
Eurographics Symposium on Rendering (2004)
H. W. Jensen, A. Keller (Editors)

All-Frequency Precomputed Radiance Transfer
for Glossy Objects

Xinguo Liu1, Peter-Pike Sloan2, Heung-Yeung Shum1, and John Snyder3

1 Microsoft Research Asia 2 Microsoft Corporation 3 Microsoft Research

Abstract

We introduce a method based on precomputed radiance transfer (PRT) that allows interactive rendering of glossy
surfaces and includes shadowing effects from dynamic, “all-frequency” lighting. Specifically, source lighting is
represented by a cube map at resolution nL = 6× 32× 32. We present a novel PRT formulation which factors
glossy BRDFs into purely view-dependent and light-dependent parts, achieving reasonable accuracy with only
m=10 dimensional factors. We then tabulate an m× nL transfer matrix at each surface vertex as a preprocess,
representing the object’s response to this lighting. Because this surface signal is so high-dimensional, reducing m
is crucial for making practical both the preprocessing and run-time. To compress the transfer matrices, we divide
the cube map into 24 lighting segments and apply the Haar wavelet basis in each segment to provide sensible
quantization. We also apply clustered principal component analysis (CPCA) to each PRT segment to approximate
it as a linear combination of a few (n=16) representative transfer matrices within a small set of clusters over the
surface. This exploits spatial coherence to compress very effectively. Most important, it maintains fast rendering
rates with 2-3 orders of magnitude more lighting coefficients than previous methods, which increases accuracy
and avoids temporal artifacts in high-frequency lighting environments. We demonstrate interactive performance
(1-5Hz) on models having up to 50,000 vertices.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Fast rendering of global light transport effects from realistic
lighting environments is a difficult problem. To solve it, we
apply precomputed radiance transfer (PRT) [SKS02]. The
basic idea of PRT is to record over sample points on a sur-
face a transfer matrix that converts source into exit radiance,
and incorporates effects like shadowing, inter-reflection, and
subsurface scattering from one part of the object onto an-
other. In other words, PRT tabulates the objects’s linear re-
sponse to source lighting. The method can quickly render
global illumination effects from distant, environmental light-
ing which would be too slow for on-the-fly ray tracing, and
require too many rendering passes on graphics hardware.

Our method addresses limitations of previous PRT meth-
ods, as shown in Figure 1. [SKS02, KSS02, SHHS03] are
limited to low-frequency lighting, producing only soft shad-
ows as seen on the bird’s tail and the ground in Figure 1(c).
Instead of using a low-order spherical harmonic basis com-

(a) all-freq. diffuse (b) all-freq. glossy (c) low-freq. glossy
[NRH03] our method [SHHS03]

Figure 1: Comparison of PRT methods.

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

prising only 25 lighting coefficients, we use a cube map with
many more (nL = 6 × 32 × 32 = 6,144) coefficients. This
provides soft shadows from area lighting without precluding
sharper shadows from small lights. [NRH03] handles higher-
frequency lighting but uses only single-row (scalar output)
transfer matrices by limiting to diffuse objects or glossy ob-
jects seen from a fixed view. We handle glossy objects with
an unconstrained view, and retain more of the lighting en-
ergy, which avoids temporal artifacts when the selection of
lighting coefficients to truncate changes in the presence of
dynamic lighting.

To make our method practical, we combine three ideas
from previous work: BRDF factorization [KM99], “all-
frequency” PRT using Haar wavelets [NRH03], and CPCA
for PRT compression [KL97, SHHS03].

We factor the BRDF into the sum of products of m func-
tions depending only on light direction with m functions only
of view direction, as in [KM99]. Unlike past BRDF factor-
ization methods, we account for shadows rather than assum-
ing that source lighting arrives entirely unoccluded. This fac-
toring yields PRT matrices with m rows that are specialized
to the particular object’s surface reflectance. With a small
m (10), we obtain accuracy that would require many more
coefficients using unspecialized bases such as spherical har-
monics or the directional basis.

