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Abstract Photographic volumes have been increasingly used in meatchbiological researches in recent
years. The original colors kept in photographic volumesen great opportunities to capture a rich set of
information within the dataset for a wide variety of datalggs and visualization applications. Despite years of
research, an interactive and user-friendly transfer fongs still lacking for photographic volume visualization
The difficulty lies in how to map colors to a space that is caeet and intuitive for users to interactively
classify features, i.e. specifying opacities for voxatghiis paper, we propose a color-based transfer function for
intuitive opacity specification of photographic volumehkeTlcolor-based transfer function intelligently maps the
colors from 3D to 1D, resulting in 256 representative colehich preserve the original colors to the maximum
extent. Users can directly classify voxels based on thgs@sentative colors similar to the conventional 1D
transfer function. Experiments are performed to evaluateeffectiveness of the proposed method, and also
demonstrate the intuitiveness and flexibility of the pragmbsethod.

Keywords Photographic volumeTransfer function Color mapping

1 Introduction

With the recent advance of cryosection techniques, phapifge volumes have been increasingly used in med-
ical and biological researches. Modern cryo-imaging systhave allowed us to capture ultra-high resolution
realistic color images, for example, 55GB volume data of ale@lmouse (Roy et al. 2009), the Visible Human
Project (VHP) at the National Library of Medicine (Spitz¢iaé 1996) and the Chinese Visible Human Project
(CVHP) (Zhang et al. 2006). In contrast to the volumes cagutiny traditional instruments, such as CT, PET
and MRI, photographic volumes preserve original colorshefd$ubject. With the availability of photographic
volumes, highly realistic volume visualization can be geted by sampling the colors in the volume without
additional color transfer functions. However, specifyoacity for photographic volumes becomes harder due
to 3D colors, instead of 1D scalar values in scalar volumes.

Different kinds of transfer functions are designed to sifgphe tedious data classification and visual prop-
erty mapping process. Generally, a graphic design inteifaprovided together with the distribution of various
useful properties, and this is much more intuitive and flexfor users than just tuning several abstract and
non-linear parameters. However, it is not easy to creat@t@nactive opacity specification approach for pho-
tographic volumes due to the interaction difficulty of the 8@lor space. Although several excellent transfer
function design methods have been proposed for dealingphibtographic volumes, they face the limited clas-
sification number or the lack of interactivity. Most of theme global opacity specification approaches, i.e. the
opacities of all voxels can only be changed simultaneolshe(t et al. 2002; Gargesha et al. 2009). Researchers
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have also proposed an interactive method to show diffeesttifes with different opacities (Takanashi et al.
2002). But the interaction is performed in a derived 3D spadgch is not convenient and intuitive for gener-

al users due to its abstract meaning. Thus, an intuitive asg-t&-use interactive approach is still absent for
photographic volumes.

We propose a color-based 1D opacity transfer function fatg@yraphic volumes. As the dimension goes
lower, the degree of freedom and the complexity of user &utgosn decrease. 1D transfer function is easy to
understand and convenient for user interaction. In ordeteteelop a 1D transfer function for photographic
volumes, the difficulty lies in how to create the axis of thensfer function. So we propose a color mapping
approach to map colors from 3D to 1D while maximizing the cqiceservation. 256 representative colors,
which approximate the original colors to their best, areceld to form a color bar that can serves as the
axis of the proposed 1D transfer function. Similar to thevestional 1D transfer function for scalar volume
visualization, users can directly classify voxels basethercolor bar. By taking the original colors of features
as reference, the representative colors make opacity miatign much more intuitive.

2 Related Work

Transfer function design has drawn a lot of attention. Besttie commonly used 1D transfer function based on
scalar values, a large number of meaningful transfer fansthave been proposed for scalar volumes. Kindl-
mann et al. proposed a semi-automatic generation of botmt®B transfer functions based on scalar value
and gradient magnitude (Kindlmann and Durkin 1998; Pfistat.2001). Roettger et al. (2005) clustered the
2D histogram by considering the spatial connectivity of liietogram entries and created spatialized transfer
function. Sereda et al. (2006) proposed the LH transfertfondo detect feature boundaries based on a his-
togram generated by following the gradient directions.r€aand Ma (2008, 2011) applied size and visibility
to classify features of interest. Ruiz et al. (2011) prodidemethod to generate automatic transfer functions
based on information divergences. Guo et al. (2011) auioaligt computed transfer functions by analyzing
the user interaction on the visualization result.

