
Synthesis and Rendering of Bidirectional
Texture Functions on Arbitrary Surfaces

Xinguo Liu, Yaohua Hu, Jingdan Zhang, Xin Tong,

Baining Guo, and Heung-Yeung Shum, Senior Member, IEEE

Abstract—The bidirectional texture function (BTF) is a 6D function that describes the appearance of a real-world surface as a function

of lighting and viewing directions. The BTF can model the fine-scale shadows, occlusions, and specularities caused by surface

mesostructures. In this paper, we present algorithms for efficient synthesis of BTFs on arbitrary surfaces and for hardware-accelerated

rendering. For both synthesis and rendering, a main challenge is handling the large amount of data in a BTF sample. To addresses this

challenge, we approximate the BTF sample by a small number of 4D point appearance functions (PAFs) multiplied by 2D geometry

maps. The geometry maps and PAFs lead to efficient synthesis and fast rendering of BTFs on arbitrary surfaces. For synthesis, a

surface BTF can be generated by applying a texton-based sysnthesis algorithm to a small set of 2D geometry maps while leaving the

companion 4D PAFs untouched. As for rendering, a surface BTF synthesized using geometry maps is well-suited for leveraging the

programmable vertex and pixel shaders on the graphics hardware. We present a real-time BTF rendering algorithm that runs at the

speed of about 30 frames/second on a mid-level PC with an ATI Radeon 8500 graphics card. We demonstrate the effectiveness of our

synthesis and rendering algorithms using both real and synthetic BTF samples.

Index Terms—Bidirectional texture function, reflectance and shading models, texture synthesis, mesh parameterization, texture

mapping, surfaces.

�

1 INTRODUCTION

TEXTURES in the traditional graphics sense represent color
or albedo variations on smooth surfaces. Real-world

textures, on the other hand, arise from both spatially-varying
surface reflectance and mesostructures, i.e., small but visible
local geometric details [1].Mesostructures are responsible for
the fine-scale shadows, occlusions, and specularities that are
integral parts of real-world surface appearance [2], [3], [4], [5].
TheBTF introducedbyDanaet al. [2], [6] is a representationof
real-world textures that can model surface mesostructures
and reflectance variations. The BTF is a 6D function whose
variables are the 2D position and the viewing and lighting
directions. The BTF is also a generalization of the BRDF to
include surface position variation. The BTF can be either
measured from real-world materials [2] or generated synthe-
tically [5]. Synthetic BTFs provide an efficient way to render
surfaces with complex (synthetic) appearance models and
geometry details.

In this paper, we address two key issues for BTFs on
arbitrary surfaces. The first is the efficient synthesis of BTFs.
Given a BTF sample and an arbitrary surface mesh, we wish
to synthesize a BTF on the mesh such that: 1) the surface
BTF is perceptually similar to the given BTF sample in all
viewing/lighting conditions and 2) the surface BTF exhibits
a consistent mesostructure when viewing and lighting

directions change. The requirement of a consistent mesos-
tructure is where surface BTF synthesis differs fundamen-
tally from surface texture synthesis [7], [8], [9] since
conventional textures ignore mesostructures completely.

A BTF can be mapped onto surfaces using texture
mapping techniques. However, BTF mapping on arbitrary
surfaces can introduce inconsistent mesostructures. The
usual technique for texture mapping arbitrary surfaces is to
use a collection of overlapping patches [10], [11] and textures
in the overlapping regions are blended tohide seams (e.g., see
[11]). This technique works well for many textures, but, for
the BTF, blending can introduce inconsistent mesostructures
[5]. Of course, BTFmapping on arbitrary surfaces also suffers
from the usual problems of texturemapping. These problems
include texture distortion, seams between texture patches,
and considerable user intervention needed for creating good-
quality texture maps [7], [8], [9].

A possible way to achieve a consistent mesostructure on
a surface is to apply surface texture synthesis techniques to
directly surface BTF synthesis. The sample BTF may be
regarded as a 2D texture map in which the BTF value at a
pixel is a 4D function of the viewing and lighting directions
and this 4D function can be discretized into a vector for
texture synthesis. Unfortunately, this approach incurs a
huge computational cost because of the large amount of
data in a BTF sample. At the resolution of 12� 5� 12� 5,
the BTF value at a pixel is a 10,800-dimensional vector, as
opposed to the usual 3D RGB vectors [7], [8], [9]. Since
texture synthesis time grows linearly with the vector
dimension, a surface BTF can take days [7] or even months
[8] to compute.

The second issue we address is hardware-accelerated
BTF rendering. The simple operations needed for
BTF rendering [5] are amenable to hardware implementa-
tion, yet there is no existing system for fast BTF rendering

278 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

. X. Liu, Y. Hu, X. Tong, B. Guo, and H.-Y. Shum are with Microsoft
Research Asia, 3F Beijing Sigma Center, No. 49 Zhichun Road, Haidian
District, Beijing 100080, PRC.
E-mail: {xgliu, yaohu, xtong, bainguo, hshum}@microsoft.com.

. J. Zhang is with the Department of Computer Science, University of North
Carolina, Chapel Hill, NC.

Manuscript received 26 Nov. 2002; revised 28 May 2003; accepted 26 Aug.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0019-1102.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

using off-the-shelf graphics cards. For a given viewing/
lighting combination, a simple method to render a BTF on a
parametric surface is to generate a 2D texture and map it
onto the surface using hardware texture mapping (see
Section 4.1). Unfortunately, this method requires loading all
BTF images into memory and thus incurs a large space
overhead. In addition, the rendering is relatively slow
(1 � 2 frames per second) because a time-consuming
routine for evaluating the BTF needs to be called millions
of times during rendering.

We have developed techniques for efficient synthesis of
BTFs on arbitrary surfaces and hardware-accelerated BTF
rendering. The basis of our techniques is an approximation
scheme for BTFs. From our earlier discussion, we can see
that, for both BTF synthesis and hardware-accelerated
rendering, the main challenge is handling the large amount
of data in a BTF sample. For example, roughly 700 MB of
storage are needed to store a BTF with a spatial resolution
of 256� 256 and a sampling rate of 6� 10� 6� 10 for the
lighting and viewing directions. To address this challenge,
we approximate the BTF sample by a small number of
4D point appearance functions (PAFs) multiplied by
2D geometry maps. This approximation can reduce a
700 MB BTF sample to just a few MB with less than
2 percent approximation error.

The combination of geometry maps and PAFs leads to
efficient synthesis and fast rendering of BTFs on arbitrary
surfaces. For synthesis, we showed [5] that surface BTFs can
be efficiently synthesized using surface textons derived from
3D textons. With geometry maps and PAFs, we can further
improve the synthesis efficiency significantly. Specifically, a
surface BTF can be synthesized by applying the algorithm of
[5] to a small set of 2D geometry maps while leaving the
companion 4D PAFs untouched. We will also show that a
surface BTF synthesized using geometry maps is well-suited
for hardware-accelerated rendering. We present a rendering
algorithm that leverages the capabilities of the latest graphics
hardware to achieve real-time performance. On a mid-level
PC with an ATI Radeon 8500 graphics card, our system can
achieve a speed of 30 frames/second.

