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ABSTRACT

Text labeling for classification is a time-consuming and unintuitive
process. Given an unannotated text collection, it is difficult for
users to determine what label to create and how to label the initial
training set for classification. Thus, we present an interactive vi-
sual analytics system for incremental text classification based on a
semi-supervised topic modeling method, modified Gibbs sampling
maximum entropy discrimination latent Dirichlet allocation (Gibbs
MedLDA). Given a text collection, Gibbs MedLDA generates top-
ics as a summary of the text collection. We design a scatter plot
to display documents and topics simultaneously to show the topic
information, and this helps users explore the text collection struc-
turally and find labels for creating. After labeling documents, Gibbs
MedLDA is applied to the text collection with labels again, and it
generates both the topic and classification information. We also pro-
vide a scatter plot with the classifier boundary and a matrix view
to present weights of classifiers. Users can iteratively label docu-
ments to refine each classifier. We evaluate our system via a user
study with a benchmark corpus for text classification and case stud-
ies with two unannotated text collections.

Index Terms: Human-centered computing—Visualization—
Visualization application domains—Visual analytics;

1 INTRODUCTION

As an increasing number of texts are being produced and archived,
organizing these documents has become an essential task in text
analysis. Text classification is a widely used method for organiz-
ing an extensive collection of documents and has many applica-
tions, such as text retrieval and filtering. Generally, text classifi-
cation is a supervised or semi-supervised method and requires a
sufficient number of annotated documents to train a high-quality
model. Different applications may need differently annotated docu-
ments in various domains, and thus, many documents are labeled
manually by domain experts. However, text labeling is usually
a time-consuming and unintuitive process. Thus, obtaining high-
quality annotated documents with which to train a strong classifier
is a challenging task in text classification.

Active learning is a machine learning method widely used to re-
duce labeling cost. An active learning algorithm iteratively selects a
sample that is most deserved to be labeled based on selection strate-
gies. However, users have little control over the sample selection.
To overcome this flaw, visual-interactive labeling with visual ana-
lytics has been proposed. Seifert and Granitzer [27] provided an
interactive visualization of a classifiers a-posteriori output probabil-
ities to help users to select a sample to label. Heimerl et al. [17]
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used the search results of the Apache Lucene framework as an ini-
tial annotated training set and proposed three methods for labeling
documents for classifiers. However, when users are not familiar
with the text collection, previous works do not help them determine
what label to create.

To address the above shortcomings, we introduce topic infor-
mation to the practice of visual-interactive labeling. Topic infor-
mation provides a global overview of what labels to create. Fur-
thermore, visual-interactive labeling requires classification infor-
mation to guide users in finding document candidates for labeling.
Thus, we require both topic information and classification informa-
tion for users to create labels and to label documents. We select
Gibbs MedLDA [33] to analyze the text collection, because Gibbs
MedLDA integrates a topic model (e.g., latent Dirichlet allocation
(LDA)) with a max-margin prediction model (e.g., support vector
machines (SVMs)), and provides both topic information and classi-
fication information. However, Gibbs MedLDA may not be suitable
for visual-interactive labeling, as labels are added to a text collec-
tion gradually. Therefore, we modify Gibbs MedLDA to produce
a multi-label semi-supervised topic model with an active learning
algorithm.

To allow users to label documents intuitively, we propose an in-
teractive visual analytics system for incremental classification. It
contains three parts: topic visualization, classification visualization,
and document visualization. Topic visualization helps users under-
stand the text collection to create labels. Classification visualization
helps users understand and refine classifiers. Document visualiza-
tion displays the meta information and labels of documents.

The main contributions of this paper are as follows:

• We change Gibbs MedLDA to a multi-label semi-supervised
topic model and integrate a margin-based active learning algo-
rithm with Gibbs MedLDA for visual-interactive labeling.

• We present an interactive visual analytics system for incre-
mental classification. Our system helps users create labels
and find document candidates for labeling.

• We evaluate the usability of our system through two case stud-
ies and a user study.

2 RELATED WORK

Because our system is based on the supervised topic model, we in-
troduce the supervised topic model, topic model visualization, and
interactive visual classification.

2.1 Supervised Topic Model
LDA, proposed by Blei et al. [6], stratifies an extensive collection
of documents by projecting every text into a low-dimensional space
spanned by a set of bases that capture the semantic aspects, also
known as topics, of the text collection. Although we can easily ob-
tain useful information other than text content, such as rating scores
of reviews and tags in documents, this information cannot be di-
rectly utilized in the original LDA to generate a better topic model.
Blei et al. [5] further proposed a supervised topic model that cap-
tures other information as a regression response and yields latent
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topical representations that are more discriminative and more suit-
able for prediction tasks. Supervised topic models predominantly
employ likelihood-driven objective functions, which may become
complicated for learning and inference, especially the exponential
family response. Zhu et al. [32] introduced MedLDA, which inte-
grates the mechanism behind the max-margin classification models
with hierarchical Bayesian topic models and made the learning and
inference process much simpler. Recently, Zhu et al. [33] employed
a fast and straightforward Gibbs sampling algorithm to infer the
MedLDA model. We use Gibbs MedLDA in our paper, and adapt
it as a multi-label semi-supervised model due to the characteristics
of visual-interactive labeling.

2.2 Topic Model Visualization
Topic models have commonly been used to understand text collec-
tions. Chaney and Blei [8] used the form of a list of words to show
the latent semantic structure produced by a topic model and to help
users understand topic meanings. However, this method does not
display the correlation between topics. Chuang et al. [12] proposed
Termite, which uses a tabular layout to promote the comparison of
terms both within and across latent topics. Some studies not only
visualize the topic model but also refine the topic model via user in-
teractions. Choo et al. [10] introduced UTOPIAN, which employs a
modified t-SNE as the visual layout to display documents and topics
in a scatter plot. Because topics are obtained by a semi-supervised
nonnegative matrix decomposition, users can add constraints to re-
fine the topics. El-Assady et al. [15] presented a modular visual
analytics framework, tackling the understandability and adaptabil-
ity of topic models through a user-driven reinforcement learning
process.