Our lighting basis uses Haar wavelets over blocks, called
segments, of a cube map. Quantizing or truncating near-zero
coefficients then provides a simple way to approximate the
lighting that preserves its most important content [NRH03].
Since the surface exhibits a more coherent response to light-
ing from the same general direction, we perform a 2×2 seg-
mentation of the six faces of the cube map and perform a
Haar transform on the 16×16 image in each of the 24 seg-
ments. A lighting segment corresponds to a transfer segment
or set of columns of the transfer matrix that represents the
surface’s linear response to that lighting segment alone. This
segmentation does not constrain the lighting we can handle
in any way; it is merely a device to speed compression of the
signal by an a priori division of it into parts that are likely to
be coherent.

We then use clustered principal component analysis
(CPCA) [KL97] to approximate each transfer segment as a
linear combination of a few (n=16) representatives. Rather
than forming a global approximation over the entire object,
CPCA clusters points and computes an independent approx-
imation in each cluster. As shown by [SHHS03], CPCA pro-
vides a highly-compressed yet accurate approximation for
nonlinear PRT signals. It also accelerates rendering by per-
forming expensive matrix/vector multiplies only per-cluster
and reducing the per-vertex computation to a weighted com-
bination of n m-dimensional vectors, followed by an m-
dimensional dot product. The same benefits apply to our
PRT formulation, though our transfer signal is based on dif-

ferent input and output bases and has nearly 100 times as
many dimensions.

Our main contribution is to introduce the first interac-
tive method for rendering glossy objects with global ef-
fects due to “all-frequency” (not just low-frequency) light-
ing. Though BRDF factorization is not new, our applica-
tion of it to PRT is novel and greatly reduces the number
of rows in our transfer matrices while maintaining accu-
racy for specular BRDFs. Even so, we deal with a high-
dimensional (m× nL) transfer signal much larger than any
from previous PRT work. We show effective compression
using a light-segmented CPCA encoding whose clusters au-
tomatically adapt to sharp shadow boundaries on the surface.
We also show how our compression reduces the run-time’s
dependence on the number of lighting coefficients, allow-
ing fast rendering without truncating any of the lighting en-
ergy. Finally, we demonstrate high-quality results on graph-
ics hardware.

2. Formulation of the Factored PRT Signal

In the following, we use the term global frame for a coor-
dinate frame in which the source lighting is represented and
which is shared by all vertices on the object, and local frame
for a coordinate frame determined by the normal and tan-
gent directions at each vertex p. Lower-case letters denote
scalars or low-dimensional (2 or 3) vectors, capital letters
denote high-dimensional vectors or matrices. Our formula-
tion is based on [SKS02], but introduces BRDF factorization
and a generic lighting basis.

Shading at point p with view vector v is given by an in-
tegral over the hemisphere H of lighting directions s in the
local frame:

gp(v) =
∫

s∈H
f (v,s) tp(s)ds (1)

tp(s) is the transferred incident radiance function. It is the
radiance from the source lighting that arrives at p after in-
cluding transport effects like self-shadowing from the ob-
ject. tp(s) also rotates the lighting from a global to to a local
frame. Note that tp(s) is a linear operator on the source light-
ing, l(s). We denote this by

tp(s) = tp[l(s)] (2)

The BRDF product function is defined as f (v,s) = b(v,s)sz

where b(v,s) is the BRDF and sz is the cosine factor (normal
component of the incident radiance direction s).

We factor f via

f (v,s) = G(v) ·F(s) (3)

where G(v) and F(s) are m-dimensional vector functions
purely of view direction v and light direction s respectively.
The PRT surface signal is then given by the following linear

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

original m=5, error=10% m=10, error=2.1%

Figure 2: BRDF factorization example. Errors are sum of
squared differences divided by total sum of squares over all
BRDF samples.

operator (having m outputs) at each point p

Mp[l(s)] =
∫

s∈H
F(s) tp[l(s)]ds (4)

Because tp is a linear operator, Mp also depends linearly
on the source lighting function, l(s). Any linear basis for
source lighting, such as the spherical harmonic basis, the
Haar wavelet basis over cube map faces, or even a direc-
tional basis, represents l(s) via

l(s) =
nL

∑
i=1

Li li(s) (5)

where li(s) is the i-th lighting basis function and Li is its
coefficient.