The approximation of the BTF by low-dimensional
texture functions is the key to efficient BTF synthesis and
rendering. A good approximation should achieve high
accuracy with a small number of terms and the resulting
low-dimensional texture functions must facilitate surface
BTF synthesis and hardware-accelerated rendering. Fast
rendering algorithms for surface light fields [12] and the
bidirectional reflectance distribution functions (BRDFs)
[13], [14] decompose the 4D surface light fields and
BRDFs into sums of products of 2D functions. BRDFs are
parameterized the same way as PAFs, even if PAFs don’t
necessarily share all the properties of BRDFs (positivity,
symmetry, etc.). Decomposition of the 6D BTF is more
difficult because of the extra dimensions involved. One
possibility is to decompose the BTF into a sum of
products of three 2D functions. We have attempted this
approach but found that the approximation errors were
large and a large number of rendering passes were
needed. BTF approximation by 4D PAFs multiplied by 2D
geometry maps gives good results with a small number of
terms. Although the PAFs are 4D, we have developed
hardware-accelerated techniques for rendering them by
leveraging the multitexturing and volume texturing

capabilities of the latest graphics hardware. In particular,
we demonstrate that calculations of 4D PAFs for arbitrary
lighting and viewing directions can be done by hardware-
supported 3D interpolation.

An important task in hardware-accelerated rendering of
BTFs on arbitrary surfaces is the conversion of surface
geometry maps to 2D geometry maps on the unit square
½0; 1� � ½0; 1�. To accomplish this task, we establish a texture
atlas for the underlying surface mesh and then use a
splatting algorithm to “render” the vertex data of the
surface geometry maps into the unit square ½0; 1� � ½0; 1�.

We will demonstrate the effectiveness of our synthesis
and rendering algorithms using both real and synthetic BTF
samples. With the increasing availability of BTF samples
measured from real-world textures [2], surface BTFs
provide a way to decorate real-world geometry with real-
world textures.

The rest of this paper is organized as follows: After
summarizing related work in Section 2, we describe surface
textons, geometry maps, and PAFs in Section 3 and present
our algorithm for surface BTF synthesis. Our hardware-
accelerated rendering algorithm is detailed in Section 4.
Section 5 reports synthesis and rendering results. We
conclude in Section 6 with discussion of future research
topics.

2 RELATED WORK

2.1 BTF

Dana et al. introduced the BTF and built the CUReT
database, which consists of BTF samples measured from
real-world materials [2]. The CUReT database has been
widely used for statistical surface appearance analysis and
recognition [2], [3], [15]. Dana et al. also demonstrated some
BTF rendering results in [2]. However, the images in the
CUReT database are not enough to synthesize novel images
for arbitrary viewing and lighting directions. To address
this problem, Liu et al. introduced a method to synthesize
arbitrary viewing/lighting BTF samples from a sparse set of
samples [4]. More recently, Tong et al. proposed a method
for synthesizing a BTF on arbitrary surfaces using surface
textons [5]. In [5], the issue of hardware-accelerated
rendering is not addressed. We address that issue in this
paper. In addition, we propose a significantly more efficient
algorithm for synthesizing BTFs on arbitrary surfaces.

Several rendering techniques are closely related to the BTF
despite the fact that they do not explicitly use the BTF as
defined byDana et al. [2]. Daubert et al. proposed an efficient
technique for modeling and rendering cloth with replicated
weaving or knitting patterns [16]. They modeled fine
geometry details of a small piece of cloth and then sampled
its appearance under varying viewing and light directions.
Their representation is very close to aBTF, but they fit thedata
withavariantof theLafortunemodel. Thepolynomial texture
map (PTM)proposed byMalzbender et al. can be regarded as
a BTF with the viewing direction fixed [17]. Dischler
proposed a 4D texture representation to describe and render
macro geometry on surfaces [18]. However, his algorithm
takes several minutes to render a frame.

2.2 Decomposition and Compression

Most image-based rendering methods need to address the
issue of compression. For surface light fields, Wood et al.

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 279

[19] used a lumisphere to assemble all visible rays from a
surface point and compress the data by principal function
analysis. Nishino et al. [20] proposed an eigentexture
method to compress a sequence of images under different
viewing and illumination conditions. In their recent work
on light field mapping [12], Chen et al. approximated the
discrete surface light field as a sum of a small number of
products of 2D maps for data compression.

2.3 Texture Synthesis

Generating textures on arbitrary surfaces has been an active
area of research [7], [8], [9], [10], [11], [21]. One approach
maps texture patches onto the target surface [10]. A good
representative work following that approach is the lapped
texture technique by Praun et al. [11]. They randomly paste
texture patches onto the surface following orientation hints
provided by the user. To hide the mismatched features
across patch boundaries, textures in the overlapping
regions are blended. This technique works well for a large
class of textures, but, for highly structured textures and
textures with strong low-frequency components, the seams
along patch boundaries are still evident [11].

A number of algorithms have been proposed for directly
synthesizing textures on arbitrary surfaces. Turk’s algo-
rithm [8], Wei and Levoy’s algorithm [7], and the multi-
resolution synthesis algorithm by Ying et al. [9] are general-
purpose algorithms based on the search strategy proposed
by Wei and Levoy [22]. The algorithm by Gorla et al. [21] is
also a general-purpose algorithm, based on the search
strategy proposed by Efros and Leung [23]. These algo-
rithms tend to be slow, but they can be accelerated by using
either tree-structured vector quantization [7], [22] or a
kd-tree [9].

2.4 Hardware-Accelerated Rendering

The arrival of programmable GPUs makes it possible to
achieve a variety of realistic rendering effects in real-time
[13], [14], [24]. The work on rendering arbitrary BRDFs [13],
[14] is particularly relevant to BTF rendering, although the
BTF is a higher-dimensional function. Kautz and McCool
[13] separated the BRDF into a combination of several
2D textures products by the SVD, which minimizes
RMS error. Texture mapping and compositing operations
were then invoked to reconstruct samples of the BRDF at
every pixel. McCool et al. [14] proposed a homomorphic
factorization for approximating the BRDF by products of
three 2D textures. This method avoids negative numbers,
minimizes relative error, and is well-suited for high-
performance rendering.

3 BTF SYNTHESIS

A BTF can be regarded as a mapping from the 4D space of
viewing and lighting directions to the space of all 2D images
[2], [4]: V � L ! I, where V and L are viewing and lighting
directions and I is the space of all 2D images. In other
words, we can view a BTF as a collection of images indexed
by viewing and lighting directions. A BTF is a 6D
reflectance field:

fðx;v; lÞ; ð1Þ

where x ¼ ðx; yÞ is the spatial coordinate, v ¼ ð�v; �vÞ is the
reflectance/view direction, and l ¼ ð�l; �lÞ is the incident/

lighting direction. fðx;v; lÞ provides the connection be-
tween reflected flux in a direction v and incident flux in
another direction l at the same point x on a material sample.
The parameter space for the spatial variable x is called the
geometry plane of a BTF or, simply, the BTF plane.1 For
each point x, we define fðv; lÞ ¼ fðx;v; lÞ as the point
appearance function (PAF) at x. A BTF can be mapped onto
an arbitrary surface through a mapping that provides a
correspondence between each surface point and a point in
the BTF plane.

