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Abstract
In volume visualization, noise in regions of homogeneous material and at boundaries between different materials
poses a great challenge in extracting, analyzing and rendering features of interest. In this paper, we present a novel
volume denoising / smoothing method based on the L0 gradient minimization framework. This framework globally
controls how many voxels with a non-zero gradient are in the result in order to approximate important features’
structures in a sparse way. This procedure can be solved quickly by the alternating optimization strategy with
half-quadratic splitting. While the proposed L0 volume gradient minimization method can effectively remove noise
in homogeneous materials, a blurring-sharpening strategy is proposed to diminish noise or smooth local details
on the boundaries. This generates salient features with smooth boundaries and visually pleasing structures. We
compare our method with the bilateral filter and anisotropic diffusion, and demonstrate the effectiveness and
efficiency of our method with several volumes in different modalities.

Categories and Subject Descriptors(according to ACM CCS): I.4.10 [Image Processing and Computer Vision]:
Image Representation—Volumetric

1. Introduction

Volume visualization has been widely used for feature
analysis and presentation in different fields, ranging from
medicine and biology to engineering and geophysics. These
volumes are usually generated through scanners in a diversi-
ty of modalities, such as Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI) and Ultrasound. However,
even with high-resolution scanners, aliasing and noise are
inevitably introduced during the volume acquisition proce-
dure. This noise could corrupt salient features in terms of in-
tensity, especially low-contrast structures and small object-
s, and this makes intensity-based volume analysis methods,
such as transfer functions and iso-surface extraction, fail to
produce accurate feature information and yield visual confu-
sion and misunderstanding in the rendered result. Therefore,
noise is a great challenge in volume visualization, and de-
noising / smoothing is often required in the pre-processing
step to reduce noise while preserving important features.

There have been many attempts to deal with the volume
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smoothing problem. Filtering is one of these frameworks for
volume smoothing. The Gaussian filter is widely used in vol-
ume smoothing, but boundaries are also blurred. The bilat-
eral filter [TM98] considers both the spatial distance and
intensity difference between two pixels to better preserve
edges. Another popular framework in volume smoothing is
anisotropic diffusion, originally introduced by Perona and
Malik [PM90]. Anisotropic diffusion iteratively performs
edge-preserving local filtering to suppress noise, and the o-
riginal scheme tends to over-sharpen edges. Recently, a new
edge-aware anisotropic diffusion model [HM10] defines the
boundaries based on the directional second derivative along
the gradient to denoise the volume while preserving bound-
aries and fine tubular structures. However, anisotropic dif-
fusion is a relatively slowly converging non-linear iterative
process. As previous volume smoothing methods are most-
ly based on local filters, they result in more or less bound-
aries blurriness and are hard to globally maintain and possi-
bly sharpen the most prominent boundaries while enabling a
reliable primary-structure representation.

Most recently, a novelL0 minimization framework was in-
troduced to globally smooth images [XLXJ11]. TheL0 nor-
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m of a vector is the number of non-zero entities. It direct-
ly measures the information sparsity and is very powerful
to abstract the main structural information. Compared with
previous edge-preserving methods, the resulted signal sup-
presses noise / details, and retains and sharpens significant
edges. At the same time, this method does not introduce any
edge blurriness as it is not based on local filters.

This paper presents a new volume denoising / smoothing
method based on theL0 gradient minimization framework.
As the gradient magnitude is highly related to structural in-
formation, especially in medical datasets [KD98], we can
restrict the number of intensity changes among neighboring
voxels in the context ofL0 gradient minimization. This lead-
s to an unconventional global optimization procedure based
on the discrete metric, which counts the number of voxel-
s with a non-zero gradient. We employ the alternating op-
timization strategy with half-quadratic splitting to optimize
this procedure. The proposedL0 volume gradient minimiza-
tion is greatly helpful for suppressing less important details
and noise with low gradient magnitudes, and sharpening and
enhancing salient features at the same time.