In this lighting basis, the PRT signal becomes a m× nL
transfer matrix at each point, Mp, a component of which is
given by

(Mp)i j =
∫

s∈H
Fi(s) tp[l j(s)]ds (6)

where tp[l j(s)] is a scalar spherical function representing
transferred incident radiance from the j-th lighting basis
function, l j(s). Mp’s rows represent contribution to one com-
ponent of transferred incident radiance corresponding to
Fi(s). Its columns represent the response to one lighting ba-
sis function, l j(s).

Combining equations (1-6), the shading result is given
simply by

gp(v) = GT (v) Mp L = G(v) · (Mp L
)

(7)

where GT (v) is the m-dimensional row vector formed by
transposing the column-vector BRDF factor G(v), Mp is the
transfer matrix at p, and L is the vector of lighting coeffi-
cients.

3. BRDF Factorization

To factor the BRDF product function f (v,s), we apply a
simple modification of the method in [KM99]. More recent
BRDF factorizations reduce error [MAA01], efficiently han-
dle (unoccluded) area lighting [LK03a, RH03] and handle

6D BTFs [SvBAD03]. But they all use products of 2D func-
tions whose parameters mix view and light directions. When
applied to PRT, such “mixed” factors prohibit our simple for-
mulation (equation 7) and so are inappropriate. [NN95] con-
siders separable BRDFs for radiosity, but only single term
expansions. With enough terms (big enough m), [KM99] and
our work can drive the approximation error to 0 for arbitrary
BRDFs.

We begin by forming a matrix Q whose components are
Qi j = f (vi,s j), with nv view samples, vi, and ns light sam-
ples, s j. The viewing and lighting directions are parameter-
ized using the parabolic map [HDKS00]. We use nv = ns =
32×32 = 1024 sampled directions for both view and light.

We then perform the singular value decomposition on the
matrix Q and set all but the largest m singular values to zero.
Then

Qi j ≈
m

∑
k=1

Gik σk Fk j (8)

Absorbing a square root of the diagonal matrix formed by
the singular values σk into both the left and right factors, we
obtain our two functions G(v) and F(s) via

f (vi,s j) ≈
m

∑
k=1

Gk(vi)Fk(s j) = G(vi) ·F(s j) (9)

Note that continuous functions result from interpolation be-
tween sample points in the parabolic parameterization space.

Generally, a specular BRDF has high values when the
view direction aligns with the reflected light direction and
drops off rapidly at nearby samples. Our sampled view and
light directions are located on a regular grid and so can eas-
ily miss these important features. To avoid aliasing, we su-
persample each pair of view/light samples by a factor of
16× 16. The limited sampling has the effect of smoothing
highly specular BRDFs.

Unlike [KM99], we include the cosine factor in our BRDF
factorization. This attenuates the function’s values, making
it easier to approximate. In practice, we find the nonlinear
operation of clamping values of f bigger than 3 before per-
forming the SVD provides more visual accuracy.

Figure 2 shows an example of BRDF factorization on the
Cook-Torrance lighting model [CT82] with the following
parameter values: facet slope (roughness)=0.4, Fresnel=0.5.
Differences can be seen in the sharpness of the highlights,
especially in the spout and handle. Good accuracy is ob-
tained using factors with only m=10 dimensions. Similar ac-
curacy is also obtained on the anisotropic lighting model
of [Sch94], used in Figures 1 and 7, with parameter val-
ues roughness=0.2, isotropy=0.2, and Fresnel=0.8. Figure 3
shows how accuracy depends on the specularity of the light-
ing model.

Our BRDF factorization essentially chooses an output ba-
sis for the PRT signal specially adapted to the particular

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

original

10-term expansion using SVD

roughness=0.3 roughness=0.25 roughness=0.20

Figure 3: Limits of specularity with 10-term BRDF fac-
torization. The first row shows original images using the
Cook-Torrance lighting model with increasing specularity.
The second row shows our 10-term approximation, which
exhibits visual error at roughness < 0.3.

