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Abstract

In volume visualization, noise in regions of homogeneous material and at boundaries between different materials
poses a great challenge in extracting, analyzing and rendering features of interest. In this paper, we present a novel
volume denoising / smoothing method based on grgrddient minimization framework. This framework globally
controls how many voxels with a non-zero gradient are in the result in order to approximate important features’
structures in a sparse way. This procedure can be solved quickly by the alternating optimization strategy with
half-quadratic splitting. While the proposed kzolume gradient minimization method can effectively remove noise

in homogeneous materials, a blurring-sharpening strategy is proposed to diminish noise or smooth local details
on the boundaries. This generates salient features with smooth boundaries and visually pleasing structures. We
compare our method with the bilateral filter and anisotropic diffusion, and demonstrate the effectiveness and
efficiency of our method with several volumes in different modalities.

Categories and Subject Descript@ascording to ACM CCS) 1.4.10 [Image Processing and Computer Vision]:
Image Representation—\Volumetric

1. Introduction smoothing problem. Filtering is one of these frameworks for
volume smoothing. The Gaussian filter is widely used in vol-
ume smoothing, but boundaries are also blurred. The bilat-
eral filter [TM9§ considers both the spatial distance and
intensity difference between two pixels to better preserve
edges. Another popular framework in volume smoothing is
anisotropic diffusion, originally introduced by Perona and
Malik [PM9Q. Anisotropic diffusion iteratively performs
edge-preserving local filtering to suppress noise, and the o-
riginal scheme tends to over-sharpen edges. Recently, a new
edge-aware anisotropic diffusion modeINI10] defines the
boundaries based on the directional second derivative along
"the gradient to denoise the volume while preserving bound-
aries and fine tubular structures. However, anisotropic dif-
fusion is a relatively slowly converging non-linear iterative
process. As previous volume smoothing methods are most-
ly based on local filters, they result in more or less bound-
aries blurriness and are hard to globally maintain and possi-
bly sharpen the most prominent boundaries while enabling a
There have been many attempts to deal with the volume reliable primary-structure representation.

Volume visualization has been widely used for feature
analysis and presentation in different fields, ranging from
medicine and biology to engineering and geophysics. These
volumes are usually generated through scanners in a diversi-
ty of modalities, such as Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI) and Ultrasound. However,
even with high-resolution scanners, aliasing and noise are
inevitably introduced during the volume acquisition proce-
dure. This noise could corrupt salient features in terms of in-
tensity, especially low-contrast structures and small object-
s, and this makes intensity-based volume analysis methods
such as transfer functions and iso-surface extraction, fail to
produce accurate feature information and yield visual confu-
sion and misunderstanding in the rendered result. Therefore,
noise is a great challenge in volume visualization, and de-
noising / smoothing is often required in the pre-processing
step to reduce noise while preserving important features.

Most recently, a novelg minimization framework was in-
T Corresponding Author: Yubo Tao (taoyubo@cad.zju.edu.cn) troduced to globally smooth imagexL[XJ11]. ThelLg nor-
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m of a vector is the number of non-zero entities. It direct- Local filtering usually replaces the value with a weighted
ly measures the information sparsity and is very powerful mean of its neighbors, and the weights are often related to
to abstract the main structural information. Compared with the spatial distance and / or the value difference [MMMY97
previous edge-preserving methods, the resulted signal sup-MMK *98, SHO5 MAD14]. The Gaussian filter is effective
presses noise / details, and retains and sharpens significanfat removing noise from the volume, but is not able to pre-
edges. At the same time, this method does not introduce any serve boundaries of features, resulting in an over-smoothing

edge blurriness as it is not based on local filters.

This paper presents a new volume denoising / smoothing
method based on tHey gradient minimization framework.
As the gradient magnitude is highly related to structural in-
formation, especially in medical datasets [KD9®&e can
restrict the number of intensity changes among neighboring
voxels in the context dfy gradient minimization. This lead-

s to an unconventional global optimization procedure based
on the discrete metric, which counts the number of voxel-
s with a non-zero gradient. We employ the alternating op-
timization strategy with half-quadratic splitting to optimize
this procedure. The proposég volume gradient minimiza-
tion is greatly helpful for suppressing less important details

effect around the boundary. Many edge-aware local filtering
methods have been proposed to overcome this problem. One
popular method is bilateral filtering M98], which perform-

s a weighted averaging of the values in a window based on
both space and range distances for image smoothing. This
method has been extended to mesh smoothRRCO03.