In this section, we first introduce two BTF representa-
tions that we need for surface BTF synthesis and hardware-
accelerated rendering. Using these representations, we then
describe a new algorithm for surface BTF synthesis. This
algorithm is significantly more efficient than the algorithm
proposed in [5] and the synthesized surface BTF supports
hardware-accelerated rendering.

3.1 Texton Maps

The surface texton map, or texton map for short, is a BTF
representation for efficient synthesis of BTFs on arbitrary
surfaces. Surface textons were proposed ealier [5] based on
3D textons [3]. Themain idea behind 3D textons is that, at the
local scale, there are only a small number of perceptually
distinguishablemesostructures and reflectance variations on
the surface. The surface textons use this idea to extract a
compact set of data that suffices for surface BTF synthesis.

Surface textons are extracted from a sample BTF f as
follows: 1) build a vocabulary of 3D textons from the
sample BTF f , 2) assign texton labels to the pixels in the
geometry plane of f to get a texton map tin, and 3) construct
the surface texton space by calculating the dot-product
matrix M and discarding the appearance vectors of
3D textons.

3.1.1 3D Texton Vocabulary

The construction of 3D textons is mostly based on the
original 3D texton paper by Leung and Malik [3]. As in [3],
we construct 3D textons from a BTF using K-means
clustering. To capture the appearance of mesostructures at
different viewing/lighting conditions, we treat the
BTF sample f as a stack of n images and filter each image
with a filter bank of nb ¼ 48 Gaussian derivative filters. For
each pixel of f , the filter responses of ns selected images are
concatenated into an nsnb-dimensional vector, called the
appearance vector. All the appearance vectors are then
clustered using the K-means algorithm. The resulting
K-means centers ft1; . . . ; tnt

g are the 3D textons. See [5]
for more details on the construction of texton vocabulary.

3.1.2 Texton Map

Once we have the texton vocabulary ft1; . . . ; tnt
g, we can

easily assign a texton label to each pixel in the geometry plane
of f . Let fv1; . . . ;vnt

g be the texton vocabulary’s appearance
vectors. For each pixel p, the texton label is obtained by
tinðpÞ ¼ argminnt

j¼1 kvðpÞ � vjk2, where vðpÞ is p’s appearance
vector. The resulting tin is called a texton map.

3.1.3 Texton Space

The texton space S is a linear space spanned by ft1; :::; tnt
g:

280 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

1. Here, x corresponds to ðu; vÞ or ðs; tÞ in conventional texture mapping.

S ¼ sjs ¼
Xnt

i¼1

aiti; ai 2 R

()
:

Each element in S is called a surface texton or, simply, a
texton. The inner product in S can be defined using a dot-
product matrix M:

M ¼ ðaijÞnt�nt
; ð2Þ

where aij ¼< vi; vj > , the inner product of the appearance
vectors vi and vj associated with textons ti and tj.

With M in hand, we can easily calculate the inner
product of any pair of vectors in S. Let a ¼

Pnt

i¼1 aiti and
b ¼

Pnt

i¼1 biti be two surface textons in S. Their inner
product is:

< a; b >¼ ða0; a1; . . . ; ant
ÞMðb0; b1; . . . ; bnt

ÞT : ð3Þ

As shown in [5], the main advantage of the surface
texton is that we can generate the BTF on an arbitrary
surface by synthesizing a surface texton map. The synthesis
of the surface texton map does not require appearance
vectors. Surface textons play the same role in BTF synthesis
[5] as pixels in color texture synthesis [7], [8], [9]. The pre-
computed dot-product matrix in (3) leads to an efficient
way for computing the distance between two surface
textons and thus significantly reduces the CPU and memory
costs for BTF synthesis. See [5] for further discussions.

3.2 Geometry Maps and PAFs

The second representation that we will need is a factoriza-
tion of the BTF as a sum of products of 2D and 4D functions.
By truncating this sum to a small number of the most
significant terms, we can obtain a BTF approximation that is
easy to render using graphics hardware. A BTF fðx;v; lÞ
may be regarded as a six-dimensional color array, which we
can factorize using singular value decomposition (SVD). We
form this color array as

A ¼
fðx1;v1; l1Þ � � � fðx1;vm; lmÞ

..

. . .
. ..

.

fðxn;v1; l1Þ � � � fðxn;vm; lmÞ

0
B@

1
CA; ð5Þ

where n is the number of pixels of each BTF image, whereas
m is the number of images of the BTF (n � m). Each row of
A corresponds to a PAF at a point on the BTF plane. Each
column of A corresponds to a 2D image of the BTF sample
with fixed viewing and lighting directions.

Applying the SVD to the matrix A, we get A ¼ G�P,
where G and P are, respectively, the left and right eigen
matrix and � is a diagonal matrix with singular values �1

through �m in decreasing order. If we merge � into G, then
the BTF becomes a sum of products

fðx;v; lÞ ¼
X
i

giðxÞpiðv; lÞ: ð5Þ

We call each giðxÞ a geometry map and each piðv; lÞ an eigen
PAF. This decomposition is performed for each color
channel.

Fig. 1 exhibits the five most significant geometry maps
and eigen PAFs as images by adjusting their range (which
may include both positive and negative values) to ½0; 255�
and visualizing each four-dimensional PAFs as an array of
2D images. The geometry map is a texture function that is
dependent only on spatial coordinates. The PAF is a
bidirectional function of the viewing and illumination
directions. The patterns in the geometry maps have a very
close relationship with the geometry details in the original
BTF data (see Fig. 2) and it is for this reason we call each
giðx; yÞ a geometry map. Here, “geometry” refers to the
meso-geometry (i.e., geometry detail) instead of the gross
shape of the surface.

Table 1 shows the 10 most significant singular values of
the BTF data “plaster04.” The rapid decrease of the singular
values and the errors indicates that truncating (5) to a few
terms introduces only small approximation errors. If we
keep the most significant k terms in (5), the resulting
summed squared residuals is of the order of

Pm
i¼kþ1 �

2
i .

For the BTF data “plaster04,” we can approximate the BTF
using five terms with less than 2 percent error. The quality of
the 5-term approximation is illustrated in Fig. 2, where we
render theoriginalBTFdata and the5-termapproximationon
the same quadric surface patch using the software rendering
algorithm described in Section 4.1. The renderings of the two

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 281

Fig. 1. The five most significant PAFs (top row) and the corresponding geometry maps (bottom row) of the BTF data “plaster04.” As Table 1 shows,

the singular value decreases from (a) to (e). A 4D PAF is packed into a 2D image consisting of a 2D array of subimages in which each row

corresponds to a change in the lighting direction and each column corresponds to a change in the viewing direction. The azimuth angle is the faster

changing parameter in each row and column.

data sets are similar, although the size of the 5-term
approximation is only 2.9 MB. This is a dramatic reduction
from the 617 MB of the original BTF data.