Moreover, many studies have analyzed the change in topics over
time. ThemeRiver [16] visualizes thematic variations over time
within an extensive collection of documents. Liu et al. [31] com-
bined the river metaphor with a word cloud and proposed TIARA
to better show the topic meaning of theme rivers. To better display
the hierarchy of topics, Dou et al. [13] employed a Bayesian rose
tree (BRT) to organize topics into a hierarchical structure and then
used a tree map to show the topics. They also applied the hierarchi-
cal ThemeRiver to show topics over time. TopicOnTiles [9] reveals
the social media information relevant to an anomalous event in a
multi-level, tile-based map interface. It adopts the STExNMF topic
modeling technique to extract spatiotemporally exclusive topics cor-
responding to a particular region and time point.

In this paper, we visualize topics to help users visually explore
text collections. Documents and topics are displayed in the topic
scatter plot via a dimensionality reduction method. We also present
label information in the topic scatter plot, unlike UTOPIAN [10].

2.3 Interactive Visual Classification
Several research studies have had users iteratively refine a classifi-
cation model by labeling new instances or modifying previous clas-
sification decisions. Eaton et al. [14] showed a regression model
using a 2D scatter plot. The horizontal axis of the scatter plot rep-
resents the diversity of documents, and the vertical axis represents
the prediction value of the regression function. Each repositioned
data instance acts as a control point for altering the learned model,
using the geometry underlying the data.

In addition, many studies have integrated visualization with ac-
tive learning. Berger et al. [2] proposed a 2D scatterplot interface
rather than a list-based interface for efficient and effective data an-
notation. They also proposed a semi-supervised NEC approach to
learn custom embeddings for the entities being classified. Seifert
and Granitzer [27] integrated visualization with active learning,
which can result in a better judgment of whether sample points are
outliers or misclassified. Users can use an interactive visualization
of the classifiers a-posteriori output probabilities to select a sample

to label. Settles [29] proposed a new interactive annotation inter-
face with a novel semi-supervised learning algorithm, DUALIST,
which can pose queries on both features (e.g., words) and instances
(e.g., documents).

It is difficult for users to label a large-scale text collection. To
solve this problem, Seifert et al. [28] displayed clusters of docu-
ments and labels by using Information Landscape. A text collec-
tion is explored through the cluster hierarchy, and document can-
didates are found for classification. Similarly, Heimerl et al. [17]
obtained an initial annotated training set for classification using the
search results of the Apache Lucene framework and discussed three
methods for labeling data. Poursabzi-Sangdeh et al. [25] developed
an interactive system similar to ours to help users annotate docu-
ments: topic models provide a global overview of what labels to
create, and active learning guides users to the appropriate docu-
ments to label. Moehrmann and Heidemann [23] designed an in-
terface to show clustering results for images and enabled users to
quickly and efficiently label a large-scale dataset. Paiva et al. [24]
displayed the similarity between images by using neighbor-joining
(NJ) trees. Other images can then be labeled according to the
NJ trees. To illustrate the impact of visual-interactive labeling ap-
proaches, Bernard et al. [3] experimented to compare active learn-
ing approaches with visual-interactive labeling approaches. More-
over, Bernard et al. [4] contributed a systematic quantitative analy-
sis of different user strategies when selecting instances for labeling
with visual-interactive interfaces.

With the growing adoption of machine learning techniques, there
has been a surge of research interest in making machine learning
systems more transparent and easier to interpret. Choo et al. [11]
employed linear discriminant analysis for classification and dimen-
sionality reduction, and displayed the results through a parallel
coordinate plot, a scatter diagram, and a heat map. The display
helps users to better understand the meaning of each reduced di-
mension. Brooks et al. [7] investigated approaches for supporting
feature ideation and proposed FeatureInsight, an interactive visual
analytics tool for building new dictionary features for text classifi-
cation problems. To help users assess model performance quickly
and accurately, Ren et al. [26] presented Squares, a performance vi-
sualization tool for multi-class classification problems. Moreover,
Krause et al. [19] proposed a visual analytics workflow to help
data scientists and domain experts explore, diagnose, and under-
stand the decisions made by binary classifiers. Ming et al. [22] ex-
tracted standardized rule-based knowledge representation from the
model’s input-output behavior and designed RuleMatrix, a matrix-
based rule visualization, to help users navigate and verify the rules
and the model.

In our paper, we employ a topic model instead of the hierarchi-
cal clustering [28] to help users explore the text collection to create
labels and find document candidates for labeling. In contrast to the
active learning selection used with ALTO [25], We combine topic
overview with visual-interactive labeling. In visual-interactive la-
beling, users have more control over the sample selection.

3 TASK ABSTRACTION AND SYSTEM OVERVIEW

This section introduces task abstraction and the pipeline of our sys-
tem.

3.1 Task Abstraction
To help users explore text collections structurally and find docu-
ment candidates for classification, we carefully analyzed user re-
quirements. The users of our system are people who need to train
classifiers for an unannotated text collection or retrieve documents
of interest. Users may be not familiar with the text collection and
may not know its categories. Our system should be able to display
a summary to help users quickly analyze the text collection. Fur-
thermore, the original text of documents should be shown for users
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Figure 1: The pipeline of our system. Our system loads the text col-
lection and trains the Gibbs MedLDA to generate topics. The user
creates new labels according to the topic visualization and retrains
Gibbs MedLDA to refine the classifiers. With the updated topic and
classification information, the user continues to label documents to
refine the classifiers until a satisfactory result is obtained.

to ensure what labels should be added to documents.
Moreover, it is time-consuming to label all the documents in a

text collection. We expect users to label only some document can-
didates, which significantly improve the performance of classifiers.
Additionally, we need to present classification information to help
users who have machine learning knowledge to understand, diag-
nose, and refine the classifiers. The analysis tasks are summarized
as follows:

T1 Provide a summary of the text collections so that users can
quickly understand its content.

T2 Display information about the classifiers to help advanced users
to understand, diagnose, and refine them.