In photographic volume visualization, most of the reseasdhave also been devoted to transfer function
design. Ebert et al. proposed color distance gradient aad iién their transfer functions (Ebert et al. 2002).
They set opacity to one of the color components, color digtaradient magnitude or color distance gradient
dot product. The opacity setting is fixed once a transfertionds selected, so that users can hardly interact
with it. Gargesha et al. (2009) combined color and gradieature detectors to generate the opacity transfer
function, providing a user interface for selecting difieréeature detectors. However, users have to figure out
the composition of the RGB components in their mind accaydinfeatures of interest, making the interaction
not intuitive enough. Takanashi et al. introduced an im#éra classification technique called ISpace by using
Independent Component Analysis (ICA) to transform theinabdata into a new space (Takanashi et al. 2002).
Users can classify data by clipping data histogram in the $pAce or by specifying several 1D transfer func-
tions, one for each ICA axis. But interactive clipping in 3@ase is not an easy task and the derived axes are
not as intuitive as those of the original color space. So veateran axis with colors selected from the original
data set and establish a color-based 1D transfer function.

Mapping colors from 3D to 1D is much like the decolorizationipiem. In general, decolorization can be
performed either locally or globally. Local methods applfedtent mapping functions in different local regions,
trying to preserve as much contrast as possible in the rgeayscale image (Gooch et al. 2005). This is not
suitable for our requirement, as different mapping funtisvould map the same colors from different local
regions to different results. As for global methods, Lu et(2012) proposed a very fast yet effective decol-
orization approach. They reached a robust solution witmpl linear parametric grayscale model. Song et al.
(2013) extended this work and proposed a multi-scale csinfi@servation strategy, which chooses channel
weights depending on specific images to maximally presémetiginal color contrast. However, in our case,
this kind of simple linear parametric grayscale model mayitin an uneven histogram distribution. On the
other word, the result 1D space may not be efficiently usedaltlee empty regions in the result histogram. So
we propose a global non-linear color mapping method.
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Fig. 1 The pipeline of our color mapping approach.

3 Color-Based Transfer Function

In order to develop an interactive transfer function for f@igpaphic volumes, it is necessary to map the voxel
values to a space that is convenient for user interactioa ré&tiuction in the dimension of interaction space can
reduce the degree of freedom and the complexity of userctien. So the 1D transfer function is easy to use
and widely used in volume visualization. We try to map coltordD and pick out a sequence of representative
colors that can serve as an axis of the 1D transfer functidti ®ir color mapping method, same colors should
map to the same value, ensuring not to separate voxels of @ feature. The representative color sequence
should satisfy the color perceptual continuity. Gathesimgilar colors together can simplify the work spent on
feature classification. But through a 3D-to-1D dimensioadulction, the information loss of the original data is
unavoidable. We focus our work on how to adjust the color nrapsgtrategy to reduce the information loss and
achieve a better color preservation. Obviously, the colapping problem is similar to decolorization in some
degree. While a decolorization method maps colors to gedgs@lues and focuses on contrast preservation,
we need our color mapping method to produce a sequence elsmqative colors which preserves the color of
the original data to its best. The pipeline of our color magpinethod is shown in Fig. 1 and each step will be
described in detail in this section.

3.1 Non-linear Color Mapping

To construct a 1D transfer function, we need to select amaflgiroperty as the axis. For photographic volumes,
color is one of the most intuitive attribute to serve as this.ddser can easily establish a connection between
colors and features. But there are too many colors to ball@tmng the axis in the user interface. So we should
map the colors to 1D first and then select some representatives for the color-based transfer function.

Linear mapping preserves color consistency, which means salors in different voxels are mapped to the
same position in the 1D axis. So we choose to use the germegaflcomposition of colors for color mapping,
as shown in Equation 1,

C=w,*r+wy*g+wp*D,
wy +wg +wp = 1, (1)
Wy > Oawg > O,UJ[, > 07

wherew,, w, andw, are weights of the three componefitsg, b) of a color and how to select these weights

will be discussed in the next subsection. With the linear piragpin Equation 1, each color that appears in the
volume data can be mapped onto the 1D axis. After the mappipgrformed for all colors, we divide the axis
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Fig. 2 Histograms generated by different color mapping methotie. associated color bar is painted at the bottom of each fi¢aré&
component in CIELUV color space. (b) Hue component in HS\bcspace. (c) K-Means clustering. (d) Conventional rgbggi@ The
linear mapping with weights selected by the proposed mettijp@ihe proposed non-linear mapping method.

into 256 segments. In another word, the colors are sepairate@56 sequential bins uniformly according to
their C values. For each bin, one color is selected from all the safoit and serves as the representative color
of the bin. The representative color should minimize th@chiss when it is used to substitute for others. The
number of bins here is chosen to be 256, as the index of thpeesantative colors can be represented by a byte
(8 bits).