3.2.1 Discussions

Note that x ¼ ðx; yÞ, v ¼ ð�v; �vÞ, and l ¼ ð�l; �lÞ. In the

above decomposition scheme, we divide the BTF para-

meters x; y; �v; �v; �l; �l into two groups, fx; yg and

f�v; �v; �l; �lg, when forming the matrix A in (4). Other

parameters groupings are possible. For example, we can use

fx; y; �vg and f�v; �l; �lg. We choose fx; yg and f�v; �v; �l; �lg
because we empirically found out that the singular values

resulting from this grouping decrease the fastest.
We can further decompose the PAFs into a combination

of 2D functions by using the SVD. For separable PAFs, the
BTF can be decomposed into a sum of products, each
consisting of three 2D functions. Although 2D functions are
easy to render as texture maps, this decomposition overall
does not make hardware rendering any easier. If each
separation step uses a 5-term approximation, then the final
approximation will consist of 25 terms. As a result, many
rendering passes are needed for hardware rendering (see
Section 4.3). Of course, there are also problems with error
accumulation in texture multiplication and issues with
nonseparable PAFs.

3.3 Surface BTF Synthesis

Using surface textons and geometry maps, we will now
describe a new algorithm for surface BTF synthesis. This
algorithm is significantly more efficient than the algorithm
proposed in [5]. The quality of the synthesized surface BTFs
is very good, although not as good as that of [5]. More
importantly, the surface BTF synthesized using the new
algorithm supports hardware-accelerated rendering.

The idea of the new algorithm is as follows: Suppose that
we have an N-term approximation of the sample BTF and
we rewrite the approximation in matrix form,

fðx;v; lÞ ¼ GðxÞTP ðv; lÞ; ð6Þ

where

GðxÞ ¼ ðg0ðxÞ; g1ðxÞ; . . . ; gNðxÞÞ
P ðv; lÞ ¼ ðp0ðv; lÞ; p1ðv; lÞ; . . . ; pNðv; lÞÞ:

The key observation of the new algorithm is that the surface
BTF f 0ðx;v; lÞ can be synthesized by generating a set of new
geometry maps

G0ðxÞ ¼ ðg00ðxÞ; g01ðxÞ; . . . ; g0NðxÞÞ ð7Þ

without touching the PAFs in P ðv; lÞ, i.e.,

f 0ðx;v; lÞ ¼ G0ðxÞTP ðv; lÞ;

where x is now a point on the target surface. Because N is
usually quite small, synthesizing G0ðxÞ requires much less
work than directly synthesizing f 0ðx;v; lÞ. For all examples
in this paper, N � 40. Typically, N ¼ 12.

To synthesize G0ðxÞ, we treat GðxÞ as a stack of images
and apply the three steps described in Section 3.1 for
surface texton extraction. Once we have the surface textons,
we can synthesize a surface texton map exactly as in [5] and
the surface texton map now defines the surface geometry
map G0ðxÞ. In practice, the target surface is first densely
retiled using the retiling algorithm in [25] and G0ðxÞ is a
vector signal defined for each vertex on the retiled mesh of
target surface.

4 BTF RENDERING

In this section, we start by describing a simple algorithm for
rendering the BTF using the texture mapping hardware that
is standard for most graphics cards. By describing this
algorithm, we also provide the necessary background
information on BTF rendering. The algorithm is quite
efficient for moderate-sized objects and for BTFs that can
be completely loaded in memory, although the rendering
speed is far from real time even for very simple scenes. For
real-time rendering using the latest graphics hardware, we
first reparameterize the BTF for better resampling of the
viewing and lighting directions. Then, we describe hard-
ware-accelerated rendering algorithms for surfaces, includ-
ing surfaces that can be parameterized on rectangular
regions and arbitrary surfaces.

4.1 Software Rendering

Given a model mapped with a BTF fðx;v; lÞ on its surface,
we want to render it under arbitrary viewing and lighting
settings. To take advantage of the texture mapping
functionality available on most graphics cards, we first

282 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 2. Quality comparison for the BTF data “plaster04.” (a) The original

BTF. (b) The 5-term approximation. The two images are very much the

same except specular highlights are slightly blurred.

TABLE 1
Ten Most Significant Values of the BTF Data “Plaster04”

e ¼ ð
Pm

i¼kþ1 �
2
i =

Pm
0 �2

i Þ � 100.

build an intermediate image under the current viewing and
lighting setting and then map it onto the surface as texture.
The intermediate image size is the BTF plane size multi-
plied by the replication number on the surface. The
intermediate image’s pixel value is computed as follows:
As shown in Fig. 3, each pixel x in the intermediate texture
image corresponds to a point qðs; tÞ on the surface Sðs; tÞ by
the texture mapping transformation. The local coordinate
frame fT;N;Bg of point q can be obtained and used to
compute the local viewing direction vq and lighting
directions lq. Then, the value of pixel x is given by
BTF value fðx;vq; lqÞ.

Fig. 4 shows an example of software BTF rendering with
the BTF data “tube” mapped onto a quadric surface patch
using the method described above. For each pixel ðx; yÞ in
the intermediate texture, the corresponding points q and
the local coordinates frame fT;N;Bg can be computed in a
preprocessing step and stored for reuse. To save computa-
tion for the intermediate texture, we can omit back-facing
pixels in the texture. For the example in Fig. 4, we obtained
1 � 2 frames per second. As expected, many desired visual
effects, such as specularities, self-shadows, and self-occlu-
sion, are present.

4.2 Reparametrization of BTF

In practice, the BTF is represented by discrete sample
values, as is the case with the CUReT database [26]. For
rendering efficiency, it is important to find a good
parameterization for the viewing and lighting directions
so that we can achieve good resampling and interpolation
of the BTF on a regular grid in the viewing and lighting
hemispheres. With a good parameterization, the viewing
and lighting directions corresponding to a uniform sam-
pling grid of the parameter space are evenly distributed on
the hemisphere. Clearly, uniform sampling of the angular
values produces unevenly distributed directions on the
hemisphere, as Fig. 5b illustrates (oversampling near the
pole and undersampling near the equator). The elevated
concentric map gives a parameterization with improved
distribution of the viewing and lighting directions on the
hemisphere.

The elevated concentric map � is a map from the unit
square to the unit hemisphere with z > 0. � is represented
as a concatenation of the concentric map � and the
elevation map � [27],

�ðs; tÞ ¼ ð� � �Þðs; tÞ: ð8Þ

The concentric map � is a function from the unit square to
the unit disk. �ðs; tÞ ¼ ð�ðs; tÞ; �ðs; tÞÞ with ðs; tÞ 2 ½0; 1� �
½0; 1� and ð�; �Þ 2 ½0; 1� � ½0; 2��. For a point ðs; tÞ in a unit
square with jsj > jtj and s > 0, the concentric map is
defined as

�ðs; tÞ ¼ s; �ðs; tÞ ¼ �

4

t

s
:

The definition of �ðs; tÞ on other three symmetric parts of
the unit square is similar.