BRDF. In contrast, [SKS02, SHHS03] use an unspecialized
output basis (spherical harmonics) having 25 rows. To com-
pare techniques, we performed an error analysis by comput-
ing RMS and maximum pointwise error for the two lighting
models above, using 1024 samples in both light direction and
view direction sampled over the hemisphere. The following
table summarizes results:

Cook-Torrance Schlick
Method # rows

RMS max RMS max

SVD 10 0.0677 0.554 0.0389 0.298
SH (order 4) 16 0.156 1.21 0.121 0.634
SH (order 5) 25 0.102 0.967 0.0766 0.438
SH (order 6) 36 0.0708 0.727 0.0511 0.333
SH (order 7) 49 0.0538 0.532 0.038 0.267

The bottom line is that our 10 row SVD (BRDF-specialized)
transfer matrix is equivalent to between a 36 and 49 row
spherical harmonic (SH) matrix for both lighting models,
saving more than a factor of 4 in signal dimensionality.

4. PRT Computation

We outline our precomputation of the PRT signal Mp. Cur-
rently, our implementation only handles direct shadowing ef-
fects and ignores inter-reflection.

At each mesh vertex p, we first compute a visibility map,
qp(s j), at directional samples s j which returns 0 if p is shad-
owed in the direction s j and 1 if it is unshadowed. We use
a cube map in a global coordinate system to parameterize
the directions s j. Directions below the hemisphere around
p’s normal are ignored. We supersample qp 4×4, yielding a
6×128×128 cube map.

From the visibility map, we then compute a “raw” transfer
matrix signal, M̃p which integrates against the BRDF basis
functions Fi(s). Unlike the final transfer matrix, it uses a di-
rectional lighting basis. This raw transfer matrix is given by
the following integral over a small cone of directions in the
global frame:

(
M̃p

)
i j =

∫
s∈C(s j)

dsj (s) qp(s) Fi
(
Rp(s)

)
ds (10)

where C(s j) is the cone of directions within one cube map
texel of the direction s j, dsj (s) is the bilinear basis function
on the cube map centered at the sample s j, and Rp rotates
the direction s from the global frame to the local frame.

The raw transfer signal M̃p has m× nL= 61,440 dimen-
sions at each vertex, requiring several gigabytes of storage
for typical models in single precision. To compress it, a sim-
ple method is to extend the technique in [NRH03] to these
transfer matrices by applying the Haar wavelet transform
over the light dimensions, quantizing to a reasonable pre-
cision, and exploiting sparsity. We find that this reduces our
data by roughly a factor of 10, but the compressed data is
still impractically large.

Our method partitions the lighting basis into 24 segments,
using a 2×2 subdivision of the cube map faces. Each result-
ing transfer segment has nT = m× (nL/24) = 2560 dimen-
sions, corresponding to columns in the transfer matrix that
respond to that lighting segment. We then compress using
CPCA over each transfer segment (see next section). We ap-
ply the Haar wavelet transform to the representative matrices
(eigen-matrices) in each cluster and quantize them to 16 bits
of precision, followed by a lossless sparsity coding. We also
quantize the per-vertex weights to 16 bits. This provides a
compression factor of 77 (1.3% of raw size) on our glossy
bunny; compression results for other models can be found in
Table 1.

To exploit sparsity in the quantized representative transfer
matrices, we use the method in [NRH03], which applies the
normalized, non-standard Haar transform, but we quantize to
16 bits rather than 8. The basic idea is to form a matrix where
each row is one representative transfer matrix from the clus-
ters. We block this matrix into groups of 256 rows, and per-
form a sparse-matrix encoding over columns (i.e., over sin-
gle components of the representatives). In other words, we
store a row index and 16-bit quantized value only for com-
ponents that are non-zero.

5. PRT Compression using CPCA

CPCA Representation We apply the general technique of
CPCA to 24 separate signals consisting of an nT dimensional
transfer segment at each surface vertex. We will continue to
denote the signal as Mp though it is understood in the follow-
ing that the signal is only a subset of the columns of the ma-
trix in equation (6). Because CPCA encoding is quite slow

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

and is quadratic in the signal dimension nT , dividing the sig-
nal into 24 independent components makes the computation
faster.