Obviously, this simple mapping may not achieve a satisfgetsult. The colors in the photographic volume
may be clustered in one region or several regions and do ret tloe entire color space, so there may be some
empty bins after the linear mapping process. The histoggengrated by several different color mapping
methods are shown in Fig. 2. Fig. 2(a), (b), (d) and (e) arelt®sf linear mapping methods. By comparing
these histograms, we can see that the histograms geneyalieddr methods have a large part of empty bins.
Obviously the mapped 1D space is not effectively used. Owther hand, many quite different colors may be
mapped to the same bin. Apparently, we should take out paneoduite different colors from one bin and put
them into an empty bin. In this way, the bins that are still gngfter the linear mapping can be made better use
of and then more colors can be preserved. So after perfortheninear mapping, we introduce a non-linear
mapping adjustment strategy to further make use of empty, bin

Empty bins are removed from the bin sequence. For each ngydsm, considering colors in it may be
greatly different, the variance of the colors is calculatédhould be noted especially that, to calculate the
variance of a color set, we need to measure the differeneeebet colors. It is known that the RGB color
space is not perceptually uniform but the CIELUV color spadiought to be perceptually uniform. It means
that equal distances in the CIELUV color space corresporadjt@l perceptual differences. So the Euclidean
distance in this color space can be used to measure the peatdjfference between colors. L&tFE(cl, ¢2)
denote the Euclidean distance between colagind colore2 in the CIELUV color space. Then the variance of
the binC; can be calculated with

1 &
Vari i = — AE(eg, 1), 2
ariance o ; (ck, 1) (2)

wheren; is the number of the colors ii;. The mean coloy is calculated by the arithmetic mean of all the
color vectors inC;. The variance of’; is calculated as the average Euclidean distance from edahicd; to
., which can reflect the degree of variability of the colorstia bin.

The binC,,, with the largest variance is singled out to split as it hasnttaximum diversity of the colors.
K-Means clustering is applied to the colors sy, to partition them into two clusters. We separate the two
clusters of colors into two new bins. Then for each of the tww bins, we find the bin which has the most
similar representative color to that of the new bin in the $#quence and insert the new bin to its left or right
according to the representative color distances to bo#ssithis process is repeated until we get a sequence of
256 non-empty bins. Fig. 2(f) shows the result generateddofppming the non-linear adjustment on Fig. 2(e).
More colors are filled into the color bar and no empty bins riemiBhis makes a better color preservation. As
to Fig. 2(c), which is generated by clustering colors int6é 2lsters in the CIELUV color space with K-Means
clustering, although it can also make full use of the mappedsgace, colors selected by K-Means method
cannot be easily sorted into a sequence as good as ours. [Bhdaogenerated by our non-linear mapping is
more consecutive in visual perception and thus it can bsttditate the classification work.
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3.2 Parameter Optimization

Having the color mapping approach, we focus on how to op#rnitiZ he best strategy in our opinion is to select
the most suitable parameters for the color mapping accgtdithe processed data set, so that the color loss
during the mapping process can be reduced as much as possithle proposed non-linear color mapping, the
parameters are three weights, w, andw;, used for the linear combination in Equation 1. We can diseet
wy, wg andwy in the range of [0,1] and select a best combination of theetiweights. Song et al. (2013) found
that the results would not change too much when slightlyisarthe weightsv,., w, andws. Itis enough to set
the discretization interval to 0.1. When the three paramsetee discretized in the range [0, 1] with the interval
0.1, due to the constraint in Equation 1, we actually get Gé&pater candidates that are uniformly sampled
from a plane in thev,-w4-w, space. Finer discretization is still considerable whemeate results are needed.