The elevation map �ð�; �Þ : ½0; 1� � ½0; 2��7�!R3 is a

mapping from the unit disk to the unit hemisphere,

defined as: x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2

p
cosð�Þ, y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2

p
sinð�Þ, and

z ¼ 1� �2.
It is shown in [27] that the concentric map �maps evenly

distributed samples in the unit square to evenly distributed
samples in the unit disk (as illustrated in Fig. 5c) and the
elevation map � maps uniformly distributed points in the
unit disk to uniformly distributed points on a unit hemi-
sphere. Therefore, the elevated concentric map (as a
concatenation � and �) will map evenly distributed
samples in the unit square to evenly distributed samples
on the hemisphere. Fig. 5d shows the improved sample
distribution as compared to the traditional spherical
parameterization in Fig. 5b.

The elevated concentric map �ðs; tÞ is invertible with

ðs; tÞ ¼ ��1ðx; y; zÞ ¼ ��1ðx; y;
ffi
1� x2 � y2

p
Þ

	 ��1ðx; yÞ:
ð9Þ

Thus, we can reparameterize the BTF as follows:

fðx;v; lÞ ¼ fðx; sv; tv; sl; tlÞ;

where ðsv; tvÞ ¼ ��1ðxv; yvÞ, ðsl; tlÞ ¼ ��1ðxl; ylÞ, and ðxv; yvÞ,
ðxl; ylÞ are the x, y-components of the viewing and lighting
directions. From now on, we will use these parameters for
hardware-accelerated BTF rendering. Note that the above
x, y-components can be easily generated from dot products
of the relevant normalized vectors. It is expensive to
compute the inverse map ��1 in the pixel shader.

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 283

Fig. 3. Mapping the BTF from the parameter space to the object surface.

Fig. 4. Software rendering of the BTF data “tube.” The small light blue

point near the bottom left corner indicates the light source position.

Fig. 5. Maps defined on the unit square. The green lines and red lines in
(a) are mapped to the lines of the same color in (b), (c), and (d). (a) A
16� 16 grid in a unit square. (b) The hemisphere of a polar map. (c) The
unit disk of a concentric map. (d) The hemisphere of a concentric sphere
map.

Fortunately, we can look it up by a 2D dependent texture.
See Section 4.3 for details.

4.3 Hardware-Accelerated Rendering

Now, we consider hardware-accelerated rendering of BTFs
on surfaces that can be parameterized on rectangular
domains. Let us first examine the basic operations for
rendering a BTF on a surface. As Fig. 3 illustrates, each
pixel p in the rendered image is calculated through the
following steps:

. Determine texture coordinate ðx; yÞ in the BTF plane
for the pixel p.

. Calculate the viewing and lighting parameters
ðsv; tv; sl; tlÞ in the local coordinate frame fT;N;Bg
of the surface point q that corresponds to p.

. Evaluate fðx; y; sv; tv; sl; tlÞ according to (6).

For surfaces that can be parameterized on rectangular
domains, the first step is the same as in traditional texture
mapping. The last two steps are very slow for a software
implementation. However, these two steps are well-suited
for a hardware implementation on graphics cards with
vertex and pixel shaders. To carry out these two steps in
hardware, we send texture coordinates, normal and tangent
vectors into graphics cards as vertex data and load the
geometry maps and PAFs into graphics cards as textures.

In the vertex shader, the viewing and lighting directions
are transformed into each vertex’s local coordinate frame
using the vertex normal and tangent vectors. The x and
y-components of the local lighting and viewing direction,
ðxv; yvÞ and ðxl; ylÞ, are scan converted to generate the local
lighting and viewing directions for each pixel. Thus, in the
pixel shader, each pixel has its own texture coordinate

ðx; yÞ, local viewing direction ðxv; yvÞ, and local lighting
direction ðxl; ylÞ.

In the pixel shader, we first calculate the viewing
parameters ðsv; tvÞ based on ðxv; yvÞ and the lighting
parameters ðsl; tlÞ based on ðxl; ylÞ. Then, we evaluate the
BTF at ðx; y; sv; tv; sl; tlÞ according to (6). In (6), the BTF is
approximated by a sum of a few products of geometry
maps and PAFs. (If the summed terms’ number exceeds the
graphics capability to handle in a single pass, multiple

rendering passes can be used.) It is straightforward to get
the value of a geometry map using the spatial coordinate
ðx; yÞ since all required geometry maps have been loaded as
textures. Obtaining the values of the PAFs is harder because
a PAF is four-dimensional while current graphics hardware
typically does not support 4D texturing.

We calculate the PAF using the volume texturing
capability available on current graphics hardware. For a

given 4D PAF pðsv; tl; sl; tlÞ with its parameter tl discretized
as ftl0 ; . . . ; tlnðtlÞ�1

g, we create a sequence of volume textures
fS0; . . . ; SnðtlÞ�1g, where Siðsv; tv; slÞ ¼ pðsv; tv; sl; tliÞ. Si is
thus the 3D slice of the 4D PAF at tli . From these volume
textures we can evaluate the PAF as follows:

pðsv; tv; sl; tlÞ ¼

S0ðsv; tv; slÞ if tl < tl0
SnðtlÞ�1ðsv; tv; slÞ if tl
 tlnðtlÞ�1

ð1� wÞSiðsv; tv; slÞþ
wSiþ1ðsv; tv; slÞ if tli � tl < tliþ1

;

8>><
>>:

where w ¼ ðtl � tliÞ=ðtliþ1
� tliÞ. In practice, the volume

texture sequence fS0; . . . ; SnðtlÞ�1g is combined into a single
volume texture and loaded into the graphics hardware. This
volume texture is indexed by the texture coordinate

sv; tv; z1 ¼ tli þ
sl

nðtlÞ

� �
:

Fig. 6 illustrates the design of the pixel shader. In Fig. 6,
z2 is either the same as z1 or tliþ1

þ sl=nðtlÞ. p1 ¼ Siðsv; tv; slÞ,
whereas p2 is either the same as p1 or Siþ1ðsv; tv; slÞ. The cost
of a PAF evaluation is two volume texture accesses and one
linear interpolation.

4.3.1 Implementation Details

To facilitate hardware implementation, we uniformly
resample the geometry maps and PAFs so that each
dimension has 2m samples for some integer m.

We also need to carefully handle the negative values
resulting from SVD decomposition. Some existing graphics
cards (Nvidia GeForce3, ATI Radeon8500) allow signed
texture input, but clamp negative output to 0. We resolve
this problem using two rendering passes. The first pass
adds ðgi � piÞþ and the second pass subtracts ð�gi � piÞþ,
where ð�Þþ denotes the operation of clamping negative
values to 0.

Another issue is dealing with the floating-point repre-
sentation of geometry maps and PAFs on graphics hard-
ware that has only limited precision for textures. We need
to quantize the geometry maps and PAFs. To minimize
quantization errors, we scale each pair of geometry map

giðx; yÞ and PAF piðsv; tv; sl; tlÞ by factors of s and 1=s,
respectively. This scaling does not change the product of
giðx; yÞ and piðsv; tv; sl; tlÞ. We choose s such that gi and pi
have the same mean-squared norms, i.e.,

Png�1
j¼0 ðgiðxj; yjÞsÞ2

ng
¼

Pnp�1
k¼0 ðpiðsv; tv; sl; tlÞ=sÞ2

np
:

The results are then scaled by another factor
ffiffiffiffi
ti

p
to the

range of ð�128; 128� and truncated into integers. During
rendering, the product gi � pi is first divided by t and then
added into the frame buffer. The division operation in the
pixel shader is done by shifting. It is obvious that the factor
ti should be chosen as large as possible, but without
overflowing the scaled results.