The L0 volume gradient minimization can perfectly s-
mooth details and noise in relatively homogenous materi-
als, but it cannot effectively suppress details and noise on
the boundaries due to their relatively high gradient magni-
tudes. This results in visual artifacts and misunderstanding
during feature analysis. As the proposedL0 volume gradi-
ent minimization can sharpen boundaries, this paper propos-
es a blurring-sharpening strategy to achieve feature bound-
ary denoising / smoothing. A linear filter, such as the Gaus-
sian filter, is firstly used to smooth noise on the boundaries,
and then the proposedL0 volume gradient minimization is
applied to the smoothed volume to diminish the blurred
noise and sharpen the blurred boundaries. In this way, the s-
moothed result contains salient features with smooth bound-
aries and visually pleasing structures, and it is also more con-
sistent with the original volume. To the best of our knowl-
edge, our method is the first attempt to applyL0 gradient
minimization in volume denoising / smoothing.

The paper is structured as follows. Related work is dis-
cussed in Section 2, while Section 3 describes the proposed
volume smoothing method. In Section 4, we present the
blurring-sharpening strategy to deal with noise at bound-
aries, while Section 5 presents and discusses the smoothed
/ denoised results of several volume datasets in differen-
t modalities. Finally, we draw conclusions in Section 6.

2. Related Work

Smoothing is a widely investigated research area in many
fields, such as image and mesh processing, and volume visu-
alization. This section briefly reviews three main categories
of smoothing: local filtering, diffusion, and non-local meth-
ods.

Local filtering usually replaces the value with a weighted
mean of its neighbors, and the weights are often related to
the spatial distance and / or the value difference [MMMY97,
MMK ∗98, SH05, MAD14]. The Gaussian filter is effective
at removing noise from the volume, but is not able to pre-
serve boundaries of features, resulting in an over-smoothing
effect around the boundary. Many edge-aware local filtering
methods have been proposed to overcome this problem. One
popular method is bilateral filtering [TM98], which perform-
s a weighted averaging of the values in a window based on
both space and range distances for image smoothing. This
method has been extended to mesh smoothing [FDCO03].
The bilateral filter can be directly extended to a 3D volume
to filter out small changes in intensity and preserve strong
boundaries, and it comes at the expense of tradeoff between
details suppression and edge preservation [FFLS08].

Diffusion is an iterative process based on local filtering.
Anisotropic diffusion is often used for suppressing noise
while preserving important structures. Its capability depends
on the stopping function to prevent smoothing from cross-
ing strong edges, otherwise this will cause edge blurriness.
It was originally introduced by Perona and Malik [PM90],
and can be used for intense smoothing while preserving
prominent edges between the smooth regions. Krissian et
al. [KMA97] presented an anisotropic diffusion model to
perform diffusion along the direction of the gradient and
the minimum and maximum curvature. Krissian and Aja-
Fernández [KAF09] introduced a noise-driven anisotropic
diffusion that combines local linear minimum mean square
error filters and partial differential equations to remove Ri-
cian noise from a 3D MRI volume. Recently, a novel edge
aware anisotropic diffusion model proposed by Hossain and
Möller [HM10] uses the directional second derivative to de-
fine material boundaries, and thus it can preserve materi-
al boundaries as well as fine tubular structures. As these
anisotropic diffusion methods usually apply local filtering
in each iteration, they blur edges to some extent in the final
result. The proposed method avoids local filtering and is a
global approach to smooth the low gradient magnitude re-
gions while retaining or even sharpening salient boundaries.

Non-local methods attempt to remove noise without blur-
ring salient edges [BCM05]. Topological denoising filter-
s [WGS10, JWS12] first globally extract and filter the ex-
trema of a 2D scalar field, and then obtain the denoised re-
sult through the solution of a discrete optimization problem.
Günther et al. [GJR∗14] extended the topology-controlled
denoising method to globally preserve the minima and max-
ima of large 2D data and medium-sized 3D data by intro-
ducing a novel domain decomposition approach. However,
the computation is very time consuming, several hours for a
1283 volume. On the other hand,L0 minimization is a new
well-defined and powerful smoothing framework based on
the principle of discretely counting spatial intensity changes.
Compared with local smoothing methods, it can diminish
low gradient amplitude details and globally preserve and en-
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(a) (b) (c)

Figure 1: A denoising example of the L0 volume gradient minimization method. (a) The noisy volume, corrupted by synthetic
noise. (b) The smoothed volume after our method. (c) The profile plot is a 1D scanline plot of the scalar values taken from a
slice as indicated by the white line in the 2D images. The black curve is a plot of the noisy scalar values, while the red one is
the plot of the smoothed scalar values. Our method smoothes noise while preserving the most significant sharp edges.

hance salient features, even if the data is low-contrast or im-
portant features are small. Xu et al. [XLXJ11] utilized theL0
minimization framework to image smoothing to progressive-
ly suppress details. However, smoothness of feature bound-
aries is not taken into account. He and Schaefer [HS13]
extended theL0 minimization framework from images to
meshes to gradually remove noise while preserving sharp
features. In this paper, we investigate how theL0 gradient
minimization can be applied for smoothing homogenous ma-
terials. For the noise on the feature boundaries, we show how
to employ this method to retain and sharpen boundaries from
blurred boundaries after a local filter for smoothing bound-
aries. Furthermore, the proposed method is much faster than
the topology-controlled method of Günther et al. [GJR∗14];
just several seconds for a 1283 volume.

3. Volume Denoising / Smoothing Using L0 Gradient
Minimization

During the volume acquisition procedure, noise and artifact-
s are introduced by a number of factors, such as captur-
ing instruments, data quantization and transmission, and dis-
crete sources of radiation [MGM∗04]. For example, in med-
ical imaging, additive Gaussian noise usually corrupts data
from CT [GBG04] and low intensity MRI [BL03], multi-
plicative Poisson noise often appears in data from functional
MRI [HZPS01], and multiplicative Speckle noise commonly
degrades data from Ultrasound [Bur78]. Boundaries of ob-
jects usually assume a sharp, discontinuous change in the
measured physical value. However, capturing instruments
are typically band-limited with a Gaussian frequency re-
sponse. Thus, the measured boundaries are usually blurred
by the Gaussian filter and this causes artifacts in bound-
aries [KD98].

In this paper, we assume that the scalar volume can be
roughly separated into two parts: regions of relatively homo-
geneous material and boundaries between different material-
s. For noise in regions of relatively homogeneous material,

we introduce theL0 volume gradient minimization method
to suppress it due to its relatively low gradient. This globally
retains salient boundaries and regions with nearly constan-
t values. On the other hand, this method cannot effectively
remove the noise on the boundaries, as these noisy bound-
aries usually have higher gradient magnitudes than voxels
in relatively homogeneous regions. To address this problem,
we further propose the blurring-sharpening strategy, which
firstly applies a local filter to blur noise, especially noise on
the boundaries, and then employs theL0 volume gradient
minimization method to further remove noise in both ma-
terials and boundaries, and to narrow and retain the sharp
boundaries from the blurred boundaries after the local filter.

In this section, we will first briefly review theL0 gradien-
t minimization for a 1D signal, then extend this framework
to smooth 3D volume with global low-amplitude structures
removal and salient boundaries preservation, and finally de-
scribe the alternating optimization strategy to quickly solve
this minimization problem. The blurring-sharpening strategy
will be presented in Section 4.

3.1. 1D L0 Smoothing

Let x = (x1,x2, ...,xn) denote the input 1D discrete signal.
TheL0 norm of a vector is the number of non-zero values,
and it discretely measures the information sparsity (i.e. the
smaller theL0 norm is, the more sparse is the vector), as
follows:

c(x) = ♯{i||xi | 6= 0}, (1)

wherei is the index, and♯{.} denotes the operator counting
the number ofxi that satisfies|xi | 6= 0.

TheL0 gradient norm of the vector is defined to count the
number of non-zero value changes ofxi , as follows:

c(∇x) = ♯{i||(xi+1−xi−1)/2| 6= 0}, (2)

where i + 1 and i − 1 are indexes of neighboring values.
|(xi+1− xi−1)/2| is the gradient magnitude of one value at
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Figure 2: The impact of the smoothing parameterλ of the L0 volume gradient minimization method. The slices from the
corresponding volumes are displayed at the top row. (a) The original sphere volume with severe artificial noise. (b-g) The
smoothed results by the L0 volume gradient minimization method with the increasing values ofλ . Our method obtains the best
smoothing result in (d) whenλ = 0.002, since a smallλ dose not filter noise sufficiently and largeλ destroys the salient spheres.

the ith position, approximated as the central difference be-
tween the corresponding values. Equation2 is theL0 norm
of the gradient magnitude and it only depends on whether the
signal alters its contrast or not, regardless of the magnitude
of changes.

