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Abstract

Point sets have become a popular shape representation. In this paper, we present a novel approach to computing

variation modes for point set surfaces, and represent the point set surface as a linear combination of the variation

modes, called a generative representation for the point set surface. Given a point set, our approach consists of two

steps: The first is to produce a set of new samples with increasing smoothness and less detailed features. We use a

modified smoothing method based on moving least squares (MLS) surface to produce the samples. The second is to

arrange the shape vectors of the new samples together with the original point set into a matrix, and then compute

the singular value decomposition of the matrix, producing a set of variation modes (the eigen vectors). Using the

variation modes and the generative representation, we can easily synthesize new shapes. Typical applications are

low/high/band pass filtering as well as denoising and detail enhancement in multiple scales.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Acquiring 3D models from real-world objects by 3D digital
photography and scanning systems is a relatively inexpen-
sive process for an increasing number of applications. For
example, it can help 3D designers to create detailed models
at high resolution, which in turn improves visual realism in
entertainment and film productions. It is also helpful in rapid
prototyping, reverse engineering, and capture of cultural ar-
tifacts.

The acquired data is generally a dense set of points, where
each point samples a 3D location and possible additional at-
tributes such as normal information and material properties.
In the earlier years, the point sets were converted into polyg-
onal meshes for further editing and visualization.However,
polygonal meshes are actually not suitable for representing
large and complex data sets, since storing and maintaining
the connectivity information in meshes is expensive both in
terms of memory and computation.

Recently, considerable research efforts have been devoted
to point-based modeling and rendering [MA04, KB04],

† This work was done while Jin Huang interned at Microsoft Re-
search Asia

which regard the point set as a meshless representation for
surfaces. As opposed to a polygonal mesh, such a purely
point based representation is particularly useful when deal-
ing with large and complex data sets, since there is no con-
nectivity information to worry about during modeling. Point
sets have become a popular shape representation as a re-
sult. There are many methods for defining and approximat-
ing point set surfaces. Moving least squares (MLS) based
surface approximation has developed into one of the state-
of-art methods [ABCO∗01, Lev03, AK04].

Point sets obtained by acquisition devices are usually
noisy and contain artifacts due to physical measurement er-
rors. Before they can be used for further modeling purposes,
substantial post-processing is usually required. We refer the
readers to the paper of Weyrich et al. [WPH∗04] for a re-
view on the main sources of noise and artifacts. While noise
removal algorithms have been extensively researched for a
long time, most of them have been developed for mesh mod-
els, and are not applicable on point sets without explicit con-
nectivity information. As point sets become simple and ver-
satile representations for shapes, it is desirable and useful to
directly perform noise removal and smoothing operations on
points without converting them into meshes in advance.

In this paper, we present a method to compute a set of vari-
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1. Generating smoothed samples. 2. Computing the varia-
tion modes. 3. Computing the generative representation. 4.
Manipulating the generation coefficients to synthesize new
shapes.

Figure 1: Flowchart of computing variation modes for point

set surfaces and synthesizing new shapes.

ation modes for point set surfaces, and represent the point
set surfaces as a linear combination of the variation modes,
yielding a generative representation for point set surfaces.
Then we use this representation to synthesize new shapes for
denoising, smoothing and detail enhancement. The spectral
representation presented by Pauly et al. [PG01] can be also
regarded as a generative representation using a Fourier basis.
Instead of using a Fourier basis, we compute some variation
modes specialized for the point models. In this way, we need
neither divide the point models into patches nor re-sample
the points, which are non-trivial tasks for general complex
geometries.

Fig. 1 shows an overview of our approach. We rely on
some smoothing operators to decompose the surface details
from the input point model. We use MLS surface based
smoothing methods [WPH∗04] with some modifications for
preserving sharp features.

2. Related Works

There are many smoothing algorithms for polygonal
meshes. Most of them are based on a discrete approxima-
tion of Laplacian smoothing [Tau95] and mean curvature
flow [DMSB99]. Later, some improved methods were pro-
posed to avoid shape shrinkage and undesirable deforma-
tions [VMM99, LBSP02], and preserve desirable sharp fea-
tures [FDCO03, JDD03, HP04] on the surfaces.