284 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 6. Flow chart of the pixel shader to compute the multiplication of
geometry maps and PAFs. Lerp denotes linear interpolation between p1
and p2 by w. � denotes multiplication. The pixel shader takes as input
the BTF’s spatial coordinates (x; y), the local viewing and lighting
directions ðxv; yv; xl; ylÞ. DT0 is the dependent texture to store the global
texture coordinates z1; z2 and the interpolation weight w. DT1 is another
dependent texture to transform ðxv; yvÞ to BTF’s parameter ðsv; tvÞ.

Finally, the change of variables for reparamerization is
not a trivial matter on current graphics hardware. Pixel
shaders do not have enough power to calculate the viewing
parameters ðsv; tvÞ from ð�v; �vÞ according to (9). Our
solution is to densely sample the reparameterization
function in (9) into a 2D texture and build a dependent
texture in advance to store the values of ðsv; tvÞ. In the pixel
shader, we only need to fetch these values from the
dependent texture. In addition to ðsv; tvÞ, z1, z2, and w are
also precomputed and loaded as a dependent texture. Thus,
texture fetching in the pixel shader has two phases, as
shown in Fig. 6. In phase #1, the texture coordinates of
volume textures and the interpolation weight w are fetched
from the two dependent textures. In phase #2, the two PAF
values p1 and p2 are fetched from the PAF volume texture.

4.4 BTF on Arbitrary Surfaces

Our final topic of this section is rendering the BTF on an
arbitrary surface mesh S. We will focus on surface BTFs
synthesized using the algorithm described in Section 3.3. As
mentioned, the synthesized BTF f 0ðx;v; lÞ ¼ G0ðxÞTP ðv; lÞ,
where G0ðxÞ is a set of geometry maps defined by (7). Note
that G0ðxÞ is a vector signal defined for each vertex on the
retiled mesh of target surface. In order to apply the
hardware-accelerated algorithm described in Section 4.3 to
the surface BTF f 0ðx;v; lÞ, all we need to do is to convert
G0ðxÞ from a set of surface geometry maps defined on the
vertices of the retiled mesh to a set of 2D geometry maps
defined on the unit square ½0; 1� � ½0; 1�.

The conversion of geometry maps takes two steps. First,
we find a parameterization for the original surface mesh S
over the parameter space ½0; 1� � ½0; 1�. Then, we use a novel
splatting algorithm to generate a set of 2D geometrymaps on
½0; 1� � ½0; 1� using the surface geometry maps of G0ðxÞ. It is
possible to directly parameterize the densely retiled mesh S0

and thus avoid the splatting step. However, the retiledmesh,
typically having over 250k vertices, is too dense to allow
efficient parameterization without distortion.

4.4.1 Mesh Parameterization

Parameterization of arbitrary surface meshes is an active
research area in computer graphics (e.g., [28], [29], [30]). The
source of difficulties for parameterization are twofold. First,
the geometric complexity of surfaces leads to distortion of
the parameterization. Second, the topology complexity of
surfaces makes cutting inevitable [28]. As long as the mesh
is not homeomorphic to a disk, we must cut the mesh to
make it possible to map it to a rectangular parameter space.
In our case, we want a parameterization that has low
distortion and we find that a texture atlas consisting of a set
of charts [30] works well for our purpose. Unlike [30], we
build a UI that allows the user to semi-automatically cut
open a mesh. A main benefit of this semi-automatic scheme
is its flexibility: The user can cut the charts on an “as needed
basis” to reduce distortion. Although any texture atlas
scheme would work here, our experience indicates that an
atlas created by an experienced user often has much less
distortion than charts generated by fully automatic meth-
ods. The main drawback of our scheme is that it requires
manual work. However, this is not really a bottleneck in our
system because creating an atlas is much faster than surface
BTF synthesis. Fig. 7a shows a texture atlas of the Stanford

bunny created using our system. The individual charts are
color-coded.

After the mesh is partitioned into charts, each chart can
be parameterized on a polygonal region of the parameter
space ½0; 1� � ½0; 1� by a variety of methods. We use the
parameterization in [31]. The size of a polygonal region is
chosen according to the size of the corresponding chart.

The last step of mesh parameterization is to pack all

charts into the parameter space ½0; 1� � ½0; 1�. An optimal

packing is known to be an NP-hard problem [30]. For

simplicity, we let the user interactively generate a packing

through a UI. The interactions include moving, scaling, and

rotating charts. Fig. 7b shows a packing obtained this way

for the Stanford bunny.

4.4.2 Splatting

To generate a set of 2D geometry maps on the parameter

space ½0; 1� � ½0; 1�, we splat the vector value G0ðxiÞ of each
vertex xi of the retiled mesh S0 into the parameter space.

This technique was inspired by surface splatting [32]. The

conventional surface splatting projects 3D points into the

2D screen space; our splatting method maps vertex values

of the geometry maps into the parameter space ½0; 1� � ½0; 1�,
as follows:

For each vertex xi on the retiled mesh S0

find the nearest triangle Ti;

compute the homography H of Ti’s parameterization;

calculate the Jacobian J of the homography H;

find the texture coordinate ðxi; yiÞ of xi

render the vertex data as splats centered at ðxi; yiÞ
The nearest triangle can be found by computing the

distances between xi and all the triangles in the original

surface mesh S and choosing the triangle with the smallest

distance. This brute-force search is very slow for large

models; we speed it up by first forming a small but

conservative set of candidate triangles.
For the nearest triangle Ti with vertices q0, q1, and q2, the

homography H is obtained by ðsqk ; tqkÞ, the texture

coordinate of qk, and ðx̂xqk ; ŷyqkÞ, the coordinate of qk in the

plane of the triangle Ti as follows:

sqk
tqk
1

0
@

1
A ¼ H �

x̂xqk

ŷyqk
1

0
@

1
A; H ¼

a11 a12 a13
a21 a22 a23
0 0 1

0
@

1
A;

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 285

Fig. 7. Example of (a) mesh partition and (b) packing.

where k ¼ 0; 1; 2. We splat the vertex data into the
parameter space by computing their contribution to each
pixel in the parameter space using the algorithm proposed
in [33]. The Jacobian matrix is

J ¼ a11 a12
a21 a22

� �
:

The algorithm in [33] is similar to EWA splatting in [32],
except replace the Gaussian kernel [32] by the sinc function
to achieve better results.

The splatting leaves some holes since the parameter
space ½0; 1� � ½0; 1� is not fully covered by the polygonal
regions resulted from parameterization, as is shown in
Fig. 7b. These holes will interfere with the mipmapping of
the splatting process. We avoid this problem by flood-filling
the holes.