The bilateral filter can be directly extended to a 3D volume
to filter out small changes in intensity and preserve strong
boundaries, and it comes at the expense of tradeoff between
details suppression and edge preservattlLS0§.

Diffusion is an iterative process based on local filtering.
Anisotropic diffusion is often used for suppressing noise
while preserving important structures. Its capability depends

and noise with low gradient magnitudes, and sharpening and on the stopping function to prevent smoothing from cross-

enhancing salient features at the same time.

The Lo volume gradient minimization can perfectly s-
mooth details and noise in relatively homogenous materi-
als, but it cannot effectively suppress details and noise on
the boundaries due to their relatively high gradient magni-
tudes. This results in visual artifacts and misunderstanding
during feature analysis. As the propodagivolume gradi-

ent minimization can sharpen boundaries, this paper propos-
es a blurring-sharpening strategy to achieve feature bound-

ary denoising / smoothing. A linear filter, such as the Gaus-
sian filter, is firstly used to smooth noise on the boundaries,
and then the proposddy volume gradient minimization is

applied to the smoothed volume to diminish the blurred

noise and sharpen the blurred boundaries. In this way, the s-

moothed result contains salient features with smooth bound-
aries and visually pleasing structures, and itis also more con-
sistent with the original volume. To the best of our knowl-
edge, our method is the first attempt to appty gradient
minimization in volume denoising / smoothing.

The paper is structured as follows. Related work is dis-

cussed in Section 2, while Section 3 describes the proposed

volume smoothing method. In Section 4, we present the
blurring-sharpening strategy to deal with noise at bound-

ing strong edges, otherwise this will cause edge blurriness.
It was originally introduced by Perona and MaliRj19Q,

and can be used for intense smoothing while preserving
prominent edges between the smooth regions. Krissian et
al. [KMA97] presented an anisotropic diffusion model to
perform diffusion along the direction of the gradient and
the minimum and maximum curvature. Krissian and Aja-
Fernandez KAFOQ9] introduced a noise-driven anisotropic
diffusion that combines local linear minimum mean square
error filters and partial differential equations to remove Ri-
cian noise from a 3D MRI volume. Recently, a novel edge
aware anisotropic diffusion model proposed by Hossain and
Moller [HM10] uses the directional second derivative to de-
fine material boundaries, and thus it can preserve materi-
al boundaries as well as fine tubular structures. As these
anisotropic diffusion methods usually apply local filtering
in each iteration, they blur edges to some extent in the final
result. The proposed method avoids local filtering and is a
global approach to smooth the low gradient magnitude re-
gions while retaining or even sharpening salient boundaries.

Non-local methods attempt to remove noise without blur-
ring salient edgesgCMO05]. Topological denoising filter-
s [WGS1QJWS17 first globally extract and filter the ex-
trema of a 2D scalar field, and then obtain the denoised re-

aries, while Section 5 presents and discusses the smootheds through the solution of a discrete optimization problem.

/ denoised results of several volume datasets in differen-
t modalities. Finally, we draw conclusions in Section 6.

2. Related Work

Smoothing is a widely investigated research area in many

fields, such as image and mesh processing, and volume visu-

alization. This section briefly reviews three main categories
of smoothing: local filtering, diffusion, and non-local meth-
ods.

Gunther et al. GJR14] extended the topology-controlled
denoising method to globally preserve the minima and max-
ima of large 2D data and medium-sized 3D data by intro-
ducing a novel domain decomposition approach. However,
the computation is very time consuming, several hours for a
128 volume. On the other handly minimization is a new
well-defined and powerful smoothing framework based on
the principle of discretely counting spatial intensity changes.
Compared with local smoothing methods, it can diminish
low gradient amplitude details and globally preserve and en-
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Figure 1: A denoising example of the)lvolume gradient minimization method. (a) The noisy volume, corrupted by synthetic
noise. (b) The smoothed volume after our method. (c) The profile plot is a 1D scanline plot of the scalar values taken from a
slice as indicated by the white line in the 2D images. The black curve is a plot of the noisy scalar values, while the red one is
the plot of the smoothed scalar values. Our method smoothes noise while preserving the most significant sharp edges.