CPCA approximates a transfer segment via the following
linear combination in each cluster

Mp ≈
n

∑
i=1

wi
p Mi (11)

where n is the number of representative matrices per clus-
ter, wi

p are n scalar weights that vary spatially, and Mi are n
representative matrices which are constants for each cluster.
(An alternative formulation is an affine combination which
includes the unweighted cluster mean [SHHS03], and com-
plicates the analysis below slightly.)

We achieve a good approximation for interactive render-
ing using n=16. Figure 5 compares rendering quality from
various n.

CPCA Compression Analysis Only lighting segments
above the normal’s hemisphere contribute to shading; seg-
ments below it can be ignored. At any vertex, at least 4 out
of 24 segments are below the normal’s hemisphere; on av-
erage, about 8 out of 24 are. So a given transfer segment
will be nonzero for only ω = 2/3 of all vertices, even with-
out any shadowing. We take advantage of this by culling all
vertices whose shading ignores a particular segment before
beginning the CPCA encoding. Extensive self-shadowing on
the object, such as on the buddha model, further decreases ω
(see Table 1) which reduces the signal’s size even more.

To analyze compression after elimination of entirely zero
transfer segments, let nC be the number of vertices in a clus-
ter. The size of the compressed representation in a single
cluster is nT n to store the representative transfer segments
and nC n to store the per-point weights. The uncompressed
size of the cluster data is nC nT . This provides a compres-
sion ratio r defined by

r =
nC nT

n(nC +nT)
(12)

As a typical example, assume we wish to encode a single
transfer segment over a model with 16,000 vertices. Assum-
ing ω=2/3, only 10,667 of these vertices have a nonzero
transfer segment. Using 64 clusters in each segment (64×
24 total clusters) yields nC=167 average vertices per cluster,
and a compression ratio estimate of r≈9.8. This is only an
estimate because CPCA allows nC to vary over clusters; we
can only fix its average. The total compressed size is roughly
ω/r = 6.8% of the raw signal, including both CPCA and
elimination of zero transfer segments.

CPCA Encoding To compute a CPCA approximation, we
use the method called “iterative CPCA” in [SHHS03], which
is a simple generalization of VQ clustering [LBG80]. The
method alternates between classifying a point in the cluster
providing the smallest approximation error followed by up-
dating the cluster’s representatives using an eigen-analysis

Figure 4: CPCA clustering visualization for three different
transfer segments. Areas on the surface receiving no light
from the segment are colored black. Note how well CPCA
adapts to the shadowing.

over all points classified to it. Figure 4 shows how well this
method adapts to the object’s self-shadowing.

We currently determine the total number of clusters by di-
viding the total number of nonzero transfer segments over all
vertices by 200. This fixes an average nC=200, which in turn
targets a compression ratio of r≈11.6, not counting elimina-
tion of zero segments.

CPCA Rendering Besides compression, another advantage
of CPCA is that the representation can be rendered di-
rectly without the need to reconstruct the entire transfer
matrix [SHHS03, LK03b]. The result is a significant run-
time speedup. To see this, apply our approximate operator
to the lighting to get an m-dimensional vector, Tp, represent-
ing transferred incident radiance with respect to the BRDF-
specialized output basis F(s), via

Tp = Mp L ≈
n

∑
i=1

wi
p

(
MiL

)
=

n

∑
i=1

wi
p T i (13)

So instead of reconstructing a transfer matrix at each p and
then applying it to the lighting, we compute n matrix/vector
multiplies in each cluster to obtain the T i, and only have to
perform n weighted combinations of these vectors at each
vertex. From equation (7), the final shade is then given by
the dot product of the m-dimensional vectors Tp and G(v).

CPCA thus makes the computation fairly insensitive to
the number of lighting basis functions nL. Critically, the per-
vertex computation no longer depends on nL at all, only on m
and n. The per-cluster computation (of the T i) does depend
on nL, but there are many times fewer clusters than vertices
(see Table 1).