5 RESULTS

We have implemented our surface BTF synthesis and
rendering algorithms on a Pentium III 866 MHz PC with
256 MB RAM and an ATI Radeon 8500 graphics card. Some
of the BTF data used in our experiments are summarized in
Table 2. The BTF data of “tube” (Fig. 4), “hole” (Fig. 11), and
“bean” (Fig. 12) are synthetic data generated by ray-tracing
height fields. The BTF data of “weave” is generated by ray
tracing a meso-structure consisting of some interleaved,
deformed cylinders. The BTF data of “plaster04” is based on
measurements of real-world surfaces from the CUReT
database [26] (the novel views are generated using the
method in [4]). Table 2 gives their sampling rates in all six
dimensions.

An important issue for both BTF synthesis and rendering
is the accuracy of the approximation using geometry maps
and PAFs. Fig. 8 shows the power spectrum of the BTF data
reported in this paper. For a given error bound, N varies for
an acceptable approximation. This is not surprising as the
number of terms needed depends on the complexity of
mesostructures and radiance variations of the underlying
BTF. Fig. 9 exhibits the quality of N-term approximations
for the BTF data “hole” and N ¼ 6; 12; 14. When the BTF
approximation is viewed in the BTF plane, the approxima-
tion is not good enough for N ¼ 12 and we need N ¼ 40 to
get a good approximation. On the other hand, when the BTF
is synthesized on a surface, an N-term approximation with
N ¼ 12 looks quite good, as Fig. 10 demonstrates.

Fig. 11 and Fig. 12 show the synthesized BTFs “hole” and
“bean” on the Stanford bunny using the algorithm
described in Section 3.3. With the geometry maps, the
synthesis efficiency improves greatly and synthesis quality

is comparable to that of [5]. With the algorithm in [5], it

typically takes about 60 � 70 minutes to extract surface

textons using K-means clustering. With the geometry maps,

this process takes only 4 � 5 minutes on the same machine.
Fig. 13 exhibits rendering results of N-term approxima-

tions for different N . In Fig. 13a, N ¼ 1 and the rendering

result resembles that of traditional texture mapping. As

more terms are added, we start to see specularities, self-

shadowing, and self-occlusions caused by surface meso-

structures. This example shows that our algorithm can

render the images in a progressive way. In Fig. 13d, N ¼ 10

and the rendering of the mesostructures is very convincing.

Table 3 summarizes the rendering performance for different

286 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

TABLE 2
Some of the BTF Data Used in Our Experiments

The viewing and lighting directions of the BTF data “plaster04” is
parameterized by the tilt and azimuth angles following [4].

Fig. 8. Power spectrum of the BTF data “plaster04,” “hole,” “bean,” and

“tube.”

Fig. 9. Quality of N-term approximations for the BTF data “hole.” The top

row shows the original BTF. The second, third, and fourth rows from top

to bottom are for N-term approximations with N ¼ 6; 12; 40, respectively.

geometry complexities with a 5-term approximation of the
BTF data “plaster04.”

We also implemented our hardware accelerated BTF

rendering algorithm on the ATI Radeon 9700 graphics card.

Some of the latest rendering results are shown in Fig. 14,

Fig. 15, Fig. 16, and Fig. 17. In these figures, the BTFs are

first synthesized onto the target model using the synthesis

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 287

Fig. 10. Quality of surface BTF synthesized with N-term approximations

for the BTF data “hole.” (a) uses the original BTF data. (b), (c), (d) use 6,

12, 40-terms approximations, respectively. The synthesized results are

visualized with the same view and light settings.

Fig. 11. Surface BTF synthesis result with the BTF data “hole” using the

algorithm described in Section 3.3. Some images were rendered with

the same view point but different lighting.

Fig. 12. Surface BTF synthesis result with the BTF data “bean” using the

algorithm described in Section 3.3. Some images were rendered with

the same view point but different lighting.

Fig. 13. Hardware-accelerated rendering of BTF on a parametric

surface. The image size is about 550� 450. The model consists of

784 vertices and 1,458 triangles.

algorithm in Section 3, then synthesized result are con-

verted from vertex signals to 2D textures as described in

Section 4.4. The BTF data are all 12-term approximations.

Both the Bunny model and the Tweety model consist of

about 10,240 vertices and 20,476 triangles. The image size

are all 800� 600. We achieved about 17 fps in these

experiments.

6 CONCLUSION AND DISCUSSION

We presented algorithms for efficient synthesis and hard-

ware-accelerated rendering of BTFs on arbitrary surfaces.

Our algorithms are based on an approximation of the BTF

by a number of PAFs multiplied by geometry maps. We

showed that our approximation can achieve high accuracy

with a small number of geometry maps and PAFs. We also

demonstrated that the PAFs and geometry maps lead to

significantly more efficient surface BTF synthesis when

compared to the algorithm in [5] and that the PAFs and

geometry maps can be quickly rendered by leveraging the

multitexturing and volume texturing capabilities of the

latest graphics hardware. Our experiments indicate that our

rendering algorithm can render surface BTFs in real time on

a mid-level PC with the latest graphics cards.

We plan to explore a number of topics in our future

work. One issue is that, for BTF decomposition, the number

of terms needed to approximate the original BTF depends

on the complexity of the geometry details and reflectance

properties of the BTF. It will be desirable to establish a more

explicit measure of this complexity. It will be more

significant to develop a more effective method to decom-

pose and compress the BTF data. Our rendering algorithm

is limited to point light source. We will also investigate the

new algorithms to efficiently render BTF with other types of

light sources.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their valuable comments. Jingdan Zhang was with

Tsinghua University when he participated in this work

during his internship at Microsoft Research Asia.

REFERENCES

[1] J.J. Koenderink and A.J.V. Doorn, “Illuminance Texture Due to
Surface Mesostructure,” J. Optical Soc. Am., vol. 13, no. 3, pp. 452-
463, 1996.

[2] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink,
“Reflectance and Texture of Real-World Surfaces,” ACM Trans.
Graphics, vol. 18, no. 1, pp. 1-34, Jan. 1999.

[3] T. Leung and J. Malik, “Representing and Recognizing the Visual
Appearance of Materials Using 3D Textons,” Int’l J. Computer
Vision, vol. 43, no. 1, pp. 29-44, June 2001.

[4] X. Liu, Y. Yu, and H.-Y. Shum, “Synthesizing Bidirectional
Texture Functions for Real-World Surfaces,” Proc. SIGGRAPH
2001, pp. 97-106, Aug. 2001.

[5] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum,
“Synthesis of Bidirectional Texture Functions on Arbitrary
Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 665-672, July
2002.

[6] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink,
“Reflectance and Texture of Real-World Surfaces,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 151-157, 1997.

[7] L.-Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” Proc. SIGGRAPH 2001, pp. 355-360, Aug.
2001.

[8] G. Turk, “Texture Synthesis on Surfaces,” Proc. SIGGRAPH 2001,
pp. 347-354, Aug. 2001.

288 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 14. Hardware-accelerated rendering of BTF “hole” with different

lighting directions.

TABLE 3
Hardware-Accelerated BTF Rendering Performance on a
Pentium III 866 Mhz PC with 256 MB of RAM and an ATI

Radeon 8500 Graphics Card

A 5-terms approximation is used for the BTF data. Fig. 15. Hardware-accelerated rendering of BTF “bean” with different

lighting directions.