hance salient features, even if the data is low-contrast or im- we introduce thd.g volume gradient minimization method
portant features are small. Xu et al. [XLXJ1tilized theLg to suppress it due to its relatively low gradient. This globally
minimization framework to image smoothing to progressive- retains salient boundaries and regions with nearly constan-
ly suppress details. However, smoothness of feature bound-t values. On the other hand, this method cannot effectively
aries is not taken into account. He and Schaef$13 remove the noise on the boundaries, as these noisy bound-
extended the.g minimization framework from images to  aries usually have higher gradient magnitudes than voxels
meshes to gradually remove noise while preserving sharp in relatively homogeneous regions. To address this problem,
features. In this paper, we investigate how thegradient we further propose the blurring-sharpening strategy, which
minimization can be applied for smoothing homogenous ma- firstly applies a local filter to blur noise, especially noise on
terials. For the noise on the feature boundaries, we show how the boundaries, and then employs thgvolume gradient

to employ this method to retain and sharpen boundaries from minimization method to further remove noise in both ma-
blurred boundaries after a local filter for smoothing bound- terials and boundaries, and to narrow and retain the sharp
aries. Furthermore, the proposed method is much faster thanboundaries from the blurred boundaries after the local filter.
the topology-controlled method of Giinther et &JR 14];

. In this section, we will first briefly review thieg gradien-
just several seconds for a 28lume. y 09

t minimization for a 1D signal, then extend this framework

to smooth 3D volume with global low-amplitude structures

3. Volume Denoising/ Smoothing Using Lo Gradient removal and salient boundaries preservation, and finally de-
Minimization scribe the alternating optimization strategy to quickly solve

) o . . this minimization problem. The blurring-sharpening strategy
During the volume acquisition procedure, noise and artifact- | pe presented in Section 4.

s are introduced by a number of factors, such as captur-
ing instruments, data quantization and transmission, and dis- )
crete sources of radiatioMGM*04]. For example, in med- 31 1D Lo Smoothing

ical imaging, additive Gaussian noise usually corrupts data Let x = (x;,%o,...,xn) denote the input 1D discrete signal.
from CT [GBGO04 and low intensity MRI BLO3], multi- The Lo norm of a vector is the number of non-zero values,
plicative Poisson noise often appears in data from functional and it discretely measures the information sparsity (i.e. the
MRI[HZPSO0}, and multiplicative Speckle noise commonly  smaller theLg norm is, the more sparse is the vector), as
degrades data from Ultrasound [Buf7Boundaries of ob- follows:

jects usually assume a sharp, discontinuous change in the )

measured physical value. However, capturing instruments c(x) = #{illxi| # 0}, @

are typically band-limited with a Gaussian frequency re- wherei is the index, and{.} denotes the operator counting
sponse. Thus, the measured boundaries are usually blurredthe number ok; that satisfiesx;| # 0.

by the Gaussian filter and this causes artifacts in bound-

aries KD, TheLg gradient norm of the vector is defined to count the

number of non-zero value changesxgfas follows:
In this paper, we assume that the scalar volume can be Cfile _
roughly separated into two parts: regions of relatively homo- o(0x) = #{ill04+2—%-1)/2| # O}, 2)
geneous material and boundaries between different material-wherei + 1 andi — 1 are indexes of neighboring values.
s. For noise in regions of relatively homogeneous material, |(x.1—X_1)/2| is the gradient magnitude of one value at
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Figure 2: The impact of the smoothing parameterof the Ly volume gradient minimization method. The slices from the
corresponding volumes are displayed at the top row. (a) The original sphere volume with severe artificial noise. (b-g) The
smoothed results by the lvolume gradient minimization method with the increasing valugs @ur method obtains the best
smoothing result in (d) wheh = 0.002, since a smalk dose not filter noise sufficiently and largedestroys the salient spheres.

theith position, approximated as the central difference be- moothed curve suppresses the details and retains the high-
tween the corresponding values. Equatiis thelLg norm contrast edges.
of the gradient magnitude and it only depends on whether the

signal alters its contrast or not, regardless of the magnitude
of changes. 3.2. 3D VolumeLg Smoothing