6. PRT Rendering

Our PRT rendering method is based on [SHHS03], but is ap-
plied to transfer matrices having a different input basis (Haar
wavelets over cube map segments) and output basis (m-
dimensional BRDF-specialized functions Fi(s)), rather than
spherical harmonics. It performs the following four steps:

1. Project the time-varying lighting environment onto the
cube map, and then into the Haar basis over each segment
to obtain the lighting vector L.

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

2. For each transfer segment, transform the lighting through
each cluster’s representatives to obtain the T i = Mi L.

3. At each vertex, reconstruct the transferred radiance vec-
tor Tp using a weighted combination of the T i in equation
(13).

4. Compute the local view direction v and return the dot
product of G(v) with Tp.

Since the lighting vector L has three color channels, these
steps are performed for each color channel. Shadowed trans-
fer requires only single-channel transfer matrices since all
colors are occluded by the object in the same way. We com-
pute a simple 3-channel multiplication of the output of step
4 to provide surface color.

Lighting Projection When transforming the 6×32×32
lighting cube map into the vector L, it is important to con-
sider aliasing, especially with high dynamic range lighting
which can contain very high frequencies. We supersample
the lighting 4×4 and decimate before computing the seg-
mented Haar transform.

Another issue is lighting truncation which eliminates
unimportant lighting coefficients to make the vector L
sparser. [NRH03] called this “non-linear” approximation
and presented several strategies for it, including truncating
coefficients with the lowest magnitude, magnitude weighted
by spherical area, and magnitude weighted by average trans-
fer response on the surface. Though truncation can acceler-
ate performance, it risks temporal artifacts when the lighting
changes if significant lighting energy is truncated.

In our method, such truncation strategies acclerate the per-
cluster computation (next subsection). But we are less de-
pendent on truncation to achieve reasonable performance,
because per-cluster work forms only a part of the compu-
tation.

Per-Cluster Computation Computing the T i = MiL in-
volves a sparse matrix/vector multiply on the CPU. Sparsity
in L drives the computation. We find that when we elimi-
nate all truncation, the per-cluster and per-vertex computa-
tion times are about equal.

Per-Vertex Computation Though CPCA reduces it, per-
vertex computation remains significant, requiring ω (aver-
age fraction of vertices having nonzero segment) × 24 (seg-
ments) × n=16 (representatives) × m=10 (transfer output
components) × 3 (color channels) or 7680 multiplies per
vertex for ω=2/3. The computation is linear in m and n so
reducing them speeds things up. We also note that when only
the view is changed (i.e., the light remains fixed relative to
the object), then only step 4 above must be recomputed.

Unlike the per-cluster computation, the per-vertex compu-
tation processes short, contiguously-accessed vectors; i.e., it
is “dense” rather than sparse. This makes it suitable for GPU
implementation. We currently do all the shading computa-
tion, including the per-vertex part, on the CPU. However,

model bunny teapot tweety(d) tweety(g) buddha(d) buddha(g)

material Cook Schlick diffuse Schlick diffuse Cook
vertices 11.5k 51.3k 32.8k 32.8k 54.1k 54.1k
signal dim 2560×24 2560×24 256×24 2560×24 256×24 2560×24
raw data (Gb) 2.84 11.7 .768 7.68 1.24 12.4
ω 56.0% 61.8% 57.6% 57.6% 42.4% 42.4%
total clusters 763 3801 2260 2263 2739 2740
CPCA comp. 4.43% 5.36% 8.16% 4.85% 6.23% 3.65%
wavelet comp. 29.5% 31.2% 50.0% 30.4% 54.5% 32.2%
total comp. 1.31% 1.67% 4.17% 1.42% 3.39% 1.19%
squared error 0.20% 0.051% 0.02% 0.79% 0.11% 0.0063%
render time (fps) 5.0/6.2 1.2/1.3 8.4/14 1.7/1.8 6.6/9.4 1.1/1.2

Table 1: Results, m=10 (glossy) or m=1 (diffuse), n=16.
Render times are shading+draw/shading+no-draw using
the St. Peter’s HDR lighting environment with no lighting
truncation.

we note that some of the computation could be simply trans-
ferred to the GPU, using a method similar to that in [KSS02].
The idea is to use a texture map for G(v), interpolate Tp over
triangles, and do the dot product in step 4 in the pixel shader.
This requires streaming the m-dimensional transfer output
signal Tp to the graphics hardware.

