
natural disasters, such as the rainfall. The rainfall is related to v02,
i.e., the fraction of water in the air or water vapor. Thus, we selected
the variable v02 as the starting variable to drill down to its children
and further sorted them by the number of biclusters. As shown in
Fig. 2(b), tev and snd are most associated with v02. Alternatively,
we can also sort the variable sets with at least three variables by the
number of biclusters as shown in Fig. 2(a). The first variable set is
also {snd, tev, v02} with the most number of biclusters, i.e., more
local relationships. The biclusters of the variables set {snd, tev,
v02} are projected on the scatter plot in Fig. 2(c). There are several
discernible groups, such as three distinguished groups A, B, C, and
other groups have less interesting or coherent features. Fig. 2(d)
shows the spatial and scalar-value distributions of the three groups.

The region with a high temperature in the group A is mainly dis-
tributed around the asteroid’s trajectory. The gravitational potential
energy of the asteroid is converted into the kinetic energy and the en-
ergy to overcome air resistance. Then the energy overcoming air re-
sistance turns into the heat energy, increasing the temperature near
the asteroid’s trajectory. For the group B, it is easy to identify two
regions with a high volume fraction of water (v02). One is above
the sea level impacted by the asteroid, and the other is the evacuated
channel left by the asteroid’s trajectory. For the former, the speed
of the asteroid reduced after impacting into the water, which causes
the surrounding water to splash around and leads to an increase of
the volume fraction of water above the impact position. A tsunami
may occur when the impact is strong enough. For the latter, due to
the high-temperature around the asteroid’s trajectory, vast amounts
of liquid water change into water vapor, and the water molecules
move and spread along the high temperature region. When there
are enough water and sufficient suspended particles in a colder stra-
tum, the water condenses together and produces rains if the water’s
gravity is higher than its buoyancy. In addition, H2O, a greenhouse
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Figure 3: Visual exploration of the variable set {HR, MIX, OH} in the turbulent combustion data set with 65th time step and 240× 360× 60
resolution. (a) The association matrix is sorted by the correlation value. (b) The biclusters of the variable set {HR, MIX, OH}. (c-f) The spatial
and scalar-value distributions of the groups A, B, C and D.

gas, can absorb the reflected solar radiation of the Earth’s surface,
which may increase the temperature around the area to some extent.
Therefore, we conclude that there would be a local rainfall with a
slight warming after the asteroid impacting into the ocean.

We compare our co-analysis framework with gradient similarity
measure (GSIM) [14] by the variable set {snd, tev, v02}. Fig. 2(e)
shows the overall spatial distribution of the groups A, B and C.
GSIM can measure the correlation of multiple variables by calcu-
lating the similarity among gradients at each voxel, and the result
is displayed in Fig. 2(f). Overall, the spatial distributions are simi-
lar. However, our framework can effectively extract local features
with a similar scalar-value pattern, i.e., local relationships between
variables and voxels, and each local feature has a specific value
combination revealing the local interaction of variables. In contrast,
the result of GSIM is a global feature for the three variables, and
it fails to gain insights into the local associations and their scalar-
value distributions.

4.2 Turbulent Combustion Data Set
This data set has five variables: Heat Release Rate (HR), Mass Frac-
tion of the Hydroxyl Radical (OH), Mixture Fraction (MIX), Scalar
Dissipation Rate (CHI), and vorticity (VORT).

We sorted the variable sets with at least three variables by the
correlation of the variable set in the association matrix, and selected
the first variable set {HR, MIX, OH} to explore its biclusters as
shown in Fig. 3(a). It is easy to identify four groups of biclusters
corresponding to four parts of the flame in Fig. 3(b), i.e., the outer
layer of the flame, the body of the flame, the inner layer of the
flame, and the non-combustion region. Fig. 3(c-f) show the spatial
and scalar-value distributions of the four groups.

The mixture fraction variable represents the fraction of fuel and
oxidizer and typically indicates where the flame locates when they
are in proper proportions. The non-combustion region in Fig. 3(f)
has the highest value of MIX, from 0.85 to 1 (pure fuel), while
the outer layer of the flame in Fig. 3(c) has the lowest value of
MIX, from 0 (pure oxidizer) to 0.1. This agrees with the state that
the flame is typically located where the fuel and oxidizer are in
stoichiometric proportions, either pure oxidizer or pure fuel will
result in the extinction of reaction [1]. The value in the inner layer
of the flame in Fig. 3(e) is relatively high, ranging from 0.7 to 0.8.
Several other groups correspond to the body of the flame due to the
imperfect clustering algorithm.

4.3 Discussion
Our framework clusters variables and voxels simultaneously to ex-
tract all biclusters with a similar scalar-value pattern automatically,
and focuses on analyzing the local relationships in variables, biclus-
ters, and scalar values.

Biclusters are generated in the preprocessing stage. The compu-
tational time for the deep water impact and turbulent combustion
data set is 40 seconds and 400 seconds, and the number of gen-
erated biclusters is 539 and 923 respectively. The computational
time ranges from less than one minute to several minutes, and is
roughly proportional to the number of biclusters, which depends on
the number of variables and the complexity of the volume.

Compared to previous methods in correlation analysis and multi-
dimensional transfer functions, our framework extends the analysis
of value combinations of two variables [8] to multiple variables.
In our experiments, we only present the results with three variables,
since the feature/phenomena is generally associated a subset of vari-
ables and our framework supports visual exploration of biclusters
of all variables. Besides, our framework can effectively identify
local features with a similar scalar-value pattern from multiple vari-
ables, which is complementary to previous global correlation anal-
ysis [14]. Compared to interactive classification [5], our framework
automatically generates all biclusters, groups biclusters to facilitate
the exploration of biclusters, and designs coordinated views to iden-
tify variable sets of interest without too much prior knowledge and
discover local correlations of variables efficiently.

5 CONCLUSION

In this paper, we proposed a co-analysis framework to guide the vi-
sual exploration of the local correlations in multivariate data based
on biclusters. The biclustering method is used to automatically
generate all biclusters only containing voxels with a similar scalar-
value pattern over multiple variables. They are grouped to reduce
the complexity of user interaction, and visually presented in four co-
ordinated views to facilitate interactive exploration of multivariate
data from different facets of multivariate data. Experiments demon-
strated that our co-analysis framework could effectively identify the
associated variable set related to a local feature/phenomenon, com-
pare the similarity of biclusters, and analyze the correlations of the
scalar values of different variables in local regions.

For future work, we plan to recommend meaningful groups or
biclusters in different variable sets to further improve the analysis
efficiency. We would like to extend our framework to time-varying
multivariate data to capture the coherence in the time space.
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