In order to compare different candidate combinations ofttiree parameters, we need to find a way to
evaluate a specified group of parameters. Given a group afpers, each color can be mapped to one of the
256 representative colors that are selected by the noarlc@or mapping method mentioned above. A new
color volume data can be established by mapping the coloadcii &oxel in the original volume data to its
corresponding representative color. Suppose that the irgdume data isV' and the mapped volume data is
Vi, the difference between them can be obtained by a voxel vasgarison. Taking the multi-scale color-
preservation into consideration, we introduce the joitdtbral filtering (Petschnigg et al. 2004), which is also
known as the cross bilateral filter (Eisemann and Durand R@3yAvarying the spatial parameter and the range
parameter used in bilateral filter, we can evaluate the colpping parameters in different scales.

The joint bilateral filtering can be defined as follows. Dé&{p) be the color of the voxel at positiop,
cr(p) be the filtered color an®, be the volume data used to compute weights in the range kevhigh is
also mentioned as guidance volume data in the following the have,

w(p,q) = Go,(Ilp — ql)Gs, (AE(Vy(p), Vg(q))),
>qen, W@ @)V (p) (3)
qugp w(p,q) '

cf(p) =

wheregq is a position in the neighborhoadd, of p, G, is the spatial filter kernel for measuring the spatial
similarity andG,,. is the range filter kernel measuring the color similarityeThilateral filtering is applied
to the original volumé/ and generates the filtered volui@ . Meanwhile, the filter is applied t¥ with the
mapped voluméd/,,, as the guidance, and generates the filtered voligheBy summing up the color difference
between the colors of each pair of corresponding voxejs, ate can get the matching cost between the two
filtered volumes,

6= AE(VI(p),Vi(p). 4

pev

The matching cost stands for the color preservation qualigan be used as a metric of the validation of a
color mapping method. By quantizing the parameter spacdatehal filtering, which involvesr; ando,., we

can measure the color preservation in different spatialrande scales. According to Song et al. (2013), we
quantize the parametess as [0.1, 0.2, 0.3, ..., 1.0] and. as [0.1, 0.5, 1.0, 2.0]. For each pair @f;, o;.),
matching costs are calculated for the 66 parameter cardidatd the candidate with the local minimum value
in its parameter space is voted. After all pairs(of, o,.) are traversed, the parameter candidate that has the
most votes is picked out as the selected parameter for tHelilt mapping.

3.3 Color-Based Transfer Function

Once the color mapping has been completed, we can constmetphic interface which is similar to the
widely used scalar based 1D transfer function widget. Tipeesentative colors produced by the non-linear
color mapping is listed in the horizontal axis and the veltaxis stands for the opacity value. For a better
perception of each value listed in the horizontal axis, wanda color bar using the representative colors at the
corresponding location. Because the colors lying in thézlbatal axis is related to the colors in the visualization
result, with the present of the color bar, it becomes moreitiae for user interaction. Users do not need to
think much about the correspondence between the strudtutiee result image and the feature regions in the
transfer function. All they need to do is finding the featuoésnterest in the visualization result and adjust
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the opacity curve of the regions with similar colors in oansfer function. A human chest rendered with the
proposed color-based transfer function is shown in Figh& dssociated transfer functions are listed below the
visualization results. In this data set, the colors of meisehd to be dark and red while the colors of humerus
and part of the ribs seem brighter. Fig. 3(a) gives a hybradialization of these tissues. By decreasing the
opacities of the dark and red areas, which are used to visualuscles in Fig. 3(c), the humerus and part of the
ribs can be recognized with the help of our transfer funcéisshown in Fig. 3(b).

Fig. 3 Human chest rendered with our color-based transfer fumctio

4 Result

Experiments are performed to evaluate the proposed colppimg method. Given a color mapping method,
we generate a mapped volume by replacing each voxel withdfsped color value. Then the average matching
cost is calculated by per-voxel averaging the sum of the iragiecosts in different scales,

5= d(os,0:)/N, (5)

os Op

whereN is the number of voxels.