7. Results

Table 1 shows compression and performance statistics for
various models. We obtain compression ratios ranging from
24:1 to 84:1 with low error. The performance numbers in
Table 1 do not include a ground plane; timings in Figures 6
and 7 do. Because it is diffuse and so requires only single-
row transfer matrices (m=1), the ground plane cost in terms
of both storage and rendering time is minimal compared to
the glossy objects themselves. We used a ground plane hav-
ing 192x192=36864 vertices in all examples. For the bunny
example, the raw data was about 715MB which compressed
down to 23.6MB; compression results for other models are
very similar. Our CPU shading code has been optimized to
use multi-threading and SSE. Our rendering code is not op-
timized. All timings were performed on an dual Intel Xeon
3GHz PC with ATI Radeon 9800.

CPCA-encoding takes roughly 4 hours for the most com-
plex (50k vertex) glossy models, about 10 minutes for the
complex diffuse models, and correspondingly less for mod-
els with fewer vertices. Simulation of self-shadowing takes
about 20 minutes for the most complex models.

Figure 6 compares truncation of different numbers of
lighting coefficients (denoted |L|) on the diffuse Buddha
model. For this experiment, we applied truncation using both
the lighting basis and area × magnitude priority scheme
from [NRH03]. (Note that [NRH03]’s lighting basis differs
from ours in that it does not segment the cube map faces.
We used a basis from previous work to show that the need
for more coefficients does not arise from this segmentation.)
We then picked the largest priority coefficients and repro-
jected into our segmented basis. The lighting environment
consists of a collection of 40 small sources distributed over

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

the sphere. In such high-frequency environments, truncation
causes visible artifacts unless a large fraction (≈70%) of the
lighting coefficients is retained. Even worse, objectionable
flickering artifacts result from animating the model or the
lights, because the truncation changes as the lights move (see
Video #2). Our method can render interactively without any
lighting truncation at all; note how slowly the frame rate de-
creases as we increase the number of lighting coefficients.

Figure 7 shows example images and rendering perfor-
mance for our more complicated models. The left two
columns compare diffuse and glossy reflectance on the Bud-
dha. The right column compares low-frequency (top) and
all-frequency (bottom) lighting on an anisotropically glossy
teapot.

8. Conclusion

Handling specular BRDFs and all-frequency lighting in
PRT requires high-dimensional transfer matrics which are
recorded at many points on the surface. Our method makes
this practical with two key ideas. We factor BRDFs into sep-
arate view- and light-dependent parts, absorbing the light-
dependent part into the transfer matrix. This greatly reduces
the number of rows in our matrices by specializing transfer
output to the object’s particular reflectance. We then apply
CPCA to the transfer signal to compress it and accelerate its
rendering in a way that reduces computational dependence
on the size of the lighting basis. This allows us to include
a much bigger fraction (even 100%) of the lighting energy
without slowing the run-time much. Our results demonstrate
interactive performance that renders shadows on glossy ob-
jects from all-frequency, dynamic lighting.

In future work, we wish to include inter-reflections and
subsurface scatter. One advantage of PRT is that such effects
will have little impact on the run-time complexity. Never-
theless, the preprocessing is made challenging because we
currently take advantage of the fact that shadowed transfer
requires only a diagonal matrix when using the directional
lighting basis, and thus can be stored using nL-dimensional
bit vectors, rather than n2

L-dimensional matrices. Including
inter-reflection requires simulation with a full transfer ma-
trix. We are also interested in experimenting with better light
bases, including smoother wavelets and parameterizations
that sample more uniformly over the sphere. Finally, we
wish to move more of the computation from the CPU to the
GPU, especially by parameterizing the object and recording
PRT as a texture signal to be processed in a pixel shader.

References

[CT82] COOK R., TORRANCE K.: A reflectance model for
computer graphics. ACM TOG 1, 1 (1982), 7–24.