T3 Assist users in finding document candidates to improve the per-
formance of the classifiers.

T4 Show the original text of the documents for users to ensure the
accuracy of the document labels.

3.2 System Overview
According to the tasks above, Fig. 1 shows the pipeline of our sys-
tem, including two parts: the semi-supervised topic model (a mod-
ified Gibbs MedLDA), and the visualization component. We first
preprocess the text collection by tokenizing the text, removing the
stop words, and performing lemmatization. Then, the text collec-
tion is represented with the bag-of-words model as the input to the
topic model. After the text collection is processed using the topic
model, the topic information and classification information are fed
to the visualization component. Fig. 2 shows the interface of our
system. The visualization component contains three parts: topic vi-
sualization, classification visualization, and document visualization.
For topic visualization (T1), we design a topic scatter plot to visu-
alize the topic and document distributions, and use a word cloud to
show the meaning of the topics. The topic visualization provides a
global overview of the text collection. According to the topic visu-
alization, users can create new labels with the corresponding initial
training documents and retrain the model. After the model is re-
trained, the visualization component will update. Users can then
find and label the document candidates from the classification visu-
alization and document visualization to refine the Gibbs MedLDA
until they are satisfied. For classification visualization (T2, T3), we
design a classification scatter plot to display the classification re-
sult (Fig. 6) and a topic weight view to help users understand the
classifiers (Fig. 2(f)). Users can acquire the classification informa-
tion from this view, and then refine the classifiers according to their

domain knowledge. The label list displays the basic classification
result of the classifiers. For document visualization (T3, T4), we
provide a text list and a plain text view to help users verify the doc-
ument labels. The text list shows the document meta information.
Moreover, the text list can show uncertain documents that are near
the classifier boundary for users to label (Fig. 2(d)). By clicking a
document, users can see the original text of a document in the plain
text view.

4 SEMI-SUPERVISED TOPIC MODEL

In this section, we first introduce Gibbs MedLDA [33] and describe
how to adapt it as a multi-label semi-supervised model. We also
employ the margin-based active learning concept in our model. To
better account for topics, we adopt a method to extract topic-related
phrases.

4.1 Gibbs MedLDA
Supervised topic models integrate a topic model with a text classi-
fication model to generate more discriminative, more suitable top-
ics for text classification. Recent studies show that text classifica-
tion based on a supervised topic model performs better than that
based on a combination of LDA and SVM. Thus, we use the super-
vised topic model Gibbs MedLDA instead of an unsupervised topic
model in our system. Gibbs MedLDA integrates a max-margin clas-
sification model with a topic model rather than likelihood-driven ob-
jective functions. It employs the Gibbs sampling algorithm, which
makes training fast and iterative.

For Gibbs MedLDA, the text collection can be represented as

C = (wd ,yd)
D
d=1, where wd = (wdn)

Nd
n=1 denotes the words appear-

ing in document d, and yd denotes the label for document d (−1
or +1). D represents the document number in the text collection.
Nd represents the number of words in document d. Gibbs MedLDA
first generates topics from documents, and then a label is generated
for each document according to the topics.

For our system, the original Gibbs MedLDA is not suitable for
two reasons: a document may have multiple labels, while the orig-
inal Gibbs MedLDA only classifies with a single label; there are a
large number of documents without labels in our system, while the
original Gibbs MedLDA model is a supervised learning algorithm.

To address the first point, we extend the Gibbs MedLDA to use
multiple labels with the one-vs.-rest strategy. For each label, we
apply a two-class classifier. Thus, yd is a vector instead of a scalar,

and yd = (ydl)
L
l=1 denotes the labels appearing in document d. L

represents the number of labels in the text collection. To address
the second point, we generate topics according to all documents and
calculate the classification loss based on the annotated documents.
For the documents that are not labeled, we add a new label value
0 (ydl = −1,0,+1). Thus, the topics are generated from the docu-
ments. Each document label is generated according to the topics if
the label value is not 0.

4.2 Active Learning with Gibbs MedLDA
Users can assign labels to document candidates and retrain the
model. Compared with the number of documents, few documents
are labeled by users. Documents with a high absolute classifier
predicted value are likely to be predicted correctly, especially in
the case of negative samples. Moreover, the classification part of
Gibbs MedLDA is based on max-margin classification models. The
label margin is the prediction value multiplied by the true label
value ydl(ηT

l · z̄d). ηl are the parameters of the classifiers in Gibbs
MedLDA, and z̄d is the topic proportion of document d. Topic pro-
portion is the average topic assignment of a document z̄d or a text
collection θ . We calculate classification loss according to the hinge
loss max(0, �− ydl(ηT

l · z̄d)). The � is the margin of the classifiers,
which is four in this paper. Therefore, only documents with a label
margin less than � affect the classifiers. Thus, documents with a
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Figure 2: Interface of our system using a result from Signal Media news with seven labels. (a) The label list shows the labels in the text
collection, and the glyph presents the basic classification results of the labels. (b) The topic scatter plot shows the topic and document
distributions. (c) The classification scatter plot displays the classification results of a classifier (Fig. 6). (d) The text list contains documents
sorted by uncertainty and supports document labeling. (e) The word cloud shows the keywords of a topic to help users understand the meaning
of the topics. (f) The topic weight view helps users understand the classifiers. (g) The right-click menu provides training, keyword search,
and undo operations.

high absolute classifier predicted value have little influence on the
classifiers if the labels for the documents are predicted correctly.
We intend to automatically assign labels to these documents and
allow users to pay close attention to documents near the classifier
boundary.

Algorithm 1 Margin-Based Active Learning Adapted to Gibbs
MedLDA

Input: text collection C = (wd ,yd)
D
d=1.

1: for t=1 to T do
2: Assign labels to documents.
3: Train the text collection C via Gibbs MedLDA.
4: for each label l in L do
5: for each document d in D do
6: Predict its label ydl , the score is the absolute prediction

value score(ydl) = |ηT
l · z̄d |.