By measuring the average matching cost, we can evaluatatlzion caused by color mapping. The lower
the average matching cost is, the better the mapping metteséves the original colors. In our experiments,
the average matching cost is calculated with 7 color mappiathods on 4 data sets. The results are shown in
Table 1. The CIELUV(U) method is performed by mapping colord D according to their U components in
CIELUV color space. Similarly, the HSV(H) method maps celaccording to their hue values in HSV color
space. The rgh2gray method applies the linear mapping ndddtiab. The K-Means method is performed by
clustering the colors into 256 clusters in the CIELUV colpase. We also conduct a group of experiments by
adding the proposed non-linear adjustment to rgb2grag¢thetth +NL in Table 1) and a group of experiments
by removing the non-linear adjustment from the proposechot{noted with -NL in Table 1). By doing this
we can see the validity of the mapping parameters selectedibynethod. As we can see from Table 1, for
each of the four data sets, the average matching cost of tip@ped method is minimum among these mapping

Table 1 The Average Matching Costs of Different Mapping Methods

Method Mouse Chest Leg Head
CIELUV(U) 0.0912675 0.1263410 0.0808967 0.0485085
HSV(H) 0.0849311 0.0759441 0.0666765 0.0316832
rgb2gray 0.0131045 0.0128178 0.0129036 0.0059713
rgb2gray(+NL) 0.0134504 0.0125809 0.0128129 0.0059282
K-Means 0.0518242 0.0391509 0.0377042 0.0170200
Proposed method(-NL) 0.0114841 0.0117594 0.0106860 BIED

Proposed method 0.0107069 0.0109380 0.0101340 0.0050037
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(d) (e) ®

Fig.4 Visualization results of human head. (a), (b) and (c) ardeesd with the three color-based transfer functions inddpectively. (e)
and (f) are rendered by combining the bottom two color-basstsfer functions with a simple gradient-magnitude-dasansfer function.

methods. It means that the color loss caused by the colorimg@pmcess is minimized with our method. So the
representative colors that we choose can represent thieariata values better. On the other hand, the color
bar generated by the proposed method is continuous in cetoeption, as shown in Fig. 2(f). This ensures that
similar colors will not be divided to disperse areas and ionps the efficiency of opacity specification, making
the proposed transfer function more user-friendly.

Fig. 4 shows a group of visualization results of the humarnlluzda set. Different features are blended with
different opacities in Fig. 4(a). We can see the brain tistheeteeth, the sinus, the muscles and part of the skin.
The color-based transfer function can reduce the blindthessg data exploration. By decreasing the opacities
of the dark green area and the light yellow area, we can rern@vsinus, the brain and the teeth, getting the
result in Fig. 4(b). Further removing the red area, only tloot vessels and part of the skin, whose colors are
close to black, can be seen. Due to the data acquisition gspskins cover a large range of colors. It cannot
be easily removed with the color-based transfer functidg. dfortunately, the proposed transfer function can
be combined with other transfer functions. By applying tbhloebased transfer functions used in Fig. 4(b) and
Fig. 4(c) in multiplicative combination with a transfer fetion based on gradient magnitude, which simply sets
the opacity of high gradient magnitude area to zero, we cawove the skin and get the results in Fig. 4(e) and
(f). As a 1D transfer function, the proposed method is easyntierstand and convenient for user interaction.
With the help of the color bar, feature classification becem@ch more intuitive due to the correspondence
between color and feature.

We make a compare between the visualization results redidétie the proposed color-based transfer func-
tions and those rendered with the method of Ebert et al. (ROUR opacity transfer function used in their
method isrenderedopacity = (voxel_opacity * scalar)¢*Peme™t wherescalar is a coefficient to control
the overall opaqueness of the volume and is set to a constlrg in our experiments. In Fig. 5(a) and (b),
vozel_opacity is set to color distance gradient magnitude. In Fig. 5(agmifhe exponentis set to 0.6, different
features can be well blended with the opacity determinedhéyblor distance gradient. But when the exponent
increases to 0.7, the opacities of all features decreasesdtaneously, making the result image pale and dim, as
shown in Fig. 5(b). The transfer functions they proposechateable to highlight a specified feature. With the
help of our color-based transfer function, we can get a téisal is almost the same as theirs. At the same time,
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(b) (d)

() ) ® (0

Fig. 5 Volume rendering of the human leg data set. Opacities inr{d)(h) are determined by the transfer function based on the co
distance gradient, with the exponent equal to 0.6 and Opeoéisely. Opacities in (c), (d) and (e) are specified by tteppsed color-based

transfer function. (f) and (g) are rendered with transferctions based on color and gradient feature detectors(iYland (j) are rendered

with representative colors instead of original colors wita proposed transfer function.