Fig. 16. Hardware-accelerated rendering of BTF “weave” with different

lighting directions.

Fig. 17. Hardware-accelerated rendering of BTF “weave” with different

lighting directions. These images are rendered using the same BTF data

as those in Fig. 16, but the intensity of the light source is somewhat

higher.

[9] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, “Texture and
Shape Synthesis on Surfaces,” Proc. Eurographics Rendering
Workshop 2001, pp. 301-312, June 2001.

[10] J. Maillot, H. Yahia, and A. Verroust, “Interactive Texture
Mapping,” Proc. SIGGRAPH ’93, pp. 27-34, Aug. 1993.

[11] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures,” Proc.
SIGGRAPH 2000, pp. 465-470, July 2000.

[12] W.-C. Chen, J.-Y. Bouguet, M.H. Chu, and R. Grzeszczuk, “Light
Field Mapping: Efficient Representation and Hardware Rendering
of Surface Light Fields,” ACM Trans. Graphics, vol. 21, no. 3,
pp. 447-456, July 2002.

[13] J. Kautz and M.D. McCool, “Interactive Rendering with Arbitrary
BRDFs Using Separable Approximations,” Proc. Eurographics
Rendering Workshop, pp. 28-292, 1999.

[14] M.D. McCool, J. Ang, and A. Ahmad, “Homomorphic Factoriza-
tion of BRDFs for High-Performance Rendering,” Proc. Siggraph
2001, pp. 171-178, Aug. 2001.

[15] K.J. Dana and S.K. Nayar, “Histogram Model for 3D Textures,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 618-
624, 1998.

[16] K. Daubert, H.P.A. Lensch, W. Heidrich, and H.-P. Seidel,
“Efficient Cloth Modeling and Rendering,” Proc. Eurographics
Rendering Workshop, pp. 63-70, June 2001.

[17] T. Malzbender, D. Gelb, and H. Wolters, “Polynomial Texture
Maps,” Proc. SIGGRAPH 2001, pp. 519-528, Aug. 2001.

[18] J.M. Dischler, “Efficiently Rendering Macro Geometric Surface
Structures Using Bi-Directional Texture Functions,” Proc. Euro-
graphics Rendering Workshop, pp. 16-180, 1998.

[19] D.N. Wood, D.I. Azuma, K. Aldinger, B. Curless, T. Duchamp,
D.H. Salesin, and W. Stuetzle, “Surface Light Fields for 3D
Photography,” Proc. SIGGRAPH 2000, pp. 287-296, Aug. 2000.

[20] K. Nishino, Y. Sato, and K. Ikeuchi, “Eigen-Texture Method:
Appearance Compression Based on 3D Model,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 618-624, June
1999.

[21] G. Gorla, V. Interrante, and G. Sapiro, “Growing Fitted Textures,”
SIGGRAPH 2001 Sketches and Applications, p. 191, Aug. 2001.

[22] L.-Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. SIGGRAPH 2000, pp. 479-
488, 2000.

[23] A.A. Efros and T.K. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1033-1038,
Sept. 1999.

[24] W. Heidrich and H.-P. Seidel, “Realistic, Hardware-Accelerated
Shading andLighting,” Proc. SIGGRAPH ’99, pp. 171-178, 1999.

[25] G. Turk, “Re-Tiling Polygonal Surfaces,” Proc. SIGGRAPH ’92,
pp. 55-64, July 1992.

[26] CUReT, http://www.cs.columbia.edu/cave/curet, year?
[27] P. Shirley and K. Chiu, “A Low Distortion Map between Disk and

Square,” J. Graphics Tools, vol. 2, no. 3, pp. 45-52, 1997.
[28] X. Gu, S.J. Gortler, and H. Hoppe, “Geometry Images,” ACM

Trans. Graphics, vol. 21, no. 3, pp. 355-361, July 2002.
[29] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry

Remeshing,” ACM Trans. Graphics, vol. 21, no. 3, pp. 347-354, July
2002.

[30] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares
Conformal Maps for Automatic Texture Atlas Generation,” ACM
Trans. Graphics, vol. 21, no. 3, pp. 362-371, July 2002.

[31] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, “Texture
Mapping Progressive Meshes,” Proc. SIGGRAPH 2001, pp. 409-
416, Aug. 2001.

[32] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface
Splatting,” Proc. SIGGRAPH 2001, pp. 371-378, Aug. 2001.

[33] K. Deng, J. Zhang, L. Wang, and B. Guo, “Texture Mapping with a
Jacobian-Based Spatially-Variant Filter,” Proc. IEEE Pacific Gra-
phics, pp. 460-461, Oct. 2002.

Xinguo Liu received the PhD degree and BS
degree from the Department of Mathematics at
Zhejiang University. He is an associate research-
er in the Visual Computing Group at Microsoft
Research Asia. Before joining Microsoft, he was
with the State Key Lab. of CAD&CG at Zhejiang
University. His main research interests are in
geometry processing, image-based appearance
modeling, real-time rendering, and character
animation.

Yaohua Hu received the BS degree from the
School of Electronic Information and Control
Engineering, Beijing University of Technology.
He is an assistant researcher in the Internet
Graphics Group at Microsoft Research Asia. His
main interest is the impact of science on human
life, such as games and graphics.

Jingdan Zhang received the BE degree and MS
degrees from the Computer Science and Tech-
nology Department of Tsinghua University in
2000 and 2003. He is currently a graduate
student at the University of North Carolina,
Chapel Hill. His main research interests are
computer graphics and related applications.

Xin Tong received the PhD degree from
Tsinghua University and the MS and BS degrees
from ZheJiang University. He is a researcher in
the Internet Graphics Group at Microsoft Re-
search Asia. His research interests are in
appearance modeling and rendering, texture
synthesis, image-based modeling and render-
ing, and mesh compression.

Baining Guo received the PhD and MS degrees
from Cornell University and the BS degree from
Beijing University. He is the research manager
of the Internet Graphics Group at Microsoft
Research Asia. Before joining Microsoft, he was
with the Microcomputer Research Labs at Intel
Corporation in Santa Clara, California. His main
research interests are in modeling and render-
ing. His current projects include networked
games, appearance modeling, texture synth-

esis, natural phenomena, and image-based rendering.

Heung-Yeung Shum joined Microsoft Research
after receiving the PhD degree in robotics from
the School of Computer Science, Carnegie
Mellon University in 1996. He is a senior
researcher and the Managing Director of Micro-
soft Research Asia (MSRA). He has authored or
coauthored more than 100 papers in computer
vision, computer graphics, and robotics and
holds more than 20 US patents. He is on the
editorial boards for the IEEE Transactions on

Circit System Video Technology, IEEE Transactions on Pattern Analysis
and Machine Intelligence, and Graphical Models. His research interests
are computer vision, computer graphics, video representation, learning,
and visual recognition. He is a senior member of the IEEE.

LIU ET AL.: SYNTHESIS AND RENDERING OF BIDIRECTIONAL TEXTURE FUNCTIONS ON ARBITRARY SURFACES 289

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