7: end for
8: calculate the threshold value bl according

to the score values of annotated documents,
bl = max(w1�,w2mean(score(ydl),∀d,ydl �= 0)), where
w1, w2 are the weights to balance values. In this paper,
we set w1 as 2, and w2 as 0.8.

9: Select a set of documents Cs = {dl|score(ydl)> bl ,ydl =
0}, and update the labels ydl = sign(ηT

l · z̄d).
10: end for
11: end for

We integrate the margin-based active learning algorithm [1] with
the Gibbs MedLDA, as shown in Algorithm 1. We average the ab-
solute classifier predicted value of the documents labeled by users,

and use this mean value multiplied by a weight as threshold bl to
filter out the unannotated documents with a high absolute classifier
predicted value. We then add the classifier predicted labels for these
documents to the model and retrain the model. The mean value may
be too small. Therefore, we set a minimum threshold bl according
to the margin of classifiers �.

4.3 Topical Phrase Mining
Each generated topic is a distribution over words and is usually rep-
resented by the top k words. It would be difficult for users to under-
stand the meaning of topics if only the top single terms were shown.
Single terms are often part of indicative phrases, which are lost in
a simple unigram representation. Thus, we select noun phrases to
interpret the topics. We extract topic-related phrases using a simpli-
fied version of an automatic labeling algorithm [21]. We generate
candidate phrases by extracting noun phrases chunked by TextBlob
and filter out the noun phrases that appear only one time. TextBlob
is a Python library for processing textual data. We define the seman-
tic relevance score Score(P, t) of a candidate phrase P = w0w1...wm
(wi is a word) for topic t as follows:

Score(P, t) = log
p(P|t)
p(P)

= ∑
0≤i≤m

log
p(wi|t)
p(wi)

(1)

where the independence of wi is assumed, p(wi|t) is the distribution
of words in topic t, and p(wi) is the distribution of words. p(wi|t)
is the topic result of Gibbs MedLDA. In equation (1), we sum the
distribution p(wi|t) of the words in the phrase. The larger the sum,
the more topic-relevant the phrase. p(wi) is used to correct the bias
toward favoring short phrases. Moreover, we expect a good label to
have high semantic relevance to the target topic and low relevance
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to other topics. Therefore, we use the following modified scoring
function:

Score′(P, ti)
= Score(P, ti)−μScore(P, t1,..,i−1,i+1,k)

= (1+
μ

k−1
)Score(P, ti)

− μ
k−1

∑
j=1,...,k

Score(P, t j) (2)

We use Score′(P, ti) to rank the candidate phrases and select several
top candidate phrases to represent the topic.

5 VISUAL DESIGN

In this section, we introduce three major parts of our visualization:
topic visualization, classification visualization, and document visu-
alization.

5.1 Topic Visualization
Gibbs MedLDA generates topic distributions over words, the topic
proportions of documents, and classifier predicted labels for docu-
ments. As shown in Fig. 2, we design a topic scatter plot to show
both documents and topics based on the topic distribution.

We show documents and topics simultaneously in the topic scat-
ter plot. The topics are encoded as a T ×T matrix M via one hot
encoding. T is the number of topics. Thus, matrix M is a diagonal
matrix. Each row of matrix M represents a topic. The topic propor-
tions of the documents z̄ is a D×T matrix. We concatenate these
two matrices together as a (D+ T )× T matrix. We then employ
t-SNE [30] to reduce the size of the matrix from (D+ T )× T to
(D+T )× 2. Thus, the positions of the documents and topics are
calculated simultaneously through t-SNE, and the positions are ini-
tialized by PCA. We choose t-SNE rather than other dimensionality
reduction methods because t-SNE reveals data that lie in multiple
different manifolds or clusters.

We use a circle to represent a document, and each sector of the
circle represents the labels for the document. Different colors are
used to distinguish different labels. Moreover, users may be inter-
ested in whether a document is labeled or not, and in the classifier
predicted labels of the documents. Thus, we use two similar colors
to represent a label: the lighter color for the classifier predicted pos-
itive labels, and the darker one for the user annotated labels. The
gray circles represent the documents that do not contain any labels.
In addition to the documents, the topics are also shown as larger
blue circles with several keywords in the topic scatter plot. The size
of a topic circle is based on the proportion of that topic in the text
collection. It may help users to judge the topic of a cluster of docu-
ments by showing the documents and the topics in the topic scatter
plot at the same time. Topic information can help users understand
the topic distribution in the text collection. According to the topics,
users can find corresponding documents in the topic scatter plot.

The topic distribution is updated after each training. To ensure
the continuity of the t-SNE result and reduce the time cost, we use
the previous t-SNE result as the initial value, and run t-SNE for ten
iterations, as ten iterations are adequate to reach convergence.

Because the topic scatter plot shows only a small number of key-
words, users may not be able to understand the topic meaning accu-
rately. Thus, we provide a word cloud view in our system. The size
of a word represents the score value of each phrase, for which the
calculation is shown in Section 4.3. Users can browse the keywords
for every topic by clicking the topic circle in the topic scatter plot.

5.2 Classification Visualization
The classification result of Gibbs MedLDA is the classifier pre-
dicted value of documents yd . The classification scatter plot
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Figure 3: Glyph of the education classifier. The green and red color
represent positive and negative documents, respectively. The pro-
portion of user annotated positive or negative documents (the dark
color) are compared with the proportion of classifier predicted pos-
itive or negative documents (the lighter color) via the length of the
bars. The bars with greater height show the proportions of user
annotated documents that are correctly predicted by classifiers.

presents the classification result of a label, as shown in Fig. 6. The
classification scatter plot view and topic scatter plot view can be
switched using the navigation tabs, as shown in Fig. 2.

The classification scatter plot view is divided into two parts. The
green area represents the classifier predicted values that are larger
than zero, and the red area represents the classifier predicted val-
ues that are less than zero. Therefore, the vertical axis in the view
presents the classifier predicted value. The horizontal axis repre-
sents the diversity of documents, which is projected by t-SNE based
on the topic proportions of documents. The color of the circle is the
same as in the topic scatter plot. The darker grey color represents
user annotated negative labels.