Based on 1DLy smoothing above, we can extend it to
3D volume smoothing. Letr denote the input 3D volume
and g the unknown smoothed result. The gradiémg, =
(Gix: Gy gLZ)T is calculated from the scalar value difference
between neighboring voxels along they andz directions
for theith voxel of the smoothed result. Other sophisticated
methods HAM11] can better estimate the gradient. Howev-
min{(yfx)z +Ac(Dy)}, @3) er, this simple measure is sufficient for our method ir? most
y cases. Our gradient measure is expressed as follows:

For 1D smoothing, we first require that the resudhould
be structurally similar to the original Meanwhile, the de-
tails of the 1D signal, which usually have small gradien-
t magnitudes, should be smoothed, i.e. the reguihould
have a smalLg norm value. Thus, the objective minimiza-
tion function for 1DLy smoothing is defined as follows:

whereA is a smoothl_ng parameter to_contr_ol the signifi- c(0g) = ﬁ{i\\/(gi,x)2+(gi,y)2+(gi,z)2750}, )
cance ofc(0y). The first part of Equatior8 tries to pre-

serve the overall shape as much as possible, which meanswheret{.} is the same as Equatidnand it is theLy norm of

the overall difference between two vectors should be min- gradients of the smoothed volume. This operator counts how
imized. The second part of Equati@controls the sparsi- many voxels there are whose gradient magnitude is not zero
ty of the smoothed result. Thus, to minimize the total cost, inthe smoothed volume. Itlooks for the gradient information
the significant edges should be retained, otherwise the costsparsity, indicating the number of non-zero gradients.

will raise due to the first part of Equatid Different from
previous edge-aware methods that may destroy the salien-
t edges in different scales due to the local filtering, kthe ) . .

smoothing avoids blurriness of the salient edges and even flgttenln_g_w!th the input v_olur_ne, a_nd the 3D vqur!n@gra—
sharpens these salient edges because of the discrete countq'em minimization equation is defined as follows:
ing and preservation of the large gradient magnitude values. min{(g— U)Z +Ac(0g)}, (5)

The smoothing parametdr has a great influence on the s- g

moothing effect. A large\ results in few significant edges,  where the parametéris used to effectively control the level

but it still retains the most Sharp edges, which characterizes of structure coarseness, and can be adjusted by the user. A
the dominant information about the 1D signal. largeA results in few boundaries while a small one preserves
the boundaries as much as possible.

Similar to 1D signal smoothing, 3D volume smoothing
also seeks a balance between result similarity and structure

Figure 1(c) shows an example to illustrate the 1Ig s-
moothing effect. It is a 1D profile plot of the scalar val- As shown in Figurel, the original box volume with t-
ues taken from a slice as indicated by the white line in the wo concentric boxes is noise-free. We add synthetic noise
2D images from Figurd(a) and (b). It is clear that the s-  (Gaussian noise witljy = 0 ando = 0.01) in Figurel(a).

(© 2015 The Author(s)
Computer Graphics Forui@ 2015 The Eurographics Association and John Wiley & Sons Ltd.



Q.C. Wang, Y.B. Tao, H. Lin / Edge-Aware Volume Smoothing Usit@radient Minimization

Log? of Total number of
non-zero gradient

Fig. 2(2)

Figure 3: Number of voxels with a non-zero gradient on the
sphere volume in Figur@ under differentA values. With
the increasing of the parameter, more voxels with a non-zero
gradient are smoothed. The red circles on the curve indicate
the corresponding parameters in Figueéb-f), respectively.

Our denoised result is presented in Figlfie), flattening the
noise while containing the most salient feature boundaries.

Figure 2 shows the effect of different values af on a
sphere volume data. The original volume consists of sever-

al spheres, whose feature boundaries and inner regions are

contaminated by severe noise. A smalicannot filter out

the noise in Figur@(b-c) and therefore cannot convey the
benefits of smoothing. Increasing the valueAofradually
removes noise in regions of homogeneous material while
retaining important features. More structures, such as the
spheres on the top, are gradually smoothed and only the
largest sphere with the largest gradient is preserved (Fig-
ure 2(d-g)). Previous local-filtering based methods usually
smooth small features first. However, our method smoothes
less significant features first, i.e. features with less contrast
with their surrounding materials. Thus, the second largest
sphere on the top left corner disappears first because it is
closer to the surrounding material in terms of intensity and
its gradient is smaller than other spheres.