[HDKS00] HEIDRICH W., DAUBERT K., KAUTZ J., SEIDEL H.:
Illuminating micro-geometry based on precomputed

visibility. In Proc. SIGGRAPH ’00 (2000), pp. 455–
464.

[KL97] KAMBHATLA N., LEEN T.: Dimension reduction by
local prinicpal component analysis. Neural Computa-
tion 9 (1997), 1493–1516.

[KM99] KAUTZ J., MCCOOL M.: Interactive rendering with
arbitrary brdfs using separable approximations. Ren-
dering Techniques ’99 (Eurographics Workshop on
Rendering) (1999), 281–292.

[KSS02] KAUTZ J., SLOAN P., SNYDER J.: Fast, arbitrary
brdf shading for low-frequency lighting using spheri-
cal harmonics. Eurographics Workshop on Rendering
(2002), 291–296.

[LBG80] LINDE Y., BUZO A., GRAY R.: An algorithm for
vector quantizer design. IEEE Transactions on Com-
munication COM-28 (1980), 84–95.

[LK03a] LATTA L., KOLB A.: Homomorphic factorization
of brdf-based lighting computation. In Proc. of SIG-
GRAPH ’03 (2003), pp. 509–516.

[LK03b] LEHTINEN J., KAUTZ J.: Matrix radiance transfer.
Symposium on Interactive 3D Graphics (2003), 59–
64.

[MAA01] MCCOOL M., ANG J., AHMAD A.: Homomorphic
factorization of brdfs for high-performance rendering.
In Proc. of SIGGRAPH ’01 (2001), pp. 171–178.

[NN95] NEUMANN L., NEUMANN A.: Radiosity and hybrid
methods. ACM TOG 14, 3 (1995), 233–265.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
frequency shadows using non-linear wavelet lighting
approximation. In Proc. of SIGGRAPH ’03 (2003),
pp. 376–381.

[RH03] RAMAMOORTHI R., HANRAHAN P.: Frequency
space environment map rendering. In Proc. of SIG-
GRAPH ’03 (2003), pp. 517–526.

[Sch94] SCHLICK C.: An inexpensive brdf model for
physically-based rendering. Computer Graphics Fo-
rum 13, 3 (1994), 233–246.

[SHHS03] SLOAN P., HALL J., HART J., SNYDER J.: Clus-
tered principal components for precomputed radiance
transfer. In Proc. of SIGGRAPH ’03 (2003), pp. 382–
391.

[SKS02] SLOAN P., KAUTZ J., SNYDER J.: Precomputed radi-
ance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proc. of SIG-
GRAPH ’02 (2002), pp. 527–536.

[SvBAD03] SUYKENS F., VOM BERGE K., ARES L., DUTRE P.:
Interactive rendering with bidirectional texture func-
tions. Computer Graphics Forum 22, 3 (2003), 463–
472.

c© The Eurographics Association 2004.

X. Liu, P. Sloan, H. Shum, & J. Snyder / All-Frequency Precomputed Radiance Transfer for Glossy Objects

n=2 n=4 n=8 n=16
Figure 5: Varying number of representatives, n. Note cluster artifacts especially at shadow boundaries, which are almost
invisible for n=16.

|L|=50 (4.3%), 6.9fps |L|=100 (8.5%), 6.8fps |L|=200 (17%), 6.7fps |L|=400 (34%), 6.5fps |L|=800 (68%), 6.2fps |L|=1173 (100%), 6.1fps

Figure 6: Light truncation comparison. The bottom row displays the number of untruncated coefficients, the total fraction
represented by that number in parentheses, and the frame rate obtained. The top row shows the rendered result from the
truncated lighting environment shown in the middle row. When rotating the lighting, temporal artifacts (“flicker”) appear with
fewer than about 800 coefficients (68% of nonzero coefficients) in this example.

Figure 7: Example images: diffuse buddha (left, 5.8fps), glossy buddha (middle, 1fps), low-frequency teapot
(top right,1.2fps), all-frequency teapot (bottom right, 1.2fps).

c© The Eurographics Association 2004.