Because the classification scatter plot can only show the classi-
fication result of a label, we add a label list to display the basic
classification information for the labels. The label list shows the
proportions of user annotated positive or negative documents com-
pared with the proportions of predicated positive or negative doc-
uments, and the proportions of user annotated documents that are
correctly predicted. We use a simple glyph to display the classifica-
tion result, as shown in Fig. 3. The green color represents positive
label information. The red color represents negative label informa-
tion. The lighter color represents classifier predicted positive or
negative documents, and the darker color represents the user an-
notated documents. The part with a darker color area of greater
height represents user annotated documents that correctly predicted
by classifiers, which means that the classifier predicted label is in
accordance with the user annotated label. The width of the area
represents the proportion of the corresponding documents.

Moreover, we also provide a topic weight view to show the
classifier-topic relationship to help users understand the classifiers.
As shown in Fig. 5, we display the weights of the classifiers in the
form of a matrix view [12]. Each row represents a classifier, and
each column represents a topic. Each circle represents the topic
weight of a classifier, and the green and red colors respectively rep-
resent positive and negative values. The size of the circle represents
the classifier predicted value. We reorder the rows and columns ac-
cording to their similarity scores by applying the Bond Energy Al-
gorithm [20]. As a result, similar classifiers and topics are shown
in closer proximity.

5.3 Document Visualization

To help users to explore the text collection, we provide a text list
and a plain text view. The text list (Fig. 2(d)) displays a list of docu-
ments, including titles and other meta information. Users can click
a label in the label list or a topic in the topic scatter plot to explore
the corresponding documents. For topics, we sort the documents
according to the topic correlation calculated by z̄dk/θk. The z̄dk is
the proportion of topic k in document d, and we use the proportion
of topic k in the text collection θk to correct the bias toward favor-
ing topics of low proportion in the text collection. For labels, users
can select relevant documents, irrelevant documents, and uncertain
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(a) (b)

Figure 4: (a) Plain text view showing the original information for a
document. (b) New label view containing a new label with an initial
training set.

Figure 5: Topic weights for each classifier, which can be used to
suggest documents in which topics that need to be labeled by users.

documents, which are calculated by the classifier predicted value.
Users can browse the text list and click an item in the list to see the
full text in the plain text view (Fig. 4(a)). When users find a docu-
ment candidate, they can click the add button to label the document
or move over the existing labels to remove labels associated with it.
If there are no suitable labels for the document, users can create a
new label. Our system intelligently suggests a series of documents
from different topics, in addition to the selected document, and al-
lows users to judge whether they are related, as shown in Fig. 4(b).
Thus, we create an initial training set with positive and negative
documents for the newly-built label.

5.4 Interactions
In addition to the views and interactions mentioned above, we fur-
ther provide a set of interactions to help users explore the text col-
lection for text classification. The user can obtain document infor-
mation for a document circle in the scatter plots by moving over or
clicking the document circle. When the user browses the text list,
our system will highlight the corresponding document circle in the
scatter plot. We provide zoom and pan interaction for the scatter
plot. Our system also supports training, keyword search, and undo
operations in the right-click menu, as shown in Fig. 2(g).

We provide two ways to modify the document labels. One is
by directly modifying the labels in the text views, and the other is
by dragging the document circle in the classification scatter plot to
another area. When the user labels documents, she/he can click the
training button to retrain the Gibbs MedLDA topic model.

In the beginning, our system loads the text collection and dis-
plays its topic overview. Users then create labels according to the
topic scatter plot and word cloud. After retraining, our system vi-
sualizes the classification information via the classification scatter
plot and topic weight view. Users can check the classifier bound-
ary in the classification scatter plot and the topic weights of the
classifiers in the topic weight view, and then label the document
candidates. Moreover, users can select a label from the label list
and label uncertain documents in the text list.

6 CASE STUDIES

We use two unannotated text collections to demonstrate the usabil-
ity of our system. Our first text collection is the visualization publi-

cation data collection [18], which contains IEEE Visualization/VIS
publications from 1990 to 2014. This text collection has 2,592 doc-
uments, 6,310 words, and 214,917 tokens. The second text col-
lection is a subset of the Signal Media dataset of one million news
articles. Most of the articles are English, but non-English and multi-
lingual articles are also included. The sources of these articles in-
clude major publishers, such as Reuters, in addition to local news
sources and blogs. We randomly select a sample of English articles
for our case study, which has 7,033 documents, 3,0158 words, and
1,434,270 tokens.

The number of topics is difficult to determine for an unknown
text collection. Users usually select a large number. The larger
the number of topics, the less text information is lost. However,
a large number of topics is difficult to visualize, because it may
easily prevent users from perceiving useful information. We tested
several values for the number of topics and found that 30 was the
suitable number for Gibbs MedLDA. First, we run Gibbs MedLDA
for 100 iterations to train the topics. At each retraining, we run
Gibbs MedLDA for ten iterations, as the likelihood function shows
almost no change with a higher number of iterations.

Our case studies were performed on a MacBook Pro with an In-
tel Core i5 CPU and 8 GB memory. For IEEE visualization publica-
tions, it takes 5.34 s for the retraining, and 17.03 s for dimensional-
ity reduction. For Signal Media news, it takes 32.17 s for retraining,
and 61.48 s for dimensionality reduction.