The MLS surface is a point-based surface definition
that is continuous and smooth [ABCO∗01, Lev03, AK04].
The MLS surface approximation method has been widely
used in many point-based modeling and rendering algo-
rithms [ABCO∗03, PKKG03, AA03b, AA03a]. Based on
the MLS surface approximation of point sets, Weyrich et
al. [WPH∗04] implemented a smoothing algorithm by shift-
ing the points towards their projection on the MLS sur-
face by certain distances. We adopt this MLS surface based

smoothing method to produce new shape samples for com-
puting a set of variation modes for point set surfaces.

The Fourier transform is a mutual spectral analysis tool
and has been successfully applied to implement signal pro-
cessing algorithms for regular sampled data, such as images.
Pauly et al. [PG01] extended the Fourier transform based
spectral processing algorithms to point models after pre-
charting the point models into patches. Because they use the
Fourier basis to represent the patches as height fields, they
need to further re-sample each patch into a regular grid of
points.

3. Variation Modes

In this section, we describe a method to compute a set of
variation modes for a point set surface, and then represent the
point model as a linear combination of the variation modes,
yielding a generative representation.

Let P be a point set surface given by a set of 3D points
pk ∈ R

3, k = 1,2, . . . ,m. We arrange the points into a vec-
tor form P = (p1,p2, . . . ,pm), called the shape vector of
P . The shape vector P is also a function from a vertex set
V = {1,2, . . . ,m} to R3, i.e., P(k) = pk,∀k ∈ V . Since the
shape of a point model consists of many variation modes that
vary at different scales, it can be decomposed into a linear
combination of some basis shapes. Basis shapes with small-
scale variations correspond to high frequency modes, and
large-scale variations correspond to low frequency modes.

Representing 3D shapes as a linear combination of some
basis shapes is not new, and several methods have been
proposed to obtain a set of basis shapes. One category is
the mesh based methods. Karni et al. proposed to use the
eigen vectors of the Laplacian matrix as the basis shapes for
polygonal meshes, and apply them for geometry compres-
sion [KG00]. Clarenz et al. introduced an algebraic multigrid
based method to compute a multiscale of bases for manifold-
2 meshes [CGR∗04]. Hauser et al. use the eigen vectors of
the stiffness matrix as the basis shapes for tetrahedra meshes,
and apply them for interactive deformation [HSO03]. An-
other category is the example based methods. Cootes et al.
collect a training set of labeled examples of objects, and then
compute the basis shapes using principal component analy-
sis [CTCG95]. Blanz et al. use a similar method to find the
basis shapes for 3D face synthesis [BV99].

Finding suitable basis shapes for 3D shapes is difficult,
and it becomes much harder on point set surfaces. The mesh
based methods are not applicable to point set surfaces, since
connectivity information is not available. So, we resort to
the example based method. However, the example based
method requires multiple samples of the shape with varia-
tions, which is usually also not available. Therefore, we need
a method to generate the shape samples.

We will describe a sample generation method in Section 4.
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In the following, we suppose that the new shape samples
have been generated. Let {Pi = (pi1,pi2, . . . ,pim) | 1 ≤ i ≤
n} be a set of shape vectors generated from the original point
set P using the method in Section 4, where P1 = P is the
original shape vector of P for convenience, and points pik

and p jk are assumed to be corresponding points of Pi and
P j. We find the variation mode by singular value decompo-
sition (SVD). First all points are assembled into a matrix as
follows:

A =











p11 p12 . . . p1m

p21 p22 . . . p2m

...
...

...
...

pn1 pn2 . . . pnm











Note that the above matrix is n× 3m, since each element of
A is a 3D row vector. Second, we compute the singular value
decomposition of A as follows:

A = U
tΣV,

where Σ = diag(σ1,σ2, . . . ,σr), r = min(n,3m), with σ1 ≥
σ2 ≥ . . . ≥ σr, and U and V are orthogonal matrices of di-
mensions n×n and 3m×3m respectively.