different features can be separately rendered by inteedgtsetting a large opacity value to the corresponding
area and decreasing the opacity of the rest. For example,weaavant to see the muscle tissue, the region in
red in the color-based transfer function is selected antbsatlarge opacity value, as shown in Fig. 5(e). By
removing the muscle tissue from Fig. 5(c), we can get themeluendering of the fat and the bone whose
colors are close to light yellow, as demonstrated in Fig).54d for the method based on color and gradient
feature detectors proposed by Gargesha et al. (2009)asiresults can be got with careful parameter tuning,
as shown in Fig. 5(f) and (g). But the color feature deteataheir method is not as flexible as the proposed
transfer function. For example, although fat and bone ¢éisstan be detected with the yellow color detector
1.0x R+ 1.0 *x G + 0.0 x B, features in red are also detected by this detector, as shofig. 5(g). Result
such as Fig. 5(d) cannot be easily got with their method. Tbpgsed color-based transfer function surpasses
previous methods in flexibility and ease of use. On the othadhin our implementation, mapped volume data
can also be visualized with the proposed transfer funcéisshown in Fig. 5(h), (i) and (j). Although the results
are closed to those of the original data in Fig. 5(c), (d) a)dlly comparing to Fig. 5(e) we can see that some
detail colors are missing in Fig. 5(j). However, the size @faped volume data is only one third of the original
data. Therefore we can use mapped volume to get a quick evewhen memory is not enough, but not for
serious situations.

Another group of comparison is performed on the digimousa get (Dogdas et al. 2007). The results are
shown in Fig. 6. The results in the top two rows are renderel thie method of Ebert et al. (2002) and the
results in the last row is created with the proposed methiod.&a), (b) and (c) setozel_opacity to color
distance gradient magnitude. Fig. 6(d), (e) and (frsetl_opacity to the value of U componentin CIELUV
color space. When increasing the exponent, features ir#udts of both of these two transfer functions fade out
gradually. Although meaningful results can be got, the d@pad a specified feature cannot be solely set due to
the global transfer function. Thus different features adre separated effectively. The proposed color-based
transfer function can get a result that is similar to thestssh as Fig. 6(g). Furthermore, we can distinguish
features that cannot be easily selected with their methaah as the organs in Fig. 6(h) and the heart and the
blood vessels in Fig. 6(i). In the last two results, we setvadpacity to the mouse body designedly to make
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Fig. 6 Volume rendering of the digimouse data set. Opacities in(kg)and (c) are determined by the transfer function baseti@nolor
distance gradient, with the exponents equal to 0.5, 0.6 andeBpectively. Opacities in (d), (e) and (f) are determibg the transfer
function based on CIELUV U color component. Exponents etmél5, 1.0 and 1.5 respectively. Opacities in (g), (h) aharg set with
the proposed color-based transfer function.

it available as background. Our method is flexible enougletalgferent opacities to different features inten-
tionally, making it more useful in data exploration. Aideglthe color bar user can classify features according
to their original colors. This makes the exploration prao@sich more intuitive and reduces the work spend on
trial-and-error.

5 Conclusion

In this paper, we have proposed a novel transfer functioiydesethod for photographic volumes. An intuitive
color-based 1D transfer function is developed based on dinear color mapping strategy. This transfer func-
tion can be used alone or can be combined with other trangfietibns to generate desired visualization results.
Experiment results show the effectiveness of our transiectfon. The main limitation of our proposed method
is that the parameter optimization costs a lot of time. Mdghe time is consumed by the bilateral filtering.
For example, while the bilateral filtering was implementethwpenCL, it took almost 3 hours to perform
the entire color mapping for the head data set on a computbriatel i5-3450 CPU and NVIDIA GTX 660
GPU. Fortunately, for a given volume data, the nonlineanicalapping only need to be performed once in the
preprocessing stage, and then we can store the result éonis¢. To deal with the color loss caused by color
mapping, we can change the number of representative cdlloesmore representative colors we use, the more
accurately they represent the original data. But for a #§sited volume dataset which contains a great many of
colors, more representative colors are not helpful. Therdmr generated will be less smooth and thus it will be
less friendly for user interaction. Another problem is tbalor itself may not be a sufficiently distinct attribute
to distinguish between features. To further enhance ttesifieation ability of our transfer function, we will
attempt to extend it with other attributes such as textuoperties (Caban and Rheingans 2008). We hope more
intuitive and user-friendly transfer functions would beveéleped for photographic volumes in future.
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