6.1 IEEE Visualization Publications
We use the visualization publication data collection to test whether
our system can retrieve related papers according to a few annotated
papers. Firstly, we load the visualization publication data and train
the Gibbs MedLDA to generate 30 topics. Fig. 6(a) shows the sum-
mary of the text collection, where two keywords for each topic are
displayed in the topic scatter plot. We browse keywords in the topic
scatter plot and click the topic circle to verify the topic meaning in
the word cloud view. We find that topic 24 is about text visualiza-
tion. We select this topic and check the word cloud and the text list
to see whether they indicate that the topic is about text visualization.
We then select a paper about text visualization from the text list and
create a new label (text data). After that, our system automatically
recommends papers from different topics for us to label, as shown
in Fig. 4(b). After we label these papers, our system shows the
classification information in Fig. 6(b). In this figure, there is only
one user annotated positive paper. We check the boundary of the
classifier and label some positive papers. The result after retraining
is shown in Fig. 6(c). The number of classifier predicted positive
papers is increased. In addition, the diversity of positive papers is
increased. Therefore, we select the topics with a positive weight, ex-
cept topic 24. We find some papers show prediction errors, such as
visualizations about graphs, time series data, and volume data. We
then fix the labels of these papers and retrain the model. The result
is shown in Fig. 6(d). The diversity of positive papers is decreased,
and only topic 24 has a positive weight. Then, we select the ”text”
label in the label list and order the papers by uncertainty in the text
list in Fig. 6(e). We view the papers in the text list and label those
papers. After several iterations, we find that all classifier predicted
positive papers are about text visualization. We check the classifier
boundary in the classification scatter plot. The classifier boundary
shows good separation between the positive and negative papers,
as shown in Fig. 6(f). Thus, the classifier can correctly distinguish
papers about text visualization from other papers.

6.2 Signal Media News
For Signal Media news, we do not know the categories of the news
collection. The topic summary of the text collection is shown in
Fig. 7. We create labels while browsing topics. The first created
label is sports. The classification result obtained after we create
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Figure 6: Visual exploration process of IEEE visualization publication.

(a) (b) (c)

Figure 7: Classification result of sports labels in Signal Media news. (a) Creating sports labels. (b) Labeling documents around the classifier
boundary. (c) Unrelated documents labeled as negative for topic 21.

the sports label is shown in Fig. 7(a). We find that some document
circles in the cluster are not predicted as positive. Therefore, we
click the circles to view the text and label the documents. We then
retrain the model, and the result is shown in Fig. 7(b). We find that
the classifier predicts some documents positive for topic 21. There-
fore, we click topic 21 to check whether the topic is about sports.
We find that some documents are about sports, and some documents
are personal stories. We add the correct labels to the classifier mis-
predicted documents and retrain the model. The updated result is
shown in Fig. 7(c).

We then add six labels to the text collection, as shown in Fig. 2.
Documents may have multiple labels. For example, a label (finance
and economics, for example) contains many topics. Thus, we want
to add more detailed labels to further subclassify the documents.
We find that the keywords of topic 7 and topic 27 are average price,
equities research analysts, and Sydney Morning Herald. Therefore,
we guess that these two topics are relevant to stocks. Additionally,
we analyze some documents near topic 7 and topic 27 by viewing
the detailed content. It verifies our guess. We create a new label
(stock) and use it to label the relevant documents. Good results are
obtained after the initial training dataset is labeled. We then check
the topic weight view and find three topics (7, 11, 27) that have
positive weights, as shown in Fig. 5. We view the phrases and docu-
ments for topic 11 and find that topic 11 is not related to stocks. We
then click topic 11 and add correct labels to the classifier mispre-
dicted documents related to that topic. We then retrain the model,
and the weight of topic 11 becomes negative. Finally, we refine the
classifier by labeling some documents with high uncertainty. The
final result is shown in Fig. 8.

�����

Figure 8: Topic scatter plot of Signal Media news. We add the label
stock to further subclassify documents with the label finance and
economics.

7 USER STUDY

In this section, we evaluate the usability of our system through a
user study. The number of topics and iterations of our system in the
user study were the same as in the case studies.

7.1 Evaluation Setup and Procedure

For our user study dataset, we use a sample of Reuters RCV1-V2,
which is well-known and widely used as a benchmark corpus with
gold labels for text classification. The problem with using a bench-
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Table 1: F1 score and label number (the number of correct labels/the total number of labels) of RCV1-V2 classification.

train test

Sport Weather Health Sport Weather Health

linear SVM with all labels 97.76% 76.60% 2.01% 95.72% 61.85% 1.14%
LDA + linear SVM with all labels 95.89% 74.31% 0% 95.13% 68.36% 0%
Gibbs MedLDA with all labels 99.88% 96.43% 93.14% 96.99% 81.26% 68.59%
Active learning linear SVM 93.38%(100/100) 83.27%(100/100) 41.09%(100/100) 91.37% 74.80% 36.65%
Active learning LDA + linear SVM 75.00% (100/100) 60.25%(100/100) 4.31%(100/100) 74.84% 55.40% 3.14%
Active learning Gibbs MedLDA 88.97%(100/100) 60.10%(100/100) 12.15%(100/100) 87.87% 37.82% 4.41%
User 1 95.39%(64/65) 81.00%(71/75) 59.15%(54/58) 94.75% 78.47% 48.05%
User 2 73.94%(107/107) 74.39%(72/77) 56.36%(74/74) 84.50% 74.39% 61.19%
User 3 87.91%(37/37) 59.61%(32/32) 60.38%(39/39) 90.83% 57.37% 55.63%
User 4 94.27%(92/97) 80.68%(163/169) 59.50%(100/111) 95.50% 76.89% 53.74%
User 5 86.55%(37/41) 80.14%(37/40) 62.42%(51/54) 86.56% 80.62% 51.36%

mark corpus is that we need to provide the gold labels and ask users
to label the documents according to labels with proven accuracy,
rather than allowing them to label the documents according to their
judgment. Moreover, we can not ensure that the annotated docu-
ments are in accordance with the labels with proven accuracy. The
advantage is that we can compare the performance of each partici-
pant with that of automatic algorithms.

Reuters RCV1-V2 contains approximately 810,000 Reuters En-
glish language news stories from 1996-08-20 to 1997-08-19, which
are organized by three different category sets: topics, industries,
and regions. Each document is assigned at least one label in each
category set. The dataset is divided into four parts: one training
dataset, and three testing datasets. The training set contains 23,149
news articles. To reduce the workload for the user study, we use a
sample from Reuters RCV1-V2 containing 6,235 documents, with
documents related to the topics of government and society. We re-
quire users to label three categories of news: sports, weather, and
health. There are 197 news articles about health, 135 news articles
about weather, and 913 news articles about sports in our training
dataset. In addition, to test the precision of the classifiers, we select
a sample from the testing dataset that contains 54,631 documents.
There are 1,568 news articles about health, 886 about weather, and
8,259 about sports in our testing dataset.