Let Vi, 1 ≤ i ≤ r be the first r row vectors of V, i.e. the
right eigen vectors of A. Then each shape vector Pi in A can
be expressed as a linear combination of Vi. Note that the
shape vector P of the original point model is P1. Then we
have:

P = α1V1 +α2V2 + · · ·+αrVr, (1)

where αi = P ·Vi, the dot product of P and Vi. We call
this linear combination a generative representation for point
model P , and Vi and αi are respectively called the varia-
tion modes and generation coefficients. For convenience, we
adjust the direction of the eigen vectors such that the gener-
ation coefficients in Eq. (1) are all non-negative values, i.e.,
αi ≥ 0.

4. Modified MLS Smoother

In the above method, the new shape samples serve as a train-
ing set for us to learn the variation modes of a point set sur-
face. So, the variations in the shape samples fully determine
their variability of the final generative representation. In or-
der to capture as much as possible surface variations of a
point set, we need some good shape samples. In this paper,
we focus on applications of denoising, smoothing and de-
tail enhancement, then, the new shape samples should have
different smoothness and details at different scales.

Therefore, we propose to generate the shape samples by
smoothing the original point model to various of degrees.
We expect that the shape details at different scales can be
separated as much as possible in this way.

We use a smoothing method based on MLS surface ap-
proximation [WPH∗04]. The MLS surface of point set P

   

 

(a) (b) (c)

Figure 2: Comparison between smoothing results. (a) A

corrupted noisy Fandisk model. The noises are randomly

added in 3D Studio Max with parameters of scale = 0.03
and strength = 0.02. (b) A smoothing result with the MLS

smoother. Note that the sharp edge feature is smoothed out.

(c) A smoothing result with our modified MLS smoother.

Note that we preserve the sharp edge features well.

is defined as the stationary set of a projection operator
which takes a point x nearby the point set onto a poly-
nomial that locally approximates the underlying surface in
the vicinity of x [Lev03]. MLS surfaces have been widely
used for point based modeling and rendering in the last few
years, and there are several slightly different procedures for
the MLS projection taking a point x onto the MLS sur-
faces [Lev03, ABCO∗01, ZPKG02, AK04]. We based our
approach on the MLS projection procedure implemented
in PointShop3D[ZPKG02] for simplicity and efficiency.
Briefly, this MLS projection procedure at point x takes two
steps:

(i) First, a reference plane H is fitted by minimizing the
following weighted least squares:

∑
i∈V

(pi ·n−D)2 θ(x,pi), (2)

where n is the normal vector of the reference plane H, D

is the distance of the origin to the reference plane H, and
θ(x,pi) is a positive weighting function.

The reference planeH provides a local parametrization of
the sample points. Let q be the projection of x onH, (ui,vi)
be the local parametrization of pi’s projection onH, and fi =
n · (pi−q).

(ii) Then a bivariate polynomial g(u,v) in the reference
planeH is fitted by minimizing the following weighted least
squares:

∑
i∈V

(g(ui,vi)− fi)
2 θ(x,pi). (3)

Finally, the projection of x on the polynomial is obtained as
the MLS projection ψ(x) = q+g(0,0)n.

Based on the MLS projection, Weyrich et al. [WPH∗04]
implemented a smoothing method, called MLS smoother, by
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Figure 3: Linear prediction for point x by the information of

a nearby point pi.

shifting each point pi ∈ P toward ψ(pi) by some distance:

pi←− (1−α) pi +α ψ(pi), (4)

where α ∈ (0,1].

The weighting function in the above the MLS projection

is given by a Gaussian θ(x,pi) = e−||x−pi||
2/(2h2), where h

is an user-specified constant. Generally, a larger h will give
a smoother surface.

However, the MLS smoother does not preserve sharp fea-
tures. An example is shown in Fig. 2(b).

Therefore, we introduce a modified MLS smoothing
method by incorporating the idea of the bilateral denois-
ing methods [FDCO03, JDD03, JDZ04]. Specifically, we in-
troduce an additional influence weight φ(x,pi) and replace
the weighting function θ(x,pi) in Eq. (2) and Eq. (3) by
w(x,pi) = θ(x,pi)φ(x,pi). The influence weight is defined
by

φ(x,pi) = exp

(

−
||x−Πpi(x)||2

2s2

)

,

where s is the user specified constant parameter, and Πpi(x)
is the linear prediction for x given the information at point
pi.