Figure3 shows the number of voxels with a non-zero gra-
dient on the sphere volume when increasingthalue from
0 to 0.04, and it indicates the relation between the smooth-
ing effect and thé value. The first local minimum position
(the red circle denoted as Fig. 2(d) on the curve) shows that
small gradient details or noise have already been filtered out.
With the increase\, spheres similar with their background
will be gradually blurred and finally smoothed. During this
process, the number of voxels with a hon-zero gradient will

135

scent are no longer applicable. Recently, Xu ebalLXJ11]
and He and SchaefeHE13 introduced a novel numerical
method to minimize thé&g norm. It is an alternating opti-
mization strategy with the half-quadratic splitting scheme,
by introducing a set of auxiliary variables. We briefly de-
scribe how to solve the 3Dg volume gradient minimization
problem.

A set of auxiliary variable® is firstly introduced in the
3D L volume gradient minimization problem, and Equa-
tion 5 becomes:

min{(g-w? +B(0g-67 +Ac(0)}).  (6)

The problem above can be solved by alternative mini-
mization:

5D argmin{B(0g® — 602 +ac(3®)},  (7)
o)

gy arggmin{<g<k> —u?+p(0gh - k)2, (8)

wherek is the iteration number. The paramefeis starting
from a small value, and multiplied by 2 each iteration. Equa-
tion 6 approaches Equatidhwhenf is large enough. Cal-
culating 31 corresponds to a shrinkage problem while
calculatingg®*1) corresponds to the screened Poisson equa-

tion [BCCZ0§. To minimize Equation?, if \/% > Dgi(k),
sl (k+1) (k)

, = 0, otherwised, =g, wheregfk) is theith
voxel in thekth iteration. The Euler-Lagrange solution of E-

quation8 is defined:

g-BrPg=u—po.- 5%+, 9)

where 02 is the Laplace-Beltrami operator ard is the
divergence operator. Equatichcan be solved either us-
ing the 3D Fast Fourier Transform (FFT) or the precondi-
tioned conjugate gradient method with an appropriate pre-
conditioner Saa03. In this paper, we use the FFT solver for
its efficiency:

F (u— Bdiv(8%+1))
1-Blap )
whereF is the FFT,div is the discrete version of diver-
gence operatof)- andlap is the optical transfer function
of the discrete Laplacian filter that is evaluated only once.
This special alternating optimization strategy is time con-

g(k+1) « F—l( (10)

first increase and then decrease, due to the balance of the tsuming when the number of iterations needed is large. For

wo energy terms in Equatidh In this example, according to
this curve, we choose the optimal valie= 0.002 to obtain
the best smoothing result in Figu2&d).

3.3. Computation using Alternative Minimization

The Lo volume gradient minimization is difficult to opti-
mize due to its non-convex and non-derivative nature, and
traditional optimization techniques such as the gradient de-

(© 2015 The Author(s)

example, it takes 52 iterations and about 37.8s to produce
Figure2(d). In our implementation, the accelerated iterative
shrinkage algorithmBYA13] based on first order proximal
operatorsPB14 introduces an efficient warm-start solution
to improve the computational efficiency. Please refer to the
paper BYA13] for the accelerated iterative shrinkage algo-
rithm. To produce the similar result of Figu2éd), the com-
putation time is 3.95s with this acceleration, nearly 9 times
faster than the original alternating optimization method.
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——— original original
——— blurred blurred + noise
s smoothed s smoothed
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Figure 4: Boundary smoothing using the blurring-
sharpening strategy. (a) To mimic the effect of the band-
limited property of capturing instruments, a Gaussian filter
is applied to the original 1D sharp signal and this obtains
the purple curve with a blurred edge. The red curve is the
smoothed result of thegLgradient minimization. (b) The
captured signal (the purple curve) is further destroyed by -
noise. The red curve is the recovered signal by the blurring- @ (e ®
sharpening strategy.

Figure 5. The impact of the Gaussian filtering in the
blurring-sharpening strategy. (a) The original sphere vol-
ume with severe noise. (b) The under-smoothed result of the
4. Boundary Smoothing Using Blurring-Sharpening Gaussian filter witho = 0.5. (c) The over-smoothed result of
Strategy the Gaussian filter wittlo = 2.0. (d-f) are smoothed results

The Lo volume gradient minimization method suppresses ©f (8-C) using the g.volume gradient minimization.

noise in homogeneous materials and preserves local details

on the boundaries between different materials. If boundaries

also contain noise, this noise is more visible in the rendered e 4(b). The blurred purple line is applying the gradient
results. However, the proposed method cannot filter out the mjnimization method, and the edge is sharpened and recov-
noise due to its large gradient magnitude, and this results in ered to the red line similar to the original green line in Fig-
artifacts or discontinuities in the smoothed result. ure4(a). The blurring-sharpening strategy is used to recover

In order to remove noise or smooth local details on the blurred and noisy purple line in Figuagb), and it ob-
the boundaries, we propose a blurring-sharpening strategy, tains the red line similar to the original green line. Thus, the
which can remove noise both in homogeneous materials and Proposed strategy not only smoothes the signal, but also nar-
on the boundaries. This strategy first applies a filter to s- FOWS the blurred signal, recovers the sharpness, and retains
mooth noise in homogeneous materials and on the bound- the signal as far as possible.
aries. Similar to the Gaussian frequency response of captur-  As shown in Figures, noise on the boundaries results in
i“g instruments, we use the Gaussian filter in our implemen- yisyal artifacts in volume visualization, such as the smal-
tation. | bumps in theLg smoothed volume in Figurg(d). This

The local filter also blurs the boundaries. We utilize the S because boundaries have larger gradient magnitudes than
Lo volume gradient minimization method in Section 3 to those in other regions. Therefore, these boundaries togeth-
achieve volume smoothing and boundary sharpening. The € With the noise are preserved after thg volume gra-

minimization equation becomes dient minimization method. In order to suppress noise on
) 2 the boundaries, the blurring-sharpening strategy is applied.
mgln{(g— Uplur)® +Ac(0g) }, (11) After the Gaussian filter with different smoothing capabili-

ties, the under-smoothed result in Fig&@®) still contains
noise, and the over-smoothed result in Figh(@ blurs the
ters out noise in homogeneous materials and on the bound_important_ features, i.e. the yellow sphere becomes smaller
aries, and more importantly, it sharpens the blurred bound- and t_he dlstance_ between two blue sphe_res gets shorter. The
aries’and recovers the origirllal boundaries as much as possi_blgrrlng-sharpemng_ strgtegy can both faithfully recover the
ble. Thus, noise in homogeneous materials and on bound- original boundgnes n Flggr‘i(e) and (). These results show
ariés is rémoved while boundaries are well preserved or that our qurrlng-sharpenlng_ strategy suppresses n0|se_not
even enhanced ' only_ln homogene0u§ materials but also on t_he boundaries,
) and is more robust with respect to the Gaussian parameter.

whereu,, is the blurred volume generated by the local fil-
ter. TheLg volume gradient minimization method further fil-

Figure4 demonstrates the boundary recovering effect us-
ing the blurring-sharpening strategy. The green line in Fig-
ure4 represents a sharp, discontinuous edge. The purple line
is obtained by blurring the edge with the Gaussian filter in We have implemented the proposed volume smoothing
Figure4(a), and the line is further degraded by noise in Fig- method with C++ and Matlab. Several volume datasets in d-

5. Resultsand Discussion

(© 2015 The Author(s)
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No sy, Original Smoothed, Noisy, Original Smoothed,
SNR=8.31 SNR=21.94 SNR=10.53 SNR=21.44

(a) Salt and Pepper (b) Speckle

Noisy, Original Smoothed, Original Smoothed,
SNR=13.19 SNR=24.71 SNR=22.49

(c) Gaussian (d) Poisson

Figure 6: The denoising capability of the blurring-sharpening strategy based on the tooth volume. (a-d) are obtained by adding
one particular type of noise, as indicated by the corresponding captions. SNR (in dB) of the noisy and the smoothed volumes
are shown in each figure.

ifferent modalities were used to verify the effectiveness and gradient minimization method. This data has a high signal-
efficiency of our method in volume denoising / smoothing. to-noise (SNR = 17.09), and the noise distributed over the
We performed all experiments on a PC with a dual core whole volume makes boundaries of interesting features d-
3.0GHz and 8GB memory. ifficult to recognize, as shown in Figur&a). The bilater-
al filter cannot remove noise as indicated in the blue box
of Figure7(b), and blurs small features, and even removes
the small seeds in the red box due to its local filtering and
averaging operation. Edge aware anisotropic diffusion pre-
serves peripheral boundaries and diminishes noise out of the
tomato. However, it blurs boundaries of internal features, for
example the noisy seeds and placenta in the red box of Fig-
ure7(c), as noisy structures of these features make the evalu-
ation of the second derivative not very accurate. Our method
globally suppresses local details with small gradient magni-
tudes, producing visual smoothness in homogeneous mate-
rials, and at the same time retains and sharpens prominent
%oundaries, such as the boundaries of seeds and placenta as
indicated in FigureZ(d). Our method is more effective in s-

A 3D MRI Tomato data is used to compare three vol- moothing noisy regions in this volume.
ume smoothing methods: the bilateral filter, edge aware
anisotropic diffusion HM10], and the proposetly volume We further compare our method with the bilateral filter

Four common noises, Salt and Pepper noise, multiplica-
tive Speckle noise, additive Gaussian noise, and additive
Poisson noise, are added to a nearly noise-free tooth data
(CT) to test the denoising capability of our method. Figbire
shows the denoising effect of our method in all four cases.
These results demonstrate that our method can effectively re-
move common noises generated from capturing instruments
while preserving significant features. For example, additive
Gaussian noise introduces gaussian-distributed type artifacts
in the volume, and the blurring-sharpening strategy not on-
ly removes noise in homogeneous material effectively, such
as enamel, dentin and pulp, but also suppresses noise on th
boundaries, such as cementum.

(© 2015 The Author(s)
Computer Graphics Forui@ 2015 The Eurographics Association and John Wiley & Sons Ltd.



138 Q.C. Wang, Y.B. Tao, H. Lin / Edge-Aware Volume Smoothing Usit@radient Minimization

) (b) (© (d)

Figure7: Comparison of three smoothing methods on a 3D MRI tomato volume. (a) The original volume data. (b) The smoothed
volume with the bilateral filtergs = 2, o; = 40. (c) The smoothed volume with edge aware anisotropic diffusiea2 and 10
iterations. (d) Our smoothed result,= 0.00023 Our method suppresses low gradient amplitude details and globally retains
salient edges, clearly shown in the boundaries of seeds and placenta.

@ (b)

Figure 8: Comparison of three smoothing methods on a 3D CT flower volume. (a) The original volume data. (b) The smoothed
volume with the bilateral filtergs = 5, o; = 120. (c) The smoothed volume with edge aware anisotropic diffusiea,10 and

15 iterations. (d) Our b smoothing resultp = 0.005 Compared with other methods, our method suppresses low gradient
amplitude block-like noises, while retaining the salient boundaries. (e) Close-ups (as shown the yellow box in (a)) of pistils and
stamens in the results. (f) Close-ups (as shown the red box in (a)) of the results with increasing smoothing strength gradually
from top to bottom. The methods from left to right are the bilateral filter, edge aware anisotropic diffusion anghtbleime

gradient minimization method.

and edge aware anisotropic diffusidiNI10] by smoothing ous boundary while suppressing the low-contrast structures,
area noise in a flower voluméYYI114]. This volume was as shown in Figur&(d). Compared with the bilateral filter
artificially contaminated with a block noise near the stem, and edge aware anisotropic diffusion, our method can effec-
as shown in the red box of FiguBfa). Figure8(e) shows tively deal with this type of area noise.

the pistils and stamens in the results with three smoothing

methods. Figuré(f) shows the results when each method  In Figure9, we present our smoothed result of 3D ultra-
increases the smoothing capability. The bilateral filter can sound data of human liveRPT]. Ultrasound volumes are
remove the block noise, but also blurs the boundaries of pis- Usually ruined with Speckle noise, and features are often
tils and stamens due to its averaging operation, as shown in low-contrast. It is extremely difficult to ViSUa"y detect im-
Figure 8(b). Edge aware anisotropic diffusion cannot quite Portant structures, as shown in Fig@@). Our method fil-
smooth out the block noise in Figudé) due to the relative- ters out Speckle noise around important features in this vol-
ly large second directive in the block noise. When increas- ume, and retains and Sharpens salient boundaries. Tubular
ing the A value, our method gradually filters out the block ~structures, which are hardly detectable in Figl(a), are
noise while still preserving the flower’s boundary as shown More visually distinct and recognizable in Fig@(®).

in Figure 8(f). Our method produces a smooth and continu- o )
Table 1 reports the total processing time (in seconds) of

(© 2015 The Author(s)
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(@) (b)

Figure9: (a) The original 3D ultrasound data of human liv-
er. (b) Our smoothed result. Tubular structures are more vi-
sually recognizable.

Table 1: The computational times (in seconds) of bilateral
filter (BLF), edge aware anisotropic diffusion (AD), and our
method for Tomato volume (Figu®, Flower volume (Fig-
ure 8), and Human Liver volume (Figui@).

Time (seconds)
Data sets Resolution BLF AD Ours
Tomato 256x 256x 164 | 148.70 229.13 26.78
Flower 160x 168x 243 | 186.12 145.41 33.21
Human Liver | 493x415x 172 435.26 1388.54 | 78.55

three methods on different volume datasets. The FFT (Equa-
tion 10) is computed in Matlab using MEX files (C/C++ ex-
tension for Matlab), and other codes, including the bilateral
filter and edge aware anisotropic diffusion, are implemented
in C++. As can be seen from Tahle our method performs
about 5 and 10 times faster than the bilateral filter and edge
aware anisotropic diffusion, respectively. The main reason is
that FFT makes the time of one iteration much faster due to
its efficiency, and the accelerated iterative shrinkage great-
ly reduces the iteration number compared with edge aware
anisotropic diffusion. The efficiency of the bilateral filter
greatly depends on the kernel size. In our experiment, the
parametersis and oy are chosen in the range (&, 5] and
[40,12Q, respectively. The iteration number in edge aware
anisotropic diffusion also affects the time, which is between
10 and 20 in our experiment.

Table 2 summarizes the performance of three methods
in terms of Mean Squared Error (MSE), Structural Similar-

Table 2. Performance evaluation of different smoothing
methods: Bilateral filter (BLF), edge aware anisotropic d-
iffusion (AD), and our method on Tomato volume (Figtre
and Flower volume (Figurd). The lower value of MSE is
better, while the higher value of SSIM and QILV is better.

Tomato Flower
MSE SSIM QILV MSE SSIM QILV
BLF 2.20 0.93 0.99 4.69 0.91 0.99
AD 4.24 0.87 0.92 8.58 0.90 0.97
Ours 2.02 0.95 0.99 3.86 0.93 0.99

(© 2015 The Author(s)
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ity Index (SSIM) WBSS04 and Quality Index Based on
Local Variance (QILV) AFSAWO0€ for quality assessment.

For the experimented tomato and flower volume, our method
performs better than both other methods, because it removes
the local details with a low gradient magnitude, and globally
preserves and even enhances the salient boundaries.

6. Conclusions

In this paper, we have presented a volume denoising / s-
moothing method based on the gradient minimization
framework for volume visualization. The basic idea is to
globally control the number of voxels of a non-zero gradient
in the result. It suppresses less important details and noise
with a low gradient magnitude, and sharpens and enhances
salient features. In addition to smooth noise in homogenous
materials, we also proposed the blurring-sharpening strate-
gy to diminish noise on the boundaries. This strategy can be
used for volume denoising and smoothing effectively, and
the result contains salient features with smooth boundaries
and visually pleasing structures while being in line with
the original volume. Our experiments demonstrated the ef-
fectiveness and efficiency of our method. Compared with
the bilateral filter and edge aware anisotropic diffusion, our
method is more effective in dealing with area noise with a
low gradient amplitude.

Future work. Although theLg norm does not rely on
the magnitude, thieg volume gradient minimization method
does depend on the gradient magnitude, as it needs to bal-
ance the result similarity and structure sparsity. Thus, low-
contrast features will be first smoothed by our method, while
high-contrast noise cannot be effectively filtered out due to
its large gradient magnitude. For future work, we plan to
extend our method by designing different types of the gra-
dient magnitude for removing noise adaptively. For exam-
ple, it can filter out high-contrast noise first. Currently, users
heuristically select the optimal value af We aim to find
an automatic scheme to suggest the optimal parameter for
the input volume. In addition, the alternative minimization
strategy is only an approximate solution, which may result
in small position differences of surfaces. We would like to
find a more efficient and accurate way to solve the minimiza-
tion problem, such as the fused coordinate descent frame-
work [CZL14]. As the current optimization method could
not perform interactive volume smoothing, we would like to
also improve the optimization method to denoise / smooth
large volumes interactively.
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