We invited five users to take part in our user study. Most of them
are from our visualization group. User 1 and User 2 are studying
text visualization. User 3, User 4, and User 5 have no background in
visualization or machine learning. We demonstrated the way to use
our system and the meaning of each view to each participant. We
also showed them how to use our system with the 20 Newsgroups
dataset, and we then asked them to label documents themselves to
train the classifiers.

7.2 Results and Discussion
Table 1 shows the results of our user study. We show the classifica-
tion result of each label with the F1 score. We also show the number
of correct labels and the total number of labels annotated by users
in brackets behind the F1 scores. We add the linear SVM with all
labels, LDA + linear SVM with all labels, Gibbs MedLDA with
all labels, active learning linear SVM, active learning LDA + linear
SVM, and active learning Gibbs MedLDA for comparison. The
SVM adopts tf-idf (term frequency-inverse document frequency)
features. The penalty parameter C of the SVMs is 1.0. The number
of topics in LDA is 30, the same as Gibbs MedLDA. The selection
strategy for active learning depends on the predicted value of the
classifiers. The size of the initial training set is thirty documents for
each classifier, and we add ten documents with the minimum ab-
solute prediction values to the classifier at each iteration. Because
for most of the labels, the number of labels annotated by the five

users for each classifier is less than 100, we add 100 labels for each
classifier through active learning. We run all algorithms 100 times,
and we use the mean values as the algorithm result.

From Table 1, we can see that Gibbs MedLDA with all labels
achieves the best F1 score. Thus, Gibbs MedLDA obtains better
classification performance than the linear SVM and LDA + linear
SVM. Moreover, the SVM with all labels does not work well with
labels that only have a few related documents in the text collection,
especially for the health label. This may be because the positive
and negative documents are quite imbalanced. However, the active
learning linear SVM shows a high score for the weather and health
labels. The active learning selects uncertain documents to learn.
The positive and negative documents are not imbalanced in the se-
lected documents. The active learning Gibbs MedLDA and active
learning LDA + linear SVM both show poor classification perfor-
mance. The topic models reduce the number of features from the
number of terms to the number of topics. Thus, the model does not
easily overfit. However, the classifiers may underfit, and not be able
to find suitable features to distinguish the documents. When there
are enough label constraints, Gibbs MedLDA yields more discrimi-
native topics for classification.

Although the active learning Gibbs MedLDA has a low score for
weather and health labels with one hundred annotated documents,
all users show a good classification result with fewer labels. This
suggests that our system can help users find document candidates
for labeling, which can significantly improve the classification re-
sult. Users can use not only the prediction value but also other
views and tools to find related documents in our system. The sports
category can easily be classified with a few documents and gener-
ate a high score for each classifier. For health labels, users perform
better than the active learning methods although they labeled fewer
labels. However, they do not achieve a higher score than the active
learning linear SVM for the weather label. We looked into their
annotated documents, and found that some news articles about hur-
ricanes did not belong to weather, such as USA: Hurricane Dolly
rakes Yucatan, and MEXICO: Hurricane Dolly bashes into Mex-
ican Gulf coast. The users labeled this news as weather. Thus,
the mislabeling rate for the weather label is high, as shown in Ta-
ble 1. We think this may result in poor classification by users for
the weather label.

Fig. 9 shows the F1 score curved lines over the number of la-
bels. From the figure, we see that the curved lines of the training
dataset are similar to the testing dataset. This illustrates that the
classifiers are not overfitting. Compared with the curved line of
the active learning algorithms, the classifiers work better with the
help of users than the active learning for the same number of labels.
This shows that our method can greatly help users find essential doc-
uments to refine the classifiers. The curved lines of User 1, User 2,
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(a) (b)

Figure 9: F1 score curved lines over the label number of RCV1-V2 classification. (a) The classification result of the training set. (b) The
classification result of the testing set.
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Figure 10: Operation records for five users from the user study. The
color of the rectangles represents different operations. It is easy to
find new operations and add or modify operations according to the
views.

User 4, and User 3 are steep. They labeled a set of documents and
trained the classifiers. Then, they labeled some key documents that
significantly improved the performance of the classifiers.

To prove the impact of labels on topics, we display the top 10
phrases for topic 20, which is related to the health label, in Table 2.
Without any labels, Gibbs MedLDA mixes phrases about health
with phrases about countries in topic 20. After the labels are added,
the phrases for topic 20 become more consistent. The phrases that
are not about health receive a low ranking. Thus, document labels
can slightly refine the topics and produce better grouping and sepa-
ration of the documents.

To determine which interactions provide support for users in
making decisions, we recorded user interactions during the user
study, as shown in Fig. 10. The color of the rectangles represents
different operations. The add, new, and modify operation after
which view operation means users make decisions according to that
view. We want to know which view the users used most. From
Fig. 10, we can see that the users are likely to select a label, then
directly label the documents in the text list. Users often use the clas-
sification scatter plot. We find User 1, User 2, User 4, and User 5
also use the topic weight view. They use fewer labels and achieve
better classification results than User 4. Thus, we think that the
topic weight view is useful for refining the classifiers. User 4 la-
beled many documents, and also modified some document labels at
the end of the trial. We did not provide any reset or undo operation.

If users label documents wrongly at the beginning, it is difficult for
them to refine the classifiers from an error state. User 3 labeled
the fewest documents, but the labels were all correct. Therefore,
he labeled a few documents but still achieved an acceptable classi-
fication result. After the study, users told us that when they misan-
notated documents at the beginning, it was difficult to find related
documents and refine the classifiers. Thus, we added an undo op-
eration to our system. In addition, the topic weight view is useful
for refining the classifiers. They browsed topics according to topic
weight view and labeled documents to refine the topic weight.