Let ni be the normal at point pi, as shown in Fig. 3, the
linear prediction Πpi(x) for x is defined as its projection on
the tangent plane of pi, i.e,

Πpi(x) = x+((pi−x) ·ni)ni.

Fig. 2(c) is a smoothing result by our modified MLS
smoother, showing that the noises are smoothed out and the
sharp edges are well preserved.

The modified MLS smoothing method requires normal in-
formation. If it is not available in the input model, we will
compute it by the conventional MLS surface approximation
method, followed by a procedure that adjusts the normal
orientation to be consistent. The normal can be further im-
proved using the method of Jones et al. [JDZ04].

5. Implementation and Results

We implemented the above algorithms of computing varia-
tion modes and generative representations for point set sur-

faces, together with a modified MLS smoothing method. In
the following we will describe the implementation details
and present some smoothing and enhancement results as ap-
plications. All the images are rendered in Pointshop3D using
its GPRender plug-in.

Given a point model, we produce n = 100 smoothed sam-
ples using the MLS smoother. The process is as follows: We
first smooth the original model, producing a smoothed sam-
ple. Then we iteratively apply the smoothing method on the
output model in the previous step to produce a more smooth
sample. During this procedure, we fix the value of h in the
weighting function θ(x,pi). We found that h = 0.02R (R is
the radius size of the model’s bounding sphere) works well
in our experiments. The value of s in the influence weight-
ing function is also fixed with s = 0.005R. Generating 100
smoothed samples takes about 30 minutes for the Venus
model, and up to 90 minutes for the Armadillo model on
a PC with P4 2.7GHZ CPU and 512M RAM.

Fandisk Armadillo Venus head Max-Planck

|P| 103570 172974 50002 52809

Table 1: Point number of 4 models in experiments.

The point number (m) of the models used in experi-
ments is usually much larger than the number (n) of the
smoothed samples as shown in Table 1, which indicates
r = min(n,3m) = n. So, we obtain n eigen vectors after
computing the SVD of matrix of the samples. As shown in
Table 2 and Fig. 8, the eigen values and generation coef-
ficients quickly decrease to zero, and only a small number
of them are significant. It is easy to verify that ∑

10
i=1 σ2

i >
0.9999∑

r
i=1 σ2

i and ∑
10
i=1 α2

i > 0.9999∑
r
i=1 α2

i for all the
models in Table 2. Therefore, we can safely truncate the gen-
erative representation in Eq. (1) with 10 terms, without intro-
ducing any visual artifacts.

We did some smoothing and detail enhancement experi-
ments on the Venus head model by manipulating its gener-
ation coefficients (αi in Eq. (1)). Fig. 4 shows some results
of manipulating α3 and α5. Bottom left and right are two
smoothing results by decreasing α3 and α5 respectively, and
top left and right are two enhancement results by increasing
α3 and α5 respectively. The above experiment results show
that manipulating αi with small index i corresponds to ma-
nipulating the large scale of surface details, and vice versa.
Comparing the results with the original model, we can find
that the small-scale details remain when we manipulating
the large-scale details, and vice versa, which agree with the
orthogonality property of the variation modes.

Fig. 5 shows a comparison of two enhancement results of
the Max-Planck head model. In Fig. 5(b), we use our mod-
ified MLS smoothing method for computing the variation
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σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 ∑r
i=1 |σi| ∑r

i=1 σ2
i

Venus 226107 4013.92 785.609 212.499 88.3272 37.5345 15.5140 6.52406 2.87426 1.50100 231278 5.11410e+10
Max-Planck 424653 1534.97 213.254 54.2995 21.2885 10.9010 6.46497 4.36732 3.09503 2.31973 426520 1.80333e+11
Armadillo 393942 6160.79 1393.93 604.447 343.470 202.847 150.024 107.461 86.1291 68.9264 403661 1.55231e+11