For 1D smoothing, we first require that the resulty should
be structurally similar to the originalx. Meanwhile, the de-
tails of the 1D signal, which usually have small gradien-
t magnitudes, should be smoothed, i.e. the resulty should
have a smallL0 norm value. Thus, the objective minimiza-
tion function for 1DL0 smoothing is defined as follows:

min
y
{(y−x)2 +λc(∇y)}, (3)

where λ is a smoothing parameter to control the signifi-
cance ofc(∇y). The first part of Equation3 tries to pre-
serve the overall shape as much as possible, which means
the overall difference between two vectors should be min-
imized. The second part of Equation3 controls the sparsi-
ty of the smoothed result. Thus, to minimize the total cost,
the significant edges should be retained, otherwise the cost
will raise due to the first part of Equation3. Different from
previous edge-aware methods that may destroy the salien-
t edges in different scales due to the local filtering, theL0
smoothing avoids blurriness of the salient edges and even
sharpens these salient edges because of the discrete count-
ing and preservation of the large gradient magnitude values.
The smoothing parameterλ has a great influence on the s-
moothing effect. A largeλ results in few significant edges,
but it still retains the most sharp edges, which characterizes
the dominant information about the 1D signal.

Figure1(c) shows an example to illustrate the 1DL0 s-
moothing effect. It is a 1D profile plot of the scalar val-
ues taken from a slice as indicated by the white line in the
2D images from Figure1(a) and (b). It is clear that the s-

moothed curve suppresses the details and retains the high-
contrast edges.

3.2. 3D Volume L0 Smoothing

Based on 1DL0 smoothing above, we can extend it to
3D volume smoothing. Letu denote the input 3D volume
and g the unknown smoothed result. The gradient∇gi =
(gi,x,gi,y,gi,z)

T is calculated from the scalar value difference
between neighboring voxels along thex, y andz directions
for the ith voxel of the smoothed result. Other sophisticated
methods [HAM11] can better estimate the gradient. Howev-
er, this simple measure is sufficient for our method in most
cases. Our gradient measure is expressed as follows:

c(∇g) = ♯{i|
√

(gi,x)2+(gi,y)2+(gi,z)2 6= 0}, (4)

where♯{.} is the same as Equation1, and it is theL0 norm of
gradients of the smoothed volume. This operator counts how
many voxels there are whose gradient magnitude is not zero
in the smoothed volume. It looks for the gradient information
sparsity, indicating the number of non-zero gradients.

Similar to 1D signal smoothing, 3D volume smoothing
also seeks a balance between result similarity and structure
flattening with the input volume, and the 3D volumeL0 gra-
dient minimization equation is defined as follows:

min
g
{(g−u)2+λc(∇g)}, (5)

where the parameterλ is used to effectively control the level
of structure coarseness, and can be adjusted by the user. A
largeλ results in few boundaries while a small one preserves
the boundaries as much as possible.

As shown in Figure1, the original box volume with t-
wo concentric boxes is noise-free. We add synthetic noise
(Gaussian noise withµ = 0 andσ = 0.01) in Figure1(a).
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Figure 3: Number of voxels with a non-zero gradient on the
sphere volume in Figure2 under differentλ values. With
the increasing of the parameter, more voxels with a non-zero
gradient are smoothed. The red circles on the curve indicate
the corresponding parameters in Figure2(b-f), respectively.

Our denoised result is presented in Figure1(b), flattening the
noise while containing the most salient feature boundaries.

Figure 2 shows the effect of different values ofλ on a
sphere volume data. The original volume consists of sever-
al spheres, whose feature boundaries and inner regions are
contaminated by severe noise. A smallλ cannot filter out
the noise in Figure2(b-c) and therefore cannot convey the
benefits of smoothing. Increasing the value ofλ gradually
removes noise in regions of homogeneous material while
retaining important features. More structures, such as the
spheres on the top, are gradually smoothed and only the
largest sphere with the largest gradient is preserved (Fig-
ure 2(d-g)). Previous local-filtering based methods usually
smooth small features first. However, our method smoothes
less significant features first, i.e. features with less contrast
with their surrounding materials. Thus, the second largest
sphere on the top left corner disappears first because it is
closer to the surrounding material in terms of intensity and
its gradient is smaller than other spheres.

Figure3 shows the number of voxels with a non-zero gra-
dient on the sphere volume when increasing theλ value from
0 to 0.04, and it indicates the relation between the smooth-
ing effect and theλ value. The first local minimum position
(the red circle denoted as Fig. 2(d) on the curve) shows that
small gradient details or noise have already been filtered out.
With the increaseλ , spheres similar with their background
will be gradually blurred and finally smoothed. During this
process, the number of voxels with a non-zero gradient will
first increase and then decrease, due to the balance of the t-
wo energy terms in Equation5. In this example, according to
this curve, we choose the optimal valueλ = 0.002 to obtain
the best smoothing result in Figure2(d).

3.3. Computation using Alternative Minimization

The L0 volume gradient minimization is difficult to opti-
mize due to its non-convex and non-derivative nature, and
traditional optimization techniques such as the gradient de-

scent are no longer applicable. Recently, Xu et al. [XLXJ11]
and He and Schaefer [HS13] introduced a novel numerical
method to minimize theL0 norm. It is an alternating opti-
mization strategy with the half-quadratic splitting scheme,
by introducing a set of auxiliary variables. We briefly de-
scribe how to solve the 3DL0 volume gradient minimization
problem.

A set of auxiliary variablesδ is firstly introduced in the
3D L0 volume gradient minimization problem, and Equa-
tion 5 becomes:

min
g,δ
{(g−u)2 +β (∇g−δ )2+λc(δ )}. (6)

The problem above can be solved by alternative mini-
mization:

δ (k+1)← argmin
δ
{β (∇g(k)−δ (k))2 +λc(δ (k))}, (7)

g(k+1)← argmin
g
{(g(k)−u)2+β (∇g(k)−δ (k+1))2}, (8)

wherek is the iteration number. The parameterβ is starting
from a small value, and multiplied by 2 each iteration. Equa-
tion 6 approaches Equation5 whenβ is large enough. Cal-
culating δ (k+1) corresponds to a shrinkage problem while
calculatingg(k+1) corresponds to the screened Poisson equa-

tion [BCCZ08]. To minimize Equation7, if
√

λ
β > ∇g(k)i ,

δ (k+1)
i = 0, otherwiseδ (k+1)

i = ∇g(k)i , whereg(k)i is the ith
voxel in thekth iteration. The Euler-Lagrange solution of E-
quation8 is defined:

g−β∇2g= u−β∇ ·δ (k+1), (9)

where ∇2 is the Laplace-Beltrami operator and∇· is the
divergence operator. Equation9 can be solved either us-
ing the 3D Fast Fourier Transform (FFT) or the precondi-
tioned conjugate gradient method with an appropriate pre-
conditioner [Saa03]. In this paper, we use the FFT solver for
its efficiency:

g(k+1)← F−1(
F(u−βdiv(δ k+1))

1−β lap
), (10)

where F is the FFT,div is the discrete version of diver-
gence operator∇· and lap is the optical transfer function
of the discrete Laplacian filter that is evaluated only once.
This special alternating optimization strategy is time con-
suming when the number of iterations needed is large. For
example, it takes 52 iterations and about 37.8s to produce
Figure2(d). In our implementation, the accelerated iterative
shrinkage algorithm [BYA13] based on first order proximal
operators [PB14] introduces an efficient warm-start solution
to improve the computational efficiency. Please refer to the
paper [BYA13] for the accelerated iterative shrinkage algo-
rithm. To produce the similar result of Figure2(d), the com-
putation time is 3.95s with this acceleration, nearly 9 times
faster than the original alternating optimization method.
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Figure 4: Boundary smoothing using the blurring-
sharpening strategy. (a) To mimic the effect of the band-
limited property of capturing instruments, a Gaussian filter
is applied to the original 1D sharp signal and this obtains
the purple curve with a blurred edge. The red curve is the
smoothed result of the L0 gradient minimization. (b) The
captured signal (the purple curve) is further destroyed by
noise. The red curve is the recovered signal by the blurring-
sharpening strategy.

4. Boundary Smoothing Using Blurring-Sharpening
Strategy

The L0 volume gradient minimization method suppresses
noise in homogeneous materials and preserves local details
on the boundaries between different materials. If boundaries
also contain noise, this noise is more visible in the rendered
results. However, the proposed method cannot filter out the
noise due to its large gradient magnitude, and this results in
artifacts or discontinuities in the smoothed result.

In order to remove noise or smooth local details on
the boundaries, we propose a blurring-sharpening strategy,
which can remove noise both in homogeneous materials and
on the boundaries. This strategy first applies a filter to s-
mooth noise in homogeneous materials and on the bound-
aries. Similar to the Gaussian frequency response of captur-
ing instruments, we use the Gaussian filter in our implemen-
tation.

The local filter also blurs the boundaries. We utilize the
L0 volume gradient minimization method in Section 3 to
achieve volume smoothing and boundary sharpening. The
minimization equation becomes

min
g
{(g−ublur)

2+λc(∇g)}, (11)

whereublur is the blurred volume generated by the local fil-
ter. TheL0 volume gradient minimization method further fil-
ters out noise in homogeneous materials and on the bound-
aries, and more importantly, it sharpens the blurred bound-
aries and recovers the original boundaries as much as possi-
ble. Thus, noise in homogeneous materials and on bound-
aries is removed, while boundaries are well preserved or
even enhanced.

Figure4 demonstrates the boundary recovering effect us-
ing the blurring-sharpening strategy. The green line in Fig-
ure4 represents a sharp, discontinuous edge. The purple line
is obtained by blurring the edge with the Gaussian filter in
Figure4(a), and the line is further degraded by noise in Fig-

(a) (b)

(d)

(c)

(e) (f)

Figure 5: The impact of the Gaussian filtering in the
blurring-sharpening strategy. (a) The original sphere vol-
ume with severe noise. (b) The under-smoothed result of the
Gaussian filter withσ = 0.5. (c) The over-smoothed result of
the Gaussian filter withσ = 2.0. (d-f) are smoothed results
of (a-c) using the L0 volume gradient minimization.

ure4(b). The blurred purple line is applying theL0 gradient
minimization method, and the edge is sharpened and recov-
ered to the red line similar to the original green line in Fig-
ure4(a). The blurring-sharpening strategy is used to recover
the blurred and noisy purple line in Figure4(b), and it ob-
tains the red line similar to the original green line. Thus, the
proposed strategy not only smoothes the signal, but also nar-
rows the blurred signal, recovers the sharpness, and retains
the signal as far as possible.

As shown in Figure5, noise on the boundaries results in
visual artifacts in volume visualization, such as the smal-
l bumps in theL0 smoothed volume in Figure5(d). This
is because boundaries have larger gradient magnitudes than
those in other regions. Therefore, these boundaries togeth-
er with the noise are preserved after theL0 volume gra-
dient minimization method. In order to suppress noise on
the boundaries, the blurring-sharpening strategy is applied.
After the Gaussian filter with different smoothing capabili-
ties, the under-smoothed result in Figure5(b) still contains
noise, and the over-smoothed result in Figure5(c) blurs the
important features, i.e. the yellow sphere becomes smaller
and the distance between two blue spheres gets shorter. The
blurring-sharpening strategy can both faithfully recover the
original boundaries in Figure5(e) and (f). These results show
that our blurring-sharpening strategy suppresses noise not
only in homogeneous materials but also on the boundaries,
and is more robust with respect to the Gaussian parameter.

5. Results and Discussion

We have implemented the proposed volume smoothing
method with C++ and Matlab. Several volume datasets in d-

c© 2015 The Author(s)
Computer Graphics Forumc© 2015 The Eurographics Association and John Wiley & Sons Ltd.

136



Q.C. Wang, Y.B. Tao, H. Lin / Edge-Aware Volume Smoothing Using L0 Gradient Minimization

OriginalNoisy, 

SNR=8.31

Smoothed, 

SNR=21.94
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(b) Speckle

Noisy, 

SNR=13.19
Smoothed, 

SNR=24.71

Original

(c) Gaussian

Noisy, 

SNR=11.27

Smoothed, 

SNR=22.49
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Figure 6: The denoising capability of the blurring-sharpening strategy based on the tooth volume. (a-d) are obtained by adding
one particular type of noise, as indicated by the corresponding captions. SNR (in dB) of the noisy and the smoothed volumes
are shown in each figure.

ifferent modalities were used to verify the effectiveness and
efficiency of our method in volume denoising / smoothing.
We performed all experiments on a PC with a dual core
3.0GHz and 8GB memory.

Four common noises, Salt and Pepper noise, multiplica-
tive Speckle noise, additive Gaussian noise, and additive
Poisson noise, are added to a nearly noise-free tooth data
(CT) to test the denoising capability of our method. Figure6
shows the denoising effect of our method in all four cases.
These results demonstrate that our method can effectively re-
move common noises generated from capturing instruments
while preserving significant features. For example, additive
Gaussian noise introduces gaussian-distributed type artifacts
in the volume, and the blurring-sharpening strategy not on-
ly removes noise in homogeneous material effectively, such
as enamel, dentin and pulp, but also suppresses noise on the
boundaries, such as cementum.

A 3D MRI Tomato data is used to compare three vol-
ume smoothing methods: the bilateral filter, edge aware
anisotropic diffusion [HM10], and the proposedL0 volume

gradient minimization method. This data has a high signal-
to-noise (SNR = 17.09), and the noise distributed over the
whole volume makes boundaries of interesting features d-
ifficult to recognize, as shown in Figure7(a). The bilater-
al filter cannot remove noise as indicated in the blue box
of Figure7(b), and blurs small features, and even removes
the small seeds in the red box due to its local filtering and
averaging operation. Edge aware anisotropic diffusion pre-
serves peripheral boundaries and diminishes noise out of the
tomato. However, it blurs boundaries of internal features, for
example the noisy seeds and placenta in the red box of Fig-
ure7(c), as noisy structures of these features make the evalu-
ation of the second derivative not very accurate. Our method
globally suppresses local details with small gradient magni-
tudes, producing visual smoothness in homogeneous mate-
rials, and at the same time retains and sharpens prominent
boundaries, such as the boundaries of seeds and placenta as
indicated in Figure7(d). Our method is more effective in s-
moothing noisy regions in this volume.

We further compare our method with the bilateral filter
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(a) (b) (c) (d)

Figure 7: Comparison of three smoothing methods on a 3D MRI tomato volume. (a) The original volume data. (b) The smoothed
volume with the bilateral filter,σs = 2, σr = 40. (c) The smoothed volume with edge aware anisotropic diffusion,σ = 2 and 10
iterations. (d) Our smoothed result,λ = 0.00023. Our method suppresses low gradient amplitude details and globally retains
salient edges, clearly shown in the boundaries of seeds and placenta.

(a) (b) (c) (d) (e) (f)

Figure 8: Comparison of three smoothing methods on a 3D CT flower volume. (a) The original volume data. (b) The smoothed
volume with the bilateral filter,σs = 5, σr = 120. (c) The smoothed volume with edge aware anisotropic diffusion,σ = 10 and
15 iterations. (d) Our L0 smoothing result,λ = 0.005. Compared with other methods, our method suppresses low gradient
amplitude block-like noises, while retaining the salient boundaries. (e) Close-ups (as shown the yellow box in (a)) of pistils and
stamens in the results. (f) Close-ups (as shown the red box in (a)) of the results with increasing smoothing strength gradually
from top to bottom. The methods from left to right are the bilateral filter, edge aware anisotropic diffusion and the L0 volume
gradient minimization method.

and edge aware anisotropic diffusion [HM10] by smoothing
area noise in a flower volume [IYYI14]. This volume was
artificially contaminated with a block noise near the stem,
as shown in the red box of Figure8(a). Figure8(e) shows
the pistils and stamens in the results with three smoothing
methods. Figure8(f) shows the results when each method
increases the smoothing capability. The bilateral filter can
remove the block noise, but also blurs the boundaries of pis-
tils and stamens due to its averaging operation, as shown in
Figure8(b). Edge aware anisotropic diffusion cannot quite
smooth out the block noise in Figure8(c) due to the relative-
ly large second directive in the block noise. When increas-
ing theλ value, our method gradually filters out the block
noise while still preserving the flower’s boundary as shown
in Figure8(f). Our method produces a smooth and continu-

ous boundary while suppressing the low-contrast structures,
as shown in Figure8(d). Compared with the bilateral filter
and edge aware anisotropic diffusion, our method can effec-
tively deal with this type of area noise.

In Figure9, we present our smoothed result of 3D ultra-
sound data of human liver [RPT]. Ultrasound volumes are
usually ruined with Speckle noise, and features are often
low-contrast. It is extremely difficult to visually detect im-
portant structures, as shown in Figure9(a). Our method fil-
ters out Speckle noise around important features in this vol-
ume, and retains and sharpens salient boundaries. Tubular
structures, which are hardly detectable in Figure9(a), are
more visually distinct and recognizable in Figure9(b).

Table1 reports the total processing time (in seconds) of
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(a) (b)

Figure 9: (a) The original 3D ultrasound data of human liv-
er. (b) Our smoothed result. Tubular structures are more vi-
sually recognizable.

Table 1: The computational times (in seconds) of bilateral
filter (BLF), edge aware anisotropic diffusion (AD), and our
method for Tomato volume (Figure7), Flower volume (Fig-
ure 8), and Human Liver volume (Figure9).

Time (seconds)
Data sets Resolution BLF AD Ours
Tomato 256×256×164 148.70 229.13 26.78
Flower 160×168×243 186.12 145.41 33.21

Human Liver 493×415×172 435.26 1388.54 78.55

three methods on different volume datasets. The FFT (Equa-
tion 10) is computed in Matlab using MEX files (C/C++ ex-
tension for Matlab), and other codes, including the bilateral
filter and edge aware anisotropic diffusion, are implemented
in C++. As can be seen from Table1, our method performs
about 5 and 10 times faster than the bilateral filter and edge
aware anisotropic diffusion, respectively. The main reason is
that FFT makes the time of one iteration much faster due to
its efficiency, and the accelerated iterative shrinkage great-
ly reduces the iteration number compared with edge aware
anisotropic diffusion. The efficiency of the bilateral filter
greatly depends on the kernel size. In our experiment, the
parametersσs andσr are chosen in the range of[2,5] and
[40,120], respectively. The iteration number in edge aware
anisotropic diffusion also affects the time, which is between
10 and 20 in our experiment.

Table 2 summarizes the performance of three methods
in terms of Mean Squared Error (MSE), Structural Similar-

Table 2: Performance evaluation of different smoothing
methods: Bilateral filter (BLF), edge aware anisotropic d-
iffusion (AD), and our method on Tomato volume (Figure7)
and Flower volume (Figure8). The lower value of MSE is
better, while the higher value of SSIM and QILV is better.

Tomato Flower
MSE SSIM QILV MSE SSIM QILV

BLF 2.20 0.93 0.99 4.69 0.91 0.99
AD 4.24 0.87 0.92 8.58 0.90 0.97
Ours 2.02 0.95 0.99 3.86 0.93 0.99

ity Index (SSIM) [WBSS04] and Quality Index Based on
Local Variance (QILV) [AFSAW06] for quality assessment.
For the experimented tomato and flower volume, our method
performs better than both other methods, because it removes
the local details with a low gradient magnitude, and globally
preserves and even enhances the salient boundaries.

6. Conclusions

In this paper, we have presented a volume denoising / s-
moothing method based on theL0 gradient minimization
framework for volume visualization. The basic idea is to
globally control the number of voxels of a non-zero gradient
in the result. It suppresses less important details and noise
with a low gradient magnitude, and sharpens and enhances
salient features. In addition to smooth noise in homogenous
materials, we also proposed the blurring-sharpening strate-
gy to diminish noise on the boundaries. This strategy can be
used for volume denoising and smoothing effectively, and
the result contains salient features with smooth boundaries
and visually pleasing structures while being in line with
the original volume. Our experiments demonstrated the ef-
fectiveness and efficiency of our method. Compared with
the bilateral filter and edge aware anisotropic diffusion, our
method is more effective in dealing with area noise with a
low gradient amplitude.

Future work. Although theL0 norm does not rely on
the magnitude, theL0 volume gradient minimization method
does depend on the gradient magnitude, as it needs to bal-
ance the result similarity and structure sparsity. Thus, low-
contrast features will be first smoothed by our method, while
high-contrast noise cannot be effectively filtered out due to
its large gradient magnitude. For future work, we plan to
extend our method by designing different types of the gra-
dient magnitude for removing noise adaptively. For exam-
ple, it can filter out high-contrast noise first. Currently, users
heuristically select the optimal value ofλ . We aim to find
an automatic scheme to suggest the optimal parameter for
the input volume. In addition, the alternative minimization
strategy is only an approximate solution, which may result
in small position differences of surfaces. We would like to
find a more efficient and accurate way to solve the minimiza-
tion problem, such as the fused coordinate descent frame-
work [CZL14]. As the current optimization method could
not perform interactive volume smoothing, we would like to
also improve the optimization method to denoise / smooth
large volumes interactively.
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