From the above, we propose that the Gibbs MedLDA model used
in our system can produce a better result than the linear SVM or
LDA + linear SVM. With active learning, Gibbs MedLDA does not
work better than the linear SVM, but our system compensates for
the problem to some extent. In addition, when users continue to
label documents, the Gibbs MedLDA provides more suitable top-
ics for the classifiers. Compared with active learning, our system
not only provides uncertain documents in the text list, which is usu-
ally provided in active learning, but also provides the diversity of
the documents used in the classification scatter plot, and classifier
weights in the topic weight view, etc. We provide more information
for users to refine classifiers, and they indeed used this informa-
tion to train the text classifiers. Thus, our system can help users
make better decisions than standard active learning. Moreover, we
find that users create labels according to the topic scatter plot. In
general, our system can help users to find document candidates for
labeling and refine the classifiers with fewer labels.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an interactive visual analytics system for
incremental classification based on Gibbs MedLDA. We change
Gibbs MedLDA to a multi-label semi-supervised topic model to
meet the requirement of incremental text classification. Moreover,
we integrate a margin-based active learning algorithm with Gibbs
MedLDA to automatically label some highly scored documents at
each iteration. Based on Gibbs MedLDA, we design several views
to help users explore the text collection and refine the classifiers.
We evaluate our system via two case studies and a user study.

Our system has some limitations. The number of topics must
be determined by users at the beginning of the classification task.
Moreover, our topic scatter plot is not suitable for showing many
topics at the same time. Gibbs MedLDA still does not meet the
requirements for real-time interaction. In the future, we will attempt
to organize topics into a hierarchy and design new visual encoding
to show hierarchical topics.

156



Table 2: Key phrases for topics related to health. The phrases not related to health are in bold.

Topic 20
Gibbs MedLDA without
any labels

mad cow disease, european commission, bovine spongiform encephalopathy, eu, germany, britain, russia, chronic
fatigue syndrome, romania, mad cow crisis

User 1
mad cow disease, mad cow crisis, bovine spongiform encephalopathy, european commission, european union,
blood products, chronic fatigue syndrome, eu, romania, britain

User 2
mad cow disease, mad cow crisis, bovine spongiform encephalopathy, human rights, human rights groups, human
rights activists, blood products, heart disease, european union, chronic fatigue syndrome

User 3
mad cow disease, mad cow crisis, bovine spongiform encephalopathy, comprehensive test ban, european
commission, european union, heart disease, britain, chronic fatigue syndrome, blood products

User 4
mad cow disease, mad cow crisis, bovine spongiform encephalopathy, blood products, heart disease, lung cancer,
chronic fatigue syndrome, heart attacks, judith curren, health risks

User 5
mad cow disease, mad cow crisis, bovine spongiform encephalopathy, european commission, heart disease, chronic
fatigue syndrome, blood products, eu, britain, judith curren

ACKNOWLEDGMENTS

This work was supported by the National Key Research & Develop-
ment Program of China (2017YFB0202203), National Natural Sci-
ence Foundation of China (61472354 and 61672452), and NSFC-
Guangdong Joint Fund (U1611263).

REFERENCES

[1] M. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning.

In Proceedings of COLT 2007, pages 35–50, 2007.

[2] M. Berger, A. Nagesh, J. Levine, M. Surdeanu, and H. Zhang. Visual

supervision in bootstrapped information extraction. In Proceedings
of EMNLP 2018, pages 2043–2053. Association for Computational

Linguistics, 2018.

[3] J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedlmair.

Comparing visual-interactive labeling with active learning: An exper-

imental study. IEEE TVCG, 24(1):298–308, Jan 2018.

[4] J. Bernard, M. Zeppelzauer, M. Lehmann, M. Mller, and M. Sedlmair.

Towards User-Centered Active Learning Algorithms. CGF, 2018.

[5] D. M. Blei and J. D. McAuliffe. Supervised topic models. In Pro-
ceedings of NIPS, NIPS’07, pages 121–128, USA, 2007. Curran As-

sociates Inc.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.

JMLR, 3:993–1022, 2003.

[7] M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and

P. Simard. Featureinsight: Visual support for error-driven feature

ideation in text classification. In 2015 IEEE VAST, pages 105–112,

Oct 2015.

[8] A. J. Chaney and D. M. Blei. Visualizing topic models. In Proceedings
of ICWSM, 2012.

[9] M. Choi, S. Shin, J. Choi, S. Langevin, C. Bethune, P. Horne, N. Kro-

nenfeld, R. Kannan, B. Drake, H. Park, and J. Choo. Topicontiles:

Tile-based spatio-temporal event analytics via exclusive topic model-

ing on social media. In Proceedings of CHI 18, pages 583:1–583:11.

ACM, 2018.

[10] J. Choo, C. Lee, C. K. Reddy, and H. Park. UTOPIAN: user-driven

topic modeling based on interactive nonnegative matrix factorization.

IEEE TVCG, 19(12):1992–2001, 2013.

[11] J. Choo, H. Lee, J. Kihm, and H. Park. ivisclassifier: An interactive vi-

sual analytics system for classification based on supervised dimension

reduction. In Proceedings of IEEE VAST, pages 27–34, 2010.

[12] J. Chuang, C. D. Manning, and J. Heer. Termite: Visualization tech-

niques for assessing textual topic models. In Proceedings of AVI, pages

74–77. ACM, 2012.

[13] W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky. Hierarchicaltopics:

Visually exploring large text collections using topic hierarchies. IEEE
TVCG, 19(12):2002–2011, 2013.

[14] E. Eaton, G. Holness, and D. McFarlane. Interactive learning using

manifold geometry. In Proceedings of AAAI, 2010.

[15] M. El-Assady, R. Sevastjanova, F. Sperrle, D. Keim, and C. Collins.

Progressive learning of topic modeling parameters: A visual analytics

framework. IEEE TVCG, 24(1):382–391, Jan 2018.

[16] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visu-

alizing thematic changes in large document collections. IEEE TVCG,

8(1):9–20, Jan. 2002.

[17] F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual classifier training

for text document retrieval. IEEE TVCG, 18(12):2839–2848, 2012.

[18] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper,
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