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 ∑r
i=1 |αi| ∑r

i=1 α2
i

Venus 23970.3 863.831 298.706 117.786 50.6907 13.3632 2.61843 0.47769 0.07389 0.00576 25317.8 5.75427e+8
Max-Planck 42596.3 269.644 56.5077 19.2270 7.30376 3.36520 2.00344 1.27550 0.84492 0.63296 42958.7 1.81453e+9
Armadillo 39743.5 1079.38 320.275 184.755 103.707 64.4691 40.7653 34.4288 24.7074 20.5865 41675.1 1.58086e+9

Table 2: The first 10 eigen values and generation coefficients of 3 point models. The total absolute sums and squared sums of

the eigen values and generation coefficients are also shown in the last two columns.

 

Figure 4: Smoothing and enhancement results of Venus head

model. Middle: the original model. Bottom: smoothing. Top:

enhancement. Left: large scale. Right: small scale.

modes, while in Fig. 5(c), we use the original MLS smooth-
ing method of Weyrich et al. [WPH∗04]. Though, it is not
obvious what the proper way is to compare the enhancement
results between two different sets of variation modes, we
manipulate the generation coefficients to generate two en-
hancement results such that overall details on the face are
similar. Fig. 5(b) and (c) show that there are noticeable dif-
ferences on the ears and nose.

Fig. 6 demonstrates an application to smooth and enhance
a selected region of a model. The region of interest is se-
lected in Pointshop3D using its brush tool, which gives each
point a scalar value. we normalize the values to [0,1], such
that it is 1 in the selected region, and continuously decreases

   

(a) (b) (c)

Figure 5: Enhancement results comparison of using two

smoothing methods to generate samples for computing the

variation modes. (a) the original Max-Planck model. (b) us-

ing our modified MLS smoothing method. (c) using the orig-

inal MLS smoothing method of Weyrich et al. [WPH∗04].

in the vicinity of the boundary until it finally reaches to 0
in the unselected region. The scalar values serve as blend-
ing weights that blend the edit models with the original one.
Fig. 6(a) shows the selected region for editing, which is
zoomed in Fig. 6(d). Fig. 6(b) and (c) are two enhancement
results by respectively increasing α3 and α7, and Fig. 6(e)
and (f) are two smoothing result by respectively decreasing
α3 and α7.

Fig. 7(a) shows an exaggeration result using our method.
Weyrich et al. showed that shape enhancement can be
achieved using Eq. (4) by setting α to negative values.
Fig. 7(b) shows an result we produced using the method of
Weyrich et al. implemented in Pointshop3D (with parame-
ters k-nearest neighborhood = 300, gaussian smoothing fac-
tor = 300, alpha = −1.8 and use only plane fit for smooth-
ing). Our method is advantageous in that it can selectively
enhance the desirable scale of details, and/or smooth out un-
desirable scale of details, to produce pleasing results.
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(d) (e) (f)

Figure 6: Smoothing and enhancement results on a selected

part of the Armadillo Model. (a) The original model with

the selected region painted in red. (d) A zoomed view of the

selected region. (b) and (c) two enhancement results. (e) and

(f) two smoothing results.

  

(a) (b)

Figure 7: Comparison between enhancement results of our

method (a) and the method in Pointshop3D [WPH∗04] (b).

6. Conclusion and Discussion

Our main contribution in this paper is a novel approach to
computing variation modes for point set surfaces, which pro-
vides a way to directly process point set surface details in
multiple scales.

The results in Fig. 4 and Fig. 6 show that the first a
few modes control the large-scale, low-frequency shape vari-
ations, while the consequent ones control the small-scale,
high-frequency shape variations. We have shown that the
variation modes is very useful in smoothing and detail en-
hancement for point set surface.

In our current implementation, a large number of
smoothed samples is generated for computing the variation
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Figure 8: Plots of the first 10 generation coefficients of 3

point sets.

modes. It takes some time, as a limitation. A future work
would be to analyze how many samples are necessary and
adequate for computing a non-trivial set of variation modes.

We use a MLS based smoothing method to filter the point
set surfaces for generating new samples. It is worthwhile to
try other filters or a combination of several